Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (2) : 137402    https://doi.org/10.1007/s11467-017-0728-0
RESEARCH ARTICLE
Topological Fulde–Ferrell and Larkin–Ovchinnikov states in spin-orbit-coupled lattice system
Yao-Wu Guo1, Yan Chen1,2()
1. Department of Physics and State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
2. Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
 Download: PDF(1276 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The spin-orbit coupled lattice system under Zeeman fields provides an ideal platform to realize exotic pairing states. Notable examples range from the topological superfluid/superconducting (tSC) state, which is gapped in the bulk but metallic at the edge, to the Fulde–Ferrell (FF) state (having a phase-modulated order parameter with a uniform amplitude) and the Larkin–Ovchinnikov (LO) state (having a spatially varying order parameter amplitude). Here, we show that the topological FF state with Chern number (C=−1) (tFF1) and topological LO state with C= 2 (tLO2) can be stabilized in Rashba spin-orbit coupled lattice systems in the presence of both in-plane and out-of-plane Zeeman fields. Besides the inhomogeneous tSC states, in the presence of a weak in-plane Zeeman field, two topological BCS phases may emerge with C=−1 (tBCS1) far from half filling and C= 2 (tBCS2) near half filling. We show intriguing effects such as different spatial profiles of order parameters for FF and LO states, the topological evolution among inhomogeneous tSC states, and different non-trivial Chern numbers for the tFF1 and tLO1,2 states, which are peculiar to the lattice system. Global phase diagrams for various topological phases are presented for both half-filling and doped cases. The edge states as well as local density of states spectra are calculated for tSC states in a 2D strip.

Keywords topological superfluid      Fulde–Ferrell (FF) state     
Corresponding Author(s): Yan Chen   
Issue Date: 08 December 2017
 Cite this article:   
Yao-Wu Guo,Yan Chen. Topological Fulde–Ferrell and Larkin–Ovchinnikov states in spin-orbit-coupled lattice system[J]. Front. Phys. , 2018, 13(2): 137402.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0728-0
https://academic.hep.com.cn/fop/EN/Y2018/V13/I2/137402
1 D. Xiao, M. C. Chang, and Q. Niu, Berry phases effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)
https://doi.org/10.1103/RevModPhys.82.1959
2 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
3 E. Majorana, Teoria simmetrica dell’elettrone e del positrone, Nuovo Cim. 14(4), 171 (1937)
https://doi.org/10.1007/BF02961314
4 F. Wilczek, Majorana returns, Nat. Phys. 5(9), 614 (2009)
5 C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Non-Abelian anyons and topological quantum computation, Rev. Mod. Phys. 80(3), 1083 (2008)
https://doi.org/10.1103/RevModPhys.80.1083
6 L. P. Rokhinson, X. Liu, and J. K. Furdyna, The fractional a.c. Josephson effect in a semiconductorsuperconductor nanowire as a signature of Majorana particles, Nat. Phys. 8(11), 795 (2012)
7 A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H. Shtrikman, Zero-bias peaks and splitting in an Al- InAs nanowire topological superconductor as a signature of Majorana fermions, Nat. Phys. 8(12), 887 (2012)
8 M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff, and H. Q. Xu, Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device, Nano Lett. 12(12), 6414 (2012)
https://doi.org/10.1021/nl303758w
9 V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Signatures of Majorana fermions in hybrid superconductorsemiconductor nanowire devices, Science 336(6084), 1003 (2012)
https://doi.org/10.1126/science.1222360
10 L. Mao, M. Gong, E. Dumitrescu, S. Tewari, and C. Zhang, Hole-doped semiconductor nanowire on top of an s-wave superconductor: a new and experimentally accessible system for Majorana fermions, Phys. Rev. Lett. 108(17), 177001 (2012)
https://doi.org/10.1103/PhysRevLett.108.177001
11 G. Moore and N. Read, Nonabelions in the fractional quantum hall effect, Nucl. Phys. B 360(2–3), 362 (1991)
https://doi.org/10.1016/0550-3213(91)90407-O
12 A. P. Mackenzie and Y. Maeno, The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing, Rev. Mod. Phys. 75(2), 657 (2003)
https://doi.org/10.1103/RevModPhys.75.657
13 N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B 61(15), 10267 (2000)
https://doi.org/10.1103/PhysRevB.61.10267
14 L. Fu and C. L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100(9), 096407 (2008)
https://doi.org/10.1103/PhysRevLett.100.096407
15 J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502 (2010)
https://doi.org/10.1103/PhysRevLett.104.040502
16 R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Majorana fermions and a topological phase transition insemiconductor-superconductor heterostructures, Phys. Rev. Lett. 105(7), 077001 (2010)
https://doi.org/10.1103/PhysRevLett.105.077001
17 Y. Oreg, G. Refael, and F. von Oppen, Helical liquids and Majorana bound states in quantum wires, Phys. Rev. Lett. 105(17), 177002 (2010)
https://doi.org/10.1103/PhysRevLett.105.177002
18 J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Non-Abelian statistics and topological quantum information processing in 1D wire networks, Nat. Phys. 7(5), 412 (2011)
19 A. C. Potter and P. A. Lee, Multichannel generalization of Kitaev’s Majorana end states and a practical route to realize them in thin films, Phys. Rev. Lett. 105(22), 227003 (2010)
https://doi.org/10.1103/PhysRevLett.105.227003
20 Y. J. Lin, K. Jiménez-García, and I. B. Spielman, Spin–orbit-coupled Bose–Einstein condensates, Nature 471(7336), 83 (2011)
https://doi.org/10.1038/nature09887
21 P. Wang, Z.Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett. 109(9), 095301 (2012)
https://doi.org/10.1103/PhysRevLett.109.095301
22 L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Spin-injection spectroscopy of a spin-orbit coupled Fermi gas, Phys. Rev. Lett. 109(9), 095302 (2012)
https://doi.org/10.1103/PhysRevLett.109.095302
23 M. Sato, Y. Takahashi, and S. Fujimoto, Non-Abelian topological order in s-wave superfluids of ultracold fermionic atoms, Phys. Rev. Lett. 103(2), 020401 (2009)
https://doi.org/10.1103/PhysRevLett.103.020401
24 X.-J. Liu, H. Pu, and H. Hu, Probing Majorana fermions in spin-orbit-coupled atomic Fermi gases, Phys. Rev. A 85, 021603(R) (2011)
25 R. Casalbuoni and G. Nardulli, Inhomogeneous superconductivity in condensed matter and QCD, Rev. Mod. Phys. 76(1), 263 (2004)
https://doi.org/10.1103/RevModPhys.76.263
26 M. Kenzelmann, T. Strassle, C. Niedermayer, M. Sigrist, B. Padmanabhan, M. Zolliker, A. D. Bianchi, R. Movshovich, E. D. Bauer, J. L. Sarrao, and J. D. Thompson, Coupled superconducting and magnetic order in CeCoIn5, Science 321(5896), 1652 (2008)
https://doi.org/10.1126/science.1161818
27 L. Li, C. Richter, J. Mannhart, and R. C. Ashoori, Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces, Nat. Phys. 7(10), 762 (2011)
28 Y. A. Liao, A. S. C. Rittner, T. Paprotta, W. Li, G. B. Partridge, R. G. Hulet, S. K. Baur, and E. J. Mueller, Spin-imbalance in a one-dimensional Fermi gas, Nature 467(7315), 567 (2010)
https://doi.org/10.1038/nature09393
29 P. Fulde and R. A. Ferrell, Superconductivity in a strong spin-exchange field, Phys. Rev. 135(3A), A550 (1964)
https://doi.org/10.1103/PhysRev.135.A550
30 A. I. Larkin and Y. N. Ovchinnikov, Nonuniform state of superconductors, Zh. Eksp. Teor. Fiz. 47, 1136 (1964)
31 F. Wu, G. Guo, W. Zhang, and W. Yi, Unconventional superfluid in a two-dimensional Fermi gas with anisotropic spin-orbit coupling and Zeeman fields, Phys. Rev. Lett. 110(11), 110401 (2013)
https://doi.org/10.1103/PhysRevLett.110.110401
32 Z. Zheng, M. Gong, X. Zou, C. Zhang, and G. Guo, Route to observable Fulde–Ferrell–Larkin–Ovchinnikov phases in three-dimensional spin-orbit-coupled degenerate Fermi gases, Phys. Rev. A 87, 031602(R) (2013)
33 X. J. Liu, K. T. Law, and T. K. Ng, Realization of 2D spin-orbit interaction and exotic topological orders in cold atoms, Phys. Rev. Lett. 112(8), 086401 (2014)
https://doi.org/10.1103/PhysRevLett.112.086401
34 C. Qu, Z. Zheng, M. Gong, Y. Xu, L. Mao, X. Zou, G. Guo, and C. Zhang, Topological superfluids with finite momentum pairing and Majorana fermions, Nat. Commun. 4, 2710 (2013)
https://doi.org/10.1038/ncomms3710
35 W. Zhang and W. Yi, Topological Fulde–Ferrell– Larkin–Ovchinnikov states in spin-orbit-coupled Fermi gases, Nat. Commun. 4, 2711 (2013)
https://doi.org/10.1038/ncomms3711
36 C. Chen, Inhomogeneous topological superfluidity in one-dimensional spin-orbit-coupled Fermi gases, Phys. Rev. Lett. 111(23), 235302 (2013)
https://doi.org/10.1103/PhysRevLett.111.235302
37 Y. Cao, S. H. Zou, X. J. Liu, S. Yi, G. L. Long, and H. Hu, Gapless topological Fulde–Ferrell superfluidity in spinorbital coupled Fermi gases, Phys. Rev. Lett. 113(11), 115302 (2014)
https://doi.org/10.1103/PhysRevLett.113.115302
38 T. Zhou, Y. Gao, and Z. D. Wang, Topological quantum phase transitions and edge states in spin-orbital coupled Fermi gases, Sci. Rep. 4(1), 5218 (2015)
https://doi.org/10.1038/srep05218
39 Y. Xu, C. Qu, M. Gong, and C. Zhang, Competing superfluid orders in spin-orbit coupled fermionic cold atom optical lattices, Phys. Rev. A 89(1), 013607 (2014)
https://doi.org/10.1103/PhysRevA.89.013607
40 D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, Quantum spin-Hall effect and topologically invariant Chern numbers, Phys. Rev. Lett. 97(3), 036808 (2006)
https://doi.org/10.1103/PhysRevLett.97.036808
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed