|
|
Discrete ellipsoidal statistical BGK model and Burnett equations |
Yu-Dong Zhang1,2, Ai-Guo Xu2,3( ), Guang-Cai Zhang2, Zhi-Hua Chen1, Pei Wang2 |
1. Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China 2. Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China 3. Center for Applied Physics and Technology, MOE Key Center for High Energy Density Physics Simulations, College of Engineering, Peking University, Beijing 100871, China |
|
|
Abstract A new discrete Boltzmann model, the discrete ellipsoidal statistical Bhatnagar–Gross–Krook (ESBGK) model, is proposed to simulate nonequilibrium compressible flows. Compared with the original discrete BGK model, the discrete ES-BGK has a flexible Prandtl number. For the discrete ES-BGK model in the Burnett level, two kinds of discrete velocity model are introduced and the relations between nonequilibrium quantities and the viscous stress and heat flux in the Burnett level are established. The model is verified via four benchmark tests. In addition, a new idea is introduced to recover the actual distribution function through the macroscopic quantities and their space derivatives. The recovery scheme works not only for discrete Boltzmann simulation but also for hydrodynamic ones, for example, those based on the Navier–Stokes or the Burnett equations.
|
Keywords
discrete Boltzmann model
ellipsoidal statistical BGK
Burnett equations
nonequilibrium quantities
actual distribution function
|
Corresponding Author(s):
Ai-Guo Xu
|
Issue Date: 07 March 2018
|
|
1 |
H. Tsien, Superaerodynamics, Mechanics of Rarefied Gases, Collected Works of H. S. Tsien, 13(12), 406 (2012)
https://doi.org/10.1016/B978-0-12-398277-3.50020-8
|
2 |
S. Ching, Rarefied Gas Dynamics, Berlin Heidelberg: Springer, 2005
|
3 |
W. Chen, W. Zhao, Z. Jiang, et al., A review of moment equations for rarefied gas dynamics, Physics of Gases 1(5), 9 (2016)
|
4 |
C. Ho and Y. Tai, Micro-electro-mechanical-systems (MEMS) and fluid flows, Annu. Rev. Fluid Mech. 30(1), 579 (1998)
https://doi.org/10.1146/annurev.fluid.30.1.579
|
5 |
G. Karniadakis and A. Beşkök, Microflows: Fundamentals and Simulation, Springer, 2005
|
6 |
Y. Zheng and H. Struchtrup, Burnett equations for the ellipsoidal statistical BGK model, Contin. Mech. Thermodyn. 16(1–2), 97 (2004)
https://doi.org/10.1007/s00161-003-0143-3
|
7 |
L. Wu, C. White, T. J. Scanlon, J. M. Reese, and Y. Zhang, Deterministic numerical solutions of the Boltzmann equation using the fast spectral method, J. Comput. Phys. 250(250), 27 (2013)
https://doi.org/10.1016/j.jcp.2013.05.003
|
8 |
G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford: Clarendon Press, 2003
|
9 |
K. Xu and J. C. Huang, A unified gas-kinetic scheme for continuum and rarefied flows, J. Comput. Phys. 229(20), 7747 (2010)
https://doi.org/10.1016/j.jcp.2010.06.032
|
10 |
C. Liu, K. Xu, Q. Sun, et al., A unified gas-kinetic scheme for continuum and rarefied flows (IV), Commun. Comput. Phys. 14(5), 1147 (2014)
|
11 |
L. Yang, C. Shu, J. Wu, and Y. Wang, Numerical simulation of flows from free molecular regime to continuum regime by a DVM with streaming and collision processes, J. Comput. Phys. 306, 291 (2016)
https://doi.org/10.1016/j.jcp.2015.11.043
|
12 |
Z. Guo, K. Xu, and R. Wang, Discrete unified gas kinetic scheme for all Knudsen number flows: Low-speed isothermal case, Phys. Rev. E 88(3), 033305 (2013)
https://doi.org/10.1103/PhysRevE.88.033305
|
13 |
Z. Guo, R. Wang, and K. Xu, Discrete unified gas kinetic scheme for all Knudsen number flows (II): Thermal compressible case,Phys. Rev. E 91(3), 033313 (2015)
https://doi.org/10.1103/PhysRevE.91.033313
|
14 |
Y. Zhang, R. Qin, and D. Emerson, Lattice Boltzmann simulation of rarefied gas flows in microchannels, Phys. Rev. E 71(4), 047702 (2005)
https://doi.org/10.1103/PhysRevE.71.047702
|
15 |
Y. Zhang, R. Qin, Y. Sun, R. W. Barber, and D. R. Emerson, Gas flow in microchannels–a lattice Boltzmann method approach, J. Stat. Phys. 121(1–2), 257 (2005)
https://doi.org/10.1007/s10955-005-8416-9
|
16 |
X. Shan, X. F. Yuan, and H. Chen, Kinetic theory representation of hydrodynamics: a way beyond the Navier– Stokes equation,J. Fluid Mech. 550(-1), 413 (2006)
|
17 |
J. Meng, Y. Zhang, N. G. Hadjiconstantinou, G. A. Radtke, and X. Shan, Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows, J. Fluid Mech. 718, 347 (2013)
https://doi.org/10.1017/jfm.2012.616
|
18 |
M. Watari, Is the lattice Boltzmann method applicable to rarefied gas flows? Comprehensive evaluation of the higher-order models, J. Fluids Eng. 138(1), 011202 (2015)
https://doi.org/10.1115/1.4031000
|
19 |
A. Xu, G. Zhang, and Y. Ying, Progress of discrete Boltzmann modeling and simulation of combustion system, Acta Physica Sinica 64(18), 184701 (2015)
|
20 |
A. Xu, G. Zhang, and Y. Gan, Progress in studies on discrete Boltzmann modeling of phase separation process, Mech. Eng. 38(4), 361 (2016)
|
21 |
A. Xu, G. Zhang, Y. Ying, et al., Complex fields in heterogeneous materials under shock: Modeling, simulation and analysis, Sci. China: Phys. Mech. & Astron. 59(5), 650501 (2016)
https://doi.org/10.1007/s11433-016-5801-0
|
22 |
Y. Gan, A. Xu, G. Zhang, and S. Succi, Discrete Boltzmann modeling of multiphase flows: hydrodynamic and thermodynamic non-equilibrium effects, Soft Matter 11(26), 5336 (2015)
https://doi.org/10.1039/C5SM01125F
|
23 |
H. Lai, A. Xu, G. Zhang, Y. Gan, Y. Ying, and S. Succi, Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows, Phys. Rev. E 94(2), 023106 (2016)
https://doi.org/10.1103/PhysRevE.94.023106
|
24 |
F. Chen, A. Xu, and G. Zhang, Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh– Taylor Instability, Front. Phys. 11(6), 114703 (2016)
https://doi.org/10.1007/s11467-016-0603-4
|
25 |
C. Lin, A. Xu, G. Zhang, and Y. Li, Doubledistribution- function discrete Boltzmann model for combustion, Combust. Flame 164, 137 (2016)
https://doi.org/10.1016/j.combustflame.2015.11.010
|
26 |
Y. Zhang, A. Xu, G. Zhang, C. Zhu, and C. Lin, Kinetic modeling of detonation and effects of negative temperature coefficient, Combust. Flame 173, 483 (2016)
https://doi.org/10.1016/j.combustflame.2016.04.003
|
27 |
C. Lin, A. Xu, G. Zhang, Y. Li, and S. Succi, Polarcoordinate lattice Boltzmann modeling of compressible flows, Phys. Rev. E 89(1), 013307 (2014)
https://doi.org/10.1103/PhysRevE.89.013307
|
28 |
H. Liu, W. Kang, Q. Zhang, Y. Zhang, H. Duan, and X. T. He, Molecular dynamics simulations of microscopic structure of ultrastrong shock waves in dense helium, Front. Phys. 11(6), 115206 (2016)
https://doi.org/10.1007/s11467-016-0590-5
|
29 |
H. Liu, Y. Zhang, W. Kang, P. Zhang, H. Duan, and X. T. He, Molecular dynamics simulation of strong shock waves propagating in dense deuterium, taking into consideration effects of excited electrons, Phys. Rev. E 95(2), 023201 (2017)
https://doi.org/10.1103/PhysRevE.95.023201
|
30 |
H. Liu, W. Kang, H. Duan, P. Zhang, and X. T. He, Recent progresses on numerical investigations of microscopic structure of strong shock waves in fluid, Sci. China: Phys. Mech. & Astron. 47(7), 070003 (2017)
https://doi.org/10.1360/SSPMA2016-00405
|
31 |
W. Kang, U. Landman, and A. Glezer, Thermal bending of nanojets: Molecular dynamics simulations of an asymmetrically heated nozzle, Appl. Phys. Lett. 93(12), 123116 (2008)
https://doi.org/10.1063/1.2988282
|
32 |
P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases (I): Small amplitude processes in charged and neutral one-component systems, Phys. Rev. 94(3), 511 (1954)
https://doi.org/10.1103/PhysRev.94.511
|
33 |
Holway, New statistical models for kinetic theory: Methods of construction, Phys. Fluids 9(9), 1658 (1966)
https://doi.org/10.1063/1.1761920
|
34 |
E. M. Shakhov, Generalization of the Krook kinetic relaxation equation, Fluid Dyn. 3(5), 95 (1972)
https://doi.org/10.1007/BF01029546
|
35 |
V. A. Rykov, A model kinetic equation for a gas with rotational degrees of freedom, Fluid Dyn. 10(6), 959 (1976)
https://doi.org/10.1007/BF01023275
|
36 |
P. Andries, P. Le Tallec, J. P. Perlat, and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number, Eur. J. Mech. BFluids 19(6), 813 (2000)
https://doi.org/10.1016/S0997-7546(00)01103-1
|
37 |
Y. Zheng and H. Struchtrup, Burnett equations for the ellipsoidal statistical BGK model, Contin. Mech. Thermodyn. 16(1–2), 97 (2004)
https://doi.org/10.1007/s00161-003-0143-3
|
38 |
Y. Gan, A. Xu, G. Zhang, and Y. Yang, Lattice BGK kinetic model for high-speed compressible flows: Hydrodynamic and nonequilibrium behaviors, EPL 103(2), 24003 (2013)
https://doi.org/10.1209/0295-5075/103/24003
|
39 |
H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows, Berlin Heidelberg: Springer, 2005
https://doi.org/10.1007/3-540-32386-4
|
40 |
M. Watari and M. Tsutahara, Two-dimensional thermal model of the finite-difference lattice Boltzmann method with high spatial isotropy, Phys. Rev. E 67(3), 036306 (2003)
https://doi.org/10.1103/PhysRevE.67.036306
|
41 |
K. Xu, A gas-kinetic BGK Scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method, J. Comput. Phys. 171(1), 289 (2001)
https://doi.org/10.1006/jcph.2001.6790
|
42 |
Z. Guo, C. Zheng, and B. Shi, An extrapolation method for boundary conditions in lattice Boltzmann method, Phys. Fluids 14(6), 2007 (2002)
https://doi.org/10.1063/1.1471914
|
43 |
P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54(1), 115 (1984)
https://doi.org/10.1016/0021-9991(84)90142-6
|
44 |
G. Pham-Van-Diep, D. Erwin, and E. P. Muntz, Nonequilibrium molecular motion in a hypersonic shock wave, Science 245(4918), 624 (1989)
https://doi.org/10.1126/science.245.4918.624
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|