Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (2) : 134204    https://doi.org/10.1007/s11467-017-0740-4
RESEARCH ARTICLE
Spontaneous ferroelectricity in strained low-temperature monoclinic Fe3O4: A first-principles study
Xiang Liu, Wen-Bo Mi()
Tianjin Key Laboratory of Low Dimensional Materials Physics and Processing Technology, School of Science, Tianjin University, Tianjin 300354, China
 Download: PDF(4846 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As a single-phase multiferroic material, Fe3O4 exhibits spontaneous ferroelectric polarization below 38 K. However, the nature of the ferroelectricity in Fe3O4 and effect of external disturbances such as strain on it remains ambiguous. Here, the spontaneous ferroelectric polarization of low-temperature monoclinic Fe3O4 was investigated by first-principles calculations. The pseudo-centrosymmetric FeB42−FeB43 pair has a different valence state. The noncentrosymmetric charge distribution results in ferroelectric polarization. The initial ferroelectric polarization direction is in the −x and −z directions. The ferroelectricity along the y axis is limited owing to the symmetry of the Cc space group. Both the ionic displacement and charge separation at the FeB42−FeB43 pair are affected by strain, which further influences the spontaneous ferroelectric polarization of monoclinic Fe3O4. The ferroelectric polarization along the z axis exhibits an increase of 45.3% as the strain changes from 6% to −6%.

Keywords spontaneous ferroelectric polarization      charge ordering      biaxial strain      Berry phase      modern theory of polarization     
Corresponding Author(s): Wen-Bo Mi   
Issue Date: 19 January 2018
 Cite this article:   
Xiang Liu,Wen-Bo Mi. Spontaneous ferroelectricity in strained low-temperature monoclinic Fe3O4: A first-principles study[J]. Front. Phys. , 2018, 13(2): 134204.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0740-4
https://academic.hep.com.cn/fop/EN/Y2018/V13/I2/134204
1 J. F. Scott, Data storage: Multiferroic memories, Nat. Mater. 6(4), 256 (2007)
https://doi.org/10.1038/nmat1868
2 N. Balke, S. Choudhury, S. Jesse, M. Huijben, Y. H. Chu, A. P. Baddorf, L. Q. Chen, R. Ramesh, and S. V. Kalinin, Deterministic control of ferroelastic switching in multiferroic materials, Nat. Nanotechnol. 4(12), 868 (2009)
https://doi.org/10.1038/nnano.2009.293
3 M. Liu, Z. Y. Zhou, T. X. Nan, B. M. Howe, G. J. Brown, and N. X. Sun, Voltage tuning of ferromagnetic resonance with bistable magnetization switching in energy-efficient magnetoelectric composites, Adv. Mater. 25(10), 1435 (2013)
https://doi.org/10.1002/adma.201203792
4 P. W. M. Blom, R. M. Wolf, J. F. M. Cillessen, and M. P. C. M. Krijn, Ferroelectric Schottky diode, Phys. Rev. Lett. 73(15), 2107 (1994)
https://doi.org/10.1103/PhysRevLett.73.2107
5 M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthélémy, and A. Fert, Tunnel junctions with multiferroic barriers, Nat. Mater. 6(4), 296 (2007)
https://doi.org/10.1038/nmat1860
6 H. Kohlstedt, A. Petraru, K. Szot, A. Rüdiger, P. Meuffels, H. Haselier, R. Waser, and V. Nagarajan, Method to distinguish ferroelectric from nonferroelectric origin in case of resistive switching in ferroelectric capacitors, Appl. Phys. Lett. 92(6), 062907 (2008)
https://doi.org/10.1063/1.2841917
7 C. H. Yang, J. Seidel, S. Y. Kim, P. B. Rossen, P. Yu, M. Gajek, Y. H. Chu, L. W. Martin, M. B. Holcomb, Q. He, P. Maksymovych, N. Balke, S. V. Kalinin, A. P. Baddorf, S. R. Basu, M. L. Scullin, and R. Ramesh, Electric modulation of conduction in multiferroic Cadoped BiFeO3 films, Nat. Mater. 8(6), 485 (2009)
https://doi.org/10.1038/nmat2432
8 W. D. Wu, J. R. Guest, Y. Horibe, S. Park, T. Choi, S. W. Cheong, and M. Bode, Polarization-modulated rectification at ferroelectric surfaces, Phys. Rev. Lett. 104(21), 217601 (2010)
https://doi.org/10.1103/PhysRevLett.104.217601
9 Ch. Binek, A. Hochstrat, X. Chen, P. Borisov, W. Kleemann, and B. Doudin, Electrically controlled exchange bias for spintronic applications, J. Appl. Phys. 97, 10C514 (2005)
10 Z. Zhou, X. Y. Zhang, T. F. Xie, T. X. Nan, Y. Gao, X. Yang, X. J. Wang, X. Y. He, P. S. Qiu, N. X. Sun, and D. Z. Sun, Strong non-volatile voltage control of magnetism in magnetic/antiferroelectric magnetoelectric heterostructures, Appl. Phys. Lett. 104(1), 012905 (2014)
https://doi.org/10.1063/1.4861462
11 Z. Q. Hu, T. X. Nan, X. J. Wang, M. Staruch, Y. Gao, P. Finkel, and N. X. Sun, Voltage control of magnetism in FeGaB/PIN-PMN-PT multiferroic heterostructures for high-power and high-temperature applications, Appl. Phys. Lett. 106(2), 022901 (2015)
https://doi.org/10.1063/1.4905855
12 S. Cherepov, P. Khalili Amiri, J. G. Alzate, K. Wong, M. Lewis, P. Upadhyaya, J. Nath, M. Bao, A. Bur, T. Wu, G. P. Carman, A. Khitun, and K. L. Wang, Electric-field-induced spin wave generation using multiferroic magnetoelectric cells, Appl. Phys. Lett. 104(8), 082403 (2014)
https://doi.org/10.1063/1.4865916
13 P. A. Miles, W. B. Westphal, and A. Von Hippel, Dielectric spectroscopy of ferromagnetic semiconductors, Rev. Mod. Phys. 29(3), 279 (1957)
https://doi.org/10.1103/RevModPhys.29.279
14 A. Yanase and K. Siratori, Band structure in the high temperature phase of Fe3O4, J. Phys. Soc. Jpn. 53(1), 312 (1984)
https://doi.org/10.1143/JPSJ.53.312
15 J. P. Attfield, The Verwey phase of magnetite: A longrunning mystery in ferrites, J.Jpn. Soc. Powder Powder Metall. 61(S1), S43 (2014)
https://doi.org/10.2497/jjspm.61.S43
16 E. J. Verwey, Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures, Nature 144(3642), 327 (1939)
https://doi.org/10.1038/144327b0
17 M. Alexe, M. Ziese, D. Hesse, P. Esquinazi, K. Yamauchi, T. Fukushima, S. Picozzi, and U. Gösele, Ferroelectric switching in multiferroic magnetite (Fe3O4) thin films, Adv. Mater. 21(44), 4452 (2009)
https://doi.org/10.1002/adma.200901381
18 K. Kato and S. Iida, Magnetoelectric effects of Fe3O4 at 4.2 K, J. Phys. Soc. Jpn. 50(9), 2844 (1981)
https://doi.org/10.1143/JPSJ.50.2844
19 K. Yamauchi, T. Fukushima, and S. Picozzi, Ferroelectricity in multiferroic magnetite Fe3O4 driven by noncentrosymmetric Fe2+/Fe3+ charge-ordering: Firstprinciples study, Phys. Rev. B 79(21), 212404 (2009)
https://doi.org/10.1103/PhysRevB.79.212404
20 K. Kato and S. Iida, Observation of ferroelectric hysteresis loop of Fe3O4 at 4.2 K, J. Phys. Soc. Jpn. 51(5), 1335 (1982)
https://doi.org/10.1143/JPSJ.51.1335
21 Y. Miyamoto and K. Ishiyama, Measurement of spontaneous electric polarization in magnetite (Fe3O4) at 4.2 K, Solid State Commun. 87(6), 581 (1993)
https://doi.org/10.1016/0038-1098(93)90601-I
22 R. D. King-Smith and D. Vanderbilt, Theory of polarization of crystalline solids,Phys. Rev. B 47(3), 1651 (1993)
https://doi.org/10.1103/PhysRevB.47.1651
23 D. Vanderbilt and R. D. King-Smith, Electric polarization as a bulk quantity and its relation to surface charge, Phys. Rev. B 58(7), 4442 (1993)
https://doi.org/10.1103/PhysRevB.48.4442
24 R. Resta, Macroscopic polarization in crystalline dielectrics: The geometric phase approach, Rev. Mod. Phys. 66(3), 899 (1994)
https://doi.org/10.1103/RevModPhys.66.899
25 J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, First-principles study of spontaneous polarization in multiferroic BiFeO3, Phys. Rev. B 71(1), 014113 (2005)
https://doi.org/10.1103/PhysRevB.71.014113
26 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
27 P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
28 H. T. Jeng, G. Y. Guo, and D. J. Huang, Charge-orbital ordering in low-temperature structures of magnetite: GGA+Uinvestigations, Phys. Rev. B 74(19), 195115 (2006)
https://doi.org/10.1103/PhysRevB.74.195115
29 J. P. Perdew and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45(23), 13244 (1992)
https://doi.org/10.1103/PhysRevB.45.13244
30 V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and Mott insulators: Hubbard Uinstead of Stoner I, Phys. Rev. B 44(3), 943 (1991)
https://doi.org/10.1103/PhysRevB.44.943
31 A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Density-functional theory and strong interactions: Orbital ordering in Mott–Hubbard insulators, Phys. Rev. B 52(8), R5467 (1995)
https://doi.org/10.1103/PhysRevB.52.R5467
32 M. S. Senn, J. P. Wright, and J. P. Attfield, Charge order and three-site distortions in the Verwey structure of magnetite, Nature 481(7380), 173 (2011)
https://doi.org/10.1038/nature10704
33 M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga, A. Kirov, and H. Wondratschke, Bilbao crystallographic server (I): Databases and crystallographic computing programs, Zeitschrift für Kristallographie-Cryst. Mater. 221, 15 (2006)
34 M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato, and H. Wondratschek, Bilbao Crystallographic Server II: Representations of crystallographic point groups and space groups, Acta Crystallogr. A 62(2), 115 (2006)
https://doi.org/10.1107/S0108767305040286
35 M. I. Aroyo, J. M. Perez-Mato, D. Orobengoa, E. Tasci, G. de la Flor, and A. Kirov, Crystallography online: Bilbao crystallographic server, Izv. Him. 43, 183 (2011)
36 P. Baettig, C. Ederer, and N. A. Spaldin, First principles study of the multiferroics BiFeO3, Bi2FeCrO6, and BiCrO3: Structure, polarization, and magnetic ordering temperature, Phys. Rev. B 72(21), 214105 (2005)
https://doi.org/10.1103/PhysRevB.72.214105
37 X. Y. Hou, X. C. Wang, G. F. Chen, and W. B. Mi, Electric field tunable half-metallic characteristic at Fe3O4/BaTiO3 interfaces, Phys. Chem. Chem. Phys. 19(6), 4330 (2017)
https://doi.org/10.1039/C6CP07858C
38 I. D. Brown and D. Altermatt, Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database, Acta Crystallogr. B 41(4), 244 (1985)
https://doi.org/10.1107/S0108768185002063
39 I. D. Brown, Chemical and steric constrains in inorganic solids, Acta Cyrst. B 48(5), 553 (1992)
https://doi.org/10.1107/S0108768192002453
40 N. E. Brese and M. O’Keeffe, Bond-valence parameters for solids, Acta Crystallogr. B 47(2), 192 (1991)
https://doi.org/10.1107/S0108768190011041
41 X. Liu, L. Yin, and W. B. Mi, Biaxial strain effect induced electronic structure alternation and trimeron recombination in Fe3O4, Sci. Rep. 7, 43403 (2017)
https://doi.org/10.1038/srep43403
42 N. A. Spaldin, A beginner’s guide to the modern theory of polarization, J. Solid State Chem. 195, 2 (2012)
https://doi.org/10.1016/j.jssc.2012.05.010
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed