|
|
Fractal dimension study of polaron effects in cylindrical GaAs/AlxGa1−xAs core–shell nanowires |
Hui Sun1, Hua Li2, Qiang Tian1( ) |
1. Department of Physics, Beijing Normal University, Beijing 100875, China 2. Department of Fundamental Courses, Academy of Armored Forces Engineering, Beijing 100072, China |
|
|
Abstract Polaron effects in cylindrical GaAs/AlxGa1−xAs core–shell nanowires are studied by applying the fractal dimension method. In this paper, the polaron properties of GaAs/AlxGa1-xAs core–shell nanowires with different core radii and aluminum concentrations are discussed. The polaron binding energy, polaron mass shift, and fractal dimension parameter are numerically determined as functions of shell width. The calculation results reveal that the binding energy and mass shift of the polaron first increase and then decrease as the shell width increases. A maximum value appears at a certain shell width for different aluminum concentrations and a given core radius. By using the fractal dimension method, polaron problems in cylindrical GaAs/AlxGa1-xAs core–shell nanowires are solved in a simple manner that avoids complex and lengthy calculations.
|
Keywords
core–shell nanowire
polaron effects
fractal dimension method
|
Corresponding Author(s):
Qiang Tian
|
Issue Date: 20 March 2018
|
|
1 |
B. Mayer, D. Rudolph, J. Schnell, S. Morkötter, J. Winnerl, J. Treu, K. Müller, G. Bracher, G. Abstreiter, G. Koblmüller, and J. J. Finley, Lasing from individual GaAs-AlGaAs core–shell nanowires up to room temperature, Nat. Commun. 4, 2931 (2013)
https://doi.org/10.1038/ncomms3931
|
2 |
A. Lubk, D. Wolf, P. Prete, N. Lovergine, T. Niermann, S. Sturm, and H. Lichte, Nanometer-scale tomographic reconstruction of three-dimensional electrostatic potentials in GaAs/AlGaAs core–shell nanowires, Phys. Rev. B 90(12), 125404 (2014)
https://doi.org/10.1103/PhysRevB.90.125404
|
3 |
S. Morkötter, N. Jeon, D. Rudolph, B. Loitsch, D. Spirkoska, E. Hoffmann, M. Döblinger, S. Matich, J. J. Finley, L. J. Lauhon, G. Abstreiter, and G. Koblmüller, Demonstration of confined electron gas and steep-slope behavior in delta-doped GaAs-AlGaAs core–shell nanowire transistors, Nano Lett. 15(5), 3295 (2015)
https://doi.org/10.1021/acs.nanolett.5b00518
|
4 |
N. Jiang, P. Parkinson, Q. Gao, S. Breuer, H. H. Tan, J. Wong-Leung, and C. Jagadish, Long minority carrier lifetime in Au-catalyzed GaAs/AlxGa1−xAs core-shell nanowires, Appl. Phys. Lett. 101(2), 023111 (2012)
https://doi.org/10.1063/1.4735002
|
5 |
D. Rudolph, S. Funk, M. Döblinger, S. Morkötter, S. Hertenberger, L. Schweickert, J. Becker, S. Matich, M. Bichler, D. Spirkoska, I. Zardo, J. J. Finley, G. Abstreiter, and G. Koblmüller, Spontaneous alloy composition ordering in GaAs-AlGaAs core–shell nanowires, Nano Lett. 13(4), 1522 (2013)
https://doi.org/10.1021/nl3046816
|
6 |
X. F. He, Excitons in anisotropic solids: The model of fractional-dimensional space, Phys. Rev. B 43(3), 2063 (1991)
https://doi.org/10.1103/PhysRevB.43.2063
|
7 |
A. Matos-Abiague, A fractional-dimensional space approach to the polaron effect in quantum wells, J. Phys. Condens. Matter 14(17), 4543 (2002)
https://doi.org/10.1088/0953-8984/14/17/325
|
8 |
A. Matos-Abiague, Fractional-dimensional space approach for parabolic-confined polarons, Semicond. Sci. Technol. 17(2), 150 (2002)
https://doi.org/10.1088/0268-1242/17/2/311
|
9 |
A. Matos-Abiague, Polaron effect in GaAs-Ga1−xAlxAs quantum wells: A fractional-dimensional space approach, Phys. Rev. B 65(16), 165321 (2002)
https://doi.org/10.1103/PhysRevB.65.165321
|
10 |
Z. H. Wu, H. Li, L. X. Yan, B. C. Liu, and Q. Tian, Fractional-dimensional space approach for the polaron in a GaAs film deposited on AlxGa1−xAs substrate, Physica B 410, 28 (2013)
https://doi.org/10.1016/j.physb.2012.09.059
|
11 |
Z. H. Wu, H. Li, L. X. Yan, B. C. Liu, and Q. Tian, The polaron in a GaAs film deposited on AlxGa1−xAs influenced by the thickness of the Substrate, Superlattices Microstruct. 55, 16 (2013)
https://doi.org/10.1016/j.spmi.2012.11.026
|
12 |
H. Li, B. C. Liu, B. X. Shi, S. Y. Dong, and Q. Tian, Novel method to determine effective length of quantum confinement using fractional-dimension space approach, Front. Phys. 10(4), 107302 (2015)
https://doi.org/10.1007/s11467-015-0472-2
|
13 |
Z. H. Wu, L. Chen, and Q. Tian, Exciton binding energies in GaAs films on AlxGa1−xAs substrates, Int. J. Mod. Phys. B 29(30), 1550213 (2015)
https://doi.org/10.1142/S0217979215502136
|
14 |
A. L. Vartanian, A. L. Asatryan, and L. A. Vardanyan, Influence of both electric and magnetic fields on the polaron properties in a finite-potential quantum well wire, Physica E 47, 134 (2013)
https://doi.org/10.1016/j.physe.2012.10.033
|
15 |
P. Christol, P. Lefebvre and H. Mathieu, Fractionaldimensional calculation of exciton binding energies in semiconductor quantum wells and quantum-well wires, J. Appl. Phys. 74(9), 5626 (1993)
https://doi.org/10.1063/1.354224
|
16 |
P. Lefebvre, P. Christol, and H. Mathieu, Excitons in semiconductor superlattices: Heuristic description of the transfer between Wannier-like and Frenkel-like regimes, Phys. Rev. B 46(20), 13603 (1992)
https://doi.org/10.1103/PhysRevB.46.13603
|
17 |
A. Thilagam and A. Matos-Abiague, Excitonic polarons in confined systems, J. Phys.: Condens. Matter 16(23), 3981 (2004)
https://doi.org/10.1088/0953-8984/16/23/016
|
18 |
E. Reyes-Gómez, L. E. Oliveira, and M. de Dios-Leyva, Shallow impurities in semiconductor superlattices: A fractional-dimensional space approach, J. Appl. Phys. 85(8), 4045 (1999)
https://doi.org/10.1063/1.370309
|
19 |
I. D. Mikhailov, F. J. Betancur, R. A. Escorcia, and J. Sierra-Ortega, Shallow donors in semiconductor heterostructures: Fractal dimension approach and the variational principle, Phys. Rev. B 67(11), 115317 (2003)
https://doi.org/10.1103/PhysRevB.67.115317
|
20 |
J. Kundrotas, A. Čerškus, S. Ašmontas, G. Valušis, B. Sherliker, M. P. Halsall, M. J. Steer, E. Johannessen, and P. Harrison, Excitonic and impurity-related optical transitions in Be-doped GaAs/AlAs multiple quantum wells: Fractional-dimensional space approach, Phys. Rev. B 72(23), 235322 (2005)
https://doi.org/10.1103/PhysRevB.72.235322
|
21 |
J. Kundrotas, A. Cerškus, S. Ašmontas, G. Valušis, M. P. Halsall, E. Johannessen, and P. Harrison, Impurityinduced Huang–Rhys factor in Beδ-doped GaAs/AlAs multiple quantum wells: Fractional-dimensional space approach, Semicond. Sci. Technol. 22(9), 1070 (2007)
https://doi.org/10.1088/0268-1242/22/9/016
|
22 |
M. A. Smondyrev, B. Gerlach, and M. O. Dzero, Mean parameter model for the Pekar-Fröhlich polaron in a multilayered heterostructure, Phys. Rev. B 62(24), 16692 (2000)
https://doi.org/10.1103/PhysRevB.62.16692
|
23 |
M. Hocevar, L. T. Thanh Giang, R. Songmuang, M. den Hertog, L. Besombes, J. Bleuse, Y.M. Niquet, and N. T. Pelekanos, Residual strain and piezoelectric effects in passivated GaAs/AlGaAs core-shell nanowires, Appl. Phys. Lett. 102(19), 191103 (2013)
https://doi.org/10.1063/1.4803685
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|