Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (2) : 137303    https://doi.org/10.1007/s11467-017-0742-2
RESEARCH ARTICLE
Dynamic conductivity modified by impurity resonant states in doping three-dimensional Dirac semimetals
Shuai Li1, Chen Wang2, Shi-Han Zheng1, Rui-Qiang Wang1(), Jun Li1(), Mou Yang1
1. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
2. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
 Download: PDF(11102 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The impurity effect is studied in three-dimensional Dirac semimetals in the framework of a T-matrix method to consider the multiple scattering events of Dirac electrons off impurities. It has been found that a strong impurity potential can significantly restructure the energy dispersion and the density of states of Dirac electrons. An impurity-induced resonant state emerges and significantly modifies the pristine optical response. It is shown that the impurity state disturbs the common longitudinal optical conductivity by creating either an optical conductivity peak or double absorption jumps, depending on the relative position of the impurity band and the Fermi level. More importantly, these conductivity features appear in the forbidden region between the Drude and interband transition, completely or partially filling the Pauli block region of optical response. The underlying physics is that the appearance of resonance states as well as the broadening of the bands leads to a more complicated selection rule for the optical transitions, making it possible to excite new electron-hole pairs in the forbidden region. These features in optical conductivity provide valuable information to understand the impurity behaviors in 3D Dirac materials.

Keywords Dirac semimetals      impurity resonance states      optical conductivity     
Corresponding Author(s): Rui-Qiang Wang,Jun Li,Mou Yang   
Issue Date: 24 January 2018
 Cite this article:   
Shuai Li,Chen Wang,Shi-Han Zheng, et al. Dynamic conductivity modified by impurity resonant states in doping three-dimensional Dirac semimetals[J]. Front. Phys. , 2018, 13(2): 137303.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-017-0742-2
https://academic.hep.com.cn/fop/EN/Y2018/V13/I2/137303
1 S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, and R. J. Cava, Experimental realization of a three-dimensional Dirac semimetal, Phys. Rev. Lett. 113(2), 027603 (2014)
https://doi.org/10.1103/PhysRevLett.113.027603
2 Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a threedimensional topological Dirac semimetal Na3Bi, Science 343(6173), 864 (2014)
https://doi.org/10.1126/science.1245085
3 X. C. Pan, Y. M. Pan, J. Jiang, H. K. Zuo, H. M. Liu, X. L. Chen, Z. X. Wei, S. Zhang, Z. H. Wang, X. G. Wan, Z. R. Yang, D. L. Feng, Z. C. Xia, L. Li, F. Q. Song, B. G. Wang, Y. H. Zhang, and G. H. Wang, Carrier balance and linear magnetoresistance in type-II Weyl semimetal WTe2, Front. Phys. 12(3), 127203 (2017)
https://doi.org/10.1007/s11467-016-0629-7
4 R. Yu, Z. Fang, X. Dai, and H. M. Weng, Topological nodal line semimetals predicted from first-principles calculations, Front. Phys. 12(3), 127202 (2017)
https://doi.org/10.1007/s11467-016-0630-1
5 T. Wehling, A. Black-Schaffer, and A. Balatsky, Dirac materials, Adv. Phys. 63(1), 1 (2014)
https://doi.org/10.1080/00018732.2014.927109
6 D. Neubauer, J. P. Carbotte, A. A. Nateprov, A. Löhle, M. Dressel, and A. V. Pronin, Interband optical conductivity of the [001]-oriented Dirac semimetalCd3As2, Phys. Rev. B 93(12), 121202 (2016)
https://doi.org/10.1103/PhysRevB.93.121202
7 Z. G. Chen, R. Y. Chen, R. D. Zhong, J. Schneeloch, C. Zhang, Y. Huang, F. Qu, R. Yu, Q. Li, G. D. Gu, and N. L. Wang, Spectroscopic evidence for bulk-band inversion and three-dimensional massive Dirac fermions in ZrTe5, Proc. Natl. Acad. Sci. USA 114(5), 816 (2017)
https://doi.org/10.1073/pnas.1613110114
8 T. Timusk, J. P. Carbotte, C. C. Homes, D. N. Basov, and S. G. Sharapov, Three-dimensional Dirac fermions in quasicrystals as seen via optical conductivity, Phys. Rev. B 87(23), 235121 (2013)
https://doi.org/10.1103/PhysRevB.87.235121
9 P. E. C. Ashby, and J. P. Carbotte, Chiral anomaly and optical absorption in Weyl semimetals, Phys. Rev. B 89(24), 245121 (2014)
https://doi.org/10.1103/PhysRevB.89.245121
10 C. J. Tabert, and J. P. Carbotte, Optical conductivity of Weyl semimetals and signatures of the gapped semimetal phase transition, Phys. Rev. B 93(8), 085442 (2016)
https://doi.org/10.1103/PhysRevB.93.085442
11 V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Unusual microwave response of Dirac quasiparticles in graphene, Phys. Rev. Lett. 96(25), 256802 (2006)
https://doi.org/10.1103/PhysRevLett.96.256802
12 V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, On the universal ac optical background in graphene, New J. Phys. 11(9), 095013 (2009)
https://doi.org/10.1088/1367-2630/11/9/095013
13 Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P. Kim, H. L. Stormer, and D. N. Basov, Dirac charge dynamics in graphene by infrared spectroscopy, Nat. Phys. 4(7), 532 (2008)
14 R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308 (2008)
https://doi.org/10.1126/science.1156965
15 K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, Measurement of the optical conductivity of graphene, Phys. Rev. Lett. 101(19), 196405 (2008)
https://doi.org/10.1103/PhysRevLett.101.196405
16 C. J. Tabert, J. P. Carbotte, and E. J. Nicol, Optical and transport properties in three-dimensional Dirac and Weyl semimetals, Phys. Rev. B 93(8), 085426 (2016)
https://doi.org/10.1103/PhysRevB.93.085426
17 H. Z. Lu and S. Q. Shen, Quantum transport in topological semimetals under magnetic fields, Front. Phys. 12(3), 127201 (2017)
https://doi.org/10.1007/s11467-016-0609-y
18 Y. P. Li, Z. Wang, P. S. Li, X. J. Yang, Z. X. Shen, F. Sheng, X. D. Li, Y. H. Lu, Y. Zheng, and Z. A. Xu, Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects, Front. Phys. 12(3), 127205 (2017)
https://doi.org/10.1007/s11467-016-0636-8
19 B. Xu, Y. M. Dai, L. X. Zhao, K. Wang, R. Yang, W. Zhang, J. Y. Liu, H. Xiao, G. F. Chen, A. J. Taylor, D. A. Yarotski, R. P. Prasankumar, and X. G. Qiu, Optical spectroscopy of the Weyl semimetal TaAs, Phys. Rev. B 93(12), 121110 (2016)
https://doi.org/10.1103/PhysRevB.93.121110
20 A. V. Balatsky, I. Vekhter, and J. X. Zhu, Impurityinduced states in conventional and unconventional superconductors, Rev. Mod. Phys. 78(2), 373 (2006)
https://doi.org/10.1103/RevModPhys.78.373
21 Z. H. Huang, D. P. Arovas, and A. V. Balatsky, Impurity scattering in Weyl semimetals and their stability classification, New J. Phys. 15(12), 123019 (2013)
https://doi.org/10.1088/1367-2630/15/12/123019
22 S. H. Zheng, R. Q. Wang, M. Zhong, and H. J. Duan, Resonance states and beating pattern induced by quantum impurity scattering in Weyl/Dirac semimetals, Sci. Rep. 6(1), 36106 (2016)
https://doi.org/10.1038/srep36106
23 R. R. Biswas and A. V. Balatsky, Impurity-induced states on the surface of three-dimensional topological insulators, Phys. Rev. B 81(23), 233405 (2010)
https://doi.org/10.1103/PhysRevB.81.233405
24 S. H. Zheng, M. X. Deng, J. M. Qiu, Q. H. Zhong, M. Yang, and R. Q. Wang, Interplay of quantum impurities and topological surface modes, Phys. Lett. A 379(43), 2890 (2015)
https://doi.org/10.1016/j.physleta.2015.09.026
25 R. Q. Wang, L. Sheng, M. Yang, B. Wang, and D. Y. Xing, Electrically tunable Dirac-point resonance induced by a nanomagnet absorbed on the topological insulator surface, Phys. Rev. B 91(24), 245409 (2015)
https://doi.org/10.1103/PhysRevB.91.245409
26 A. M. Black-Schaffer, A. V. Balatsky, and J. Fransson, Filling of magnetic-impurity-induced gap in topological insulators by potential scattering, Phys. Rev. B 91(20), 201411 (2015)
https://doi.org/10.1103/PhysRevB.91.201411
27 R. Q. Wang, S. H. Zheng, and M. Yang, A new selffilling mechanism of band gap in magnetically doped topological surface states: Spin-flipping inelastic scattering, New J. Phys. 18(9), 093048 (2016)
https://doi.org/10.1088/1367-2630/18/9/093048
28 Z. Alpichshev, R. R. Biswas, A. V. Balatsky, J. G. Analytis, J. H. Chu, I. R. Fisher, and A. Kapitulnik, STM imaging of impurity resonances on Bi2Se3, Phys. Rev. Lett. 108(20), 206402 (2012)
https://doi.org/10.1103/PhysRevLett.108.206402
29 Y. Xu, J. Chiu, L. Miao, H. He, Z. Alpichshev, A. Kapitulnik, R. R. Biswas, and L. A. Wray, Disorder enabled band structure engineering of a topological insulator surface, Nat. Commun. 8, 14081 (2017)
https://doi.org/10.1038/ncomms14081
30 M. X. Deng, W. Luo, W. Y. Deng, M. N. Chen, L. Sheng, and D. Y. Xing, Competing effects of magnetic impurities in the anomalous Hall effect on the surface of a topological insulator, Phys. Rev. B 94(23), 235116 (2016)
https://doi.org/10.1103/PhysRevB.94.235116
31 M. L. Teague, H. Chu, F. X. Xiu, L. He, K. L. Wang, and N. C. Yeh, Observation of Fermi-energy dependent unitary impurity resonances in a strong topological insulator Bi2Se3 with scanning tunneling spectroscopy, Solid State Commun. 152(9), 747 (2012)
https://doi.org/10.1016/j.ssc.2012.01.041
32 M. Zhong, S. Li, H. J. Duan, L. B. Hu, M. Yang, and R. Q. Wang, Effect of impurity resonant states on optical and thermoelectric properties on the surface of a topological insulator, Sci. Rep. 7(1), 3971 (2017)
https://doi.org/10.1038/s41598-017-04360-x
33 E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O. Sukhachov, Origin of dissipative Fermi arc transport in Weyl semimetals, Phys. Rev. B 93(23), 235127 (2016)
https://doi.org/10.1103/PhysRevB.93.235127
34 H. Z. Lu, S. B. Zhang, and S. Q. Shen, High-field magnetoconductivity of topological semimetals with short range potential, Phys. Rev. B 92(4), 045203 (2015)
https://doi.org/10.1103/PhysRevB.92.045203
35 N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Electronic properties of disordered two-dimensional carbon, Phys. Rev. B 73(12), 125411 (2006)
https://doi.org/10.1103/PhysRevB.73.125411
36 G. D. Mahan, Many-Particle Physics, 3rd Ed., Plenum, 1993
37 F. Parhizgar, A. G. Moghaddam, and R. Asgari, Optical response and activity of ultrathin films of topological insulators, Phys. Rev. B 92(4), 045429 (2015)
https://doi.org/10.1103/PhysRevB.92.045429
38 N. A. Sinitsyn, J. E. Hill, H. Min, J. Sinova, and A. H. MacDonald, Charge and spin Hall conductivity in metallic graphene, Phys. Rev. Lett. 97(10), 106804 (2006)
https://doi.org/10.1103/PhysRevLett.97.106804
39 V. P. Gusynin, S. G. Sharapov, and A. A. Varlamov, Spin Nernst effect and intrinsic magnetization in twodimensional Dirac materials, Low Temp. Phys. 41(5), 342 (2015)
https://doi.org/10.1063/1.4919372
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed