Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (3) : 138112    https://doi.org/10.1007/s11467-018-0756-4
NIMI-REVIEW ARTICLE
Strategies for discovery and optimization of thermoelectric materials: Role of real objects and local fields
Hao Zhu, Chong Xiao()
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei 230026, China
 Download: PDF(1232 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Thermoelectric materials provide a renewable and eco-friendly solution to mitigate energy shortages and to reduce environmental pollution via direct heat-to-electricity conversion. Discovery of the novel thermoelectric materials and optimization of the state-of-the-art material systems lie at the core of the thermoelectric society, the basic concept behind these being comprehension and manipulation of the physical principles and transport properties regarding thermoelectric materials. In this mini-review, certain examples for designing high-performance bulk thermoelectric materials are presented from the perspectives of both real objects and local fields. The highlights of this topic involve the Rashba effect, Peierls distortion, local magnetic field, and local stress field, which cover several aspects in the field of thermoelectric research. We conclude with an overview of future developments in thermoelectricity.

Keywords thermoelectric materials      real objects      local fields     
Corresponding Author(s): Hao Zhu,Chong Xiao   
Issue Date: 25 May 2018
 Cite this article:   
Hao Zhu,Chong Xiao. Strategies for discovery and optimization of thermoelectric materials: Role of real objects and local fields[J]. Front. Phys. , 2018, 13(3): 138112.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0756-4
https://academic.hep.com.cn/fop/EN/Y2018/V13/I3/138112
1 J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states, Science 321(5888), 554 (2008)
https://doi.org/10.1126/science.1159725
2 G. Tan, L. D. Zhao, and M. G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev. 116(19), 12123 (2016)
https://doi.org/10.1021/acs.chemrev.6b00255
3 A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature 451(7175), 163 (2008)
https://doi.org/10.1038/nature06381
4 A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, III Goddard, and J. R. Heath, Silicon nanowires as efficient thermoelectric materials, Nature 451(7175), 168 (2008)
https://doi.org/10.1038/nature06458
5 K. Biswas, J. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, Highperformance bulk thermoelectrics with all-scale hierarchical architectures, Nature 489(7416), 414 (2012)
https://doi.org/10.1038/nature11439
6 Y. Wang, N. S. Rogado, R. J. Cava, and N. P. Ong, Spin entropy as the likely source of enhanced thermopower in NaxCo2O4, Nature 423(6938), 425 (2003)
https://doi.org/10.1038/nature01639
7 T. Zhu, C. Fu, H. Xie, Y. Liu, and X. Zhao, High efficiency half-Heusler thermoelectric materials for energy harvesting, Adv. Energy Mater. 5(19), 1500588 (2015)
https://doi.org/10.1002/aenm.201500588
8 D. Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis, CsBi4Te6: A high-performance thermoelectric material for low-temperature applications, Science 287(5455), 1024 (2000)
https://doi.org/10.1126/science.287.5455.1024
9 J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, New and old concepts in thermoelectric materials, Angew. Chem. Int. Ed. 48(46), 8616 (2009)
https://doi.org/10.1002/anie.200900598
10 J. He and T. M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward, Science 357(6358), eaak9997 (2017)
11 C. Xiao, Z. Li, K. Li, P. Huang, and Y. Xie, Decoupling interrelated parameters for designing high performance thermoelectric materials, Acc. Chem. Res. 47(4), 1287 (2014)
https://doi.org/10.1021/ar400290f
12 G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nat. Mater. 7(2), 105 (2008)
https://doi.org/10.1038/nmat2090
13 A. M. Dehkordi, M. Zebarjadi, J. He, and T. M. Tritt, Thermoelectric power factor: Enhancement mechanisms and strategies for higher performance thermoelectric materials, Mater. Sci. Eng. R 97, 1 (2015)
https://doi.org/10.1016/j.mser.2015.08.001
14 X. Shi, L. Chen, and C. Uher, Recent advances in highperformance bulk thermoelectric materials, Int. Mater. Rev. 61(6), 379 (2016)
https://doi.org/10.1080/09506608.2016.1183075
15 L. D. Zhao, V. P. Dravid, and M. G. Kanatzidis, The panoscopic approach to high performance thermoelectrics, Energy Environ. Sci. 7(1), 251 (2014)
https://doi.org/10.1039/C3EE43099E
16 E. S. Toberer, A. F. May, and G. J. Snyder, Zintl chemistry for designing high efficiency thermoelectric materials, Chem. Mater. 22(3), 624 (2010)
https://doi.org/10.1021/cm901956r
17 W. G. Zeier, J. Schmitt, G. Hautier, U. Aydemir, Z. M. Gibbs, C. Felser, and G. J. Snyder, Engineering half- Heusler thermoelectric materials using Zintl chemistry, Nat. Rev. Mater. 1(6), 16032 (2016)
https://doi.org/10.1038/natrevmats.2016.32
18 R. Venkatasubramanian, Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures, Phys. Rev. B 61(4), 3091 (2000)
https://doi.org/10.1103/PhysRevB.61.3091
19 S. I. Kim, K. H. Lee, H. A. Mun, H. S. Kim, S. W. Hwang, J. W. Roh, D. J. Yang, W. H. Shin, X. S. Li, Y. H. Lee, G. J. Snyder, and S. W. Kim, Dense dislocation arrays embedded in grain boundaries for highperformance bulk thermoelectrics, Science 348(6230), 109 (2015)
https://doi.org/10.1126/science.aaa4166
20 X. Shi, J. Yang, J. R. Salvador, M. Chi, J. Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen, Multiple-filled skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports, J. Am. Chem. Soc. 133(20), 7837 (2011)
https://doi.org/10.1021/ja111199y
21 W. Kim, Strategies for engineering phonon transport in thermoelectrics, J. Mater. Chem. C 3(40), 10336 (2015)
https://doi.org/10.1039/C5TC01670C
22 Z. Chen, B. Ge, W. Li, S. Lin, J. Shen, Y. Chang, R. Hanus, G. J. Snyder, and Y. Pei, Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics, Nat. Commun. 8, 13828 (2017)
https://doi.org/10.1038/ncomms13828
23 Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics, Nature 473(7345), 66 (2011)
https://doi.org/10.1038/nature09996
24 L. D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, and M. G. Kanatzidis, Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe, Science 351(6269), 141 (2016)
https://doi.org/10.1126/science.aad3749
25 Y. Tang, Z. M. Gibbs, L. A. Agapito, G. Li, H. S. Kim, M. B. Nardelli, S. Curtarolo, and G. J. Snyder, Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites, Nat. Mater. 14(12), 1223 (2015)
https://doi.org/10.1038/nmat4430
26 K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis, Strained endotaxial nanostructures with high thermoelectric figure of merit, Nat. Chem. 3(2), 160 (2011)
https://doi.org/10.1038/nchem.955
27 W. G. Zeier, J. Schmitt, G. Hautier, U. Aydemir, Z. M. Gibbs, C. Felser, and G. J. Snyder, Engineering half- Heusler thermoelectric materials using Zintl chemistry,Nat. Rev. Mater. 1(6), 16032 (2016)
https://doi.org/10.1038/natrevmats.2016.32
28 W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, and C. Uher, Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1−xSnx solid solutions, Phys. Rev. Lett. 108(16), 166601 (2012)
https://doi.org/10.1103/PhysRevLett.108.166601
29 H. Wang, Y. Pei, A. D. LaLonde, and G. J. Snyder, Weak electron-phonon coupling contributing to high thermoelectric performance in n-type PbSe, Proc. Natl. Acad. Sci. USA 109(25), 9705 (2012)
https://doi.org/10.1073/pnas.1111419109
30 Y. Pei, H. Wang, and G. J. Snyder, Band engineering of thermoelectric materials, Adv. Mater. 24(46), 6125 (2012)
https://doi.org/10.1002/adma.201202919
31 Y. Pei, C. Chang, Z. Wang, M. Yin, M. Wu, G. Tan, H. Wu, Y. Chen, L. Zheng, S. Gong, T. Zhu, X. Zhao, L. Huang, J. He, M. G. Kanatzidis, and L. D. Zhao, Multiple converged conduction bands in K2Bi8Se13: A promising thermoelectric material with extremely low thermal conductivity, J. Am. Chem. Soc. 138(50), 16364 (2016)
https://doi.org/10.1021/jacs.6b09568
32 H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G. J. Snyder, Copper ion liquid-like thermoelectrics, Nat. Mater. 11(5), 422 (2012)
https://doi.org/10.1038/nmat3273
33 C. W. Li, J. Hong, A. F. May, D. Bansal, S. Chi, T. Hong, G. Ehlers, and O. Delaire, Orbitally driven giant phonon anharmonicity in SnSe, Nat. Phys. 11(12), 1063 (2015)
34 G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B. B. Iversen, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties, Nat. Mater. 3(7), 458 (2004)
https://doi.org/10.1038/nmat1154
35 M. Christensen, A. B. Abrahamsen, N. B. Christensen, F. Juranyi, N. H. Andersen, K. Lefmann, J. Andreasson, C. R. H. Bahl, and B. B. Iversen, Avoided crossing of rattler modes in thermoelectric materials, Nat. Mater. 7(10), 811 (2008)
https://doi.org/10.1038/nmat2273
36 O. Delaire, J. Ma, K. Marty, A. F. May, M. A. McGuire, M. H. Du, D. J. Singh, A. Podlesnyak, G. Ehlers, M. D. Lumsden, and B. C. Sales, Giant anharmonic phonon scattering in PbTe, Nat. Mater. 10(8), 614 (2011)
https://doi.org/10.1038/nmat3035
37 W. Zhao, P. Wei, Q. Zhang, H. Peng, W. Zhu, D. Tang, J. Yu, H. Zhou, Z. Liu, X. Mu, D. He, J. Li, C. Wang, X. Tang, and J. Yang, Multi-localization transport behaviour in bulk thermoelectric materials, Nat. Commun. 6(1), 6197 (2015)
https://doi.org/10.1038/ncomms7197
38 Z. Li, C. Xiao, H. Zhu, and Y. Xie, Defect chemistry for thermoelectric materials, J. Am. Chem. Soc. 138(45), 14810 (2016)
https://doi.org/10.1021/jacs.6b08748
39 T. Zhu, L. Hu, X. Zhao, and J. He, New insights into intrinsic point defects in V2VI3 thermoelectric materials, Adv. Sci. 3(7), 1600004 (2016)
https://doi.org/10.1002/advs.201600004
40 C. Xiao, J. Xu, B. Cao, K. Li, M. Kong, and Y. Xie, Solid-solutioned homojunction nanoplates with disordered lattice: A promising approach toward “phonon glass electron crystal” thermoelectric materials, J. Am. Chem. Soc. 134(18), 7971 (2012)
https://doi.org/10.1021/ja3020204
41 L. E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science 321(5895), 1457 (2008)
https://doi.org/10.1126/science.1158899
42 P. Gorai, V. Stevanović, and E. S. Toberer, Computationally guided discovery of thermoelectric materials, Nat. Rev. Mater. 2(9), 17053 (2017)
https://doi.org/10.1038/natrevmats.2017.53
43 J. P. Heremans, R. J. Cava, and N. Samarth, Tetradymites as thermoelectrics and topological insulators, Nat. Rev. Mater. 2(10), 17049 (2017)
https://doi.org/10.1038/natrevmats.2017.49
44 J. Ravichandran, Thermoelectric and thermal transport properties of complex oxide thin films, heterostructures and superlattices, J. Mater. Res. 32(01), 183 (2017)
https://doi.org/10.1557/jmr.2016.419
45 X. Wang, P. Wang, J. Wang, W. Hu, X. Zhou, N. Guo, H. Huang, S. Sun, H. Shen, T. Lin, M. Tang, L. Liao, A. Jiang, J. Sun, X. Meng, X. Chen, W. Lu, and J. Chu, Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics, Adv. Mater. 27(42), 6575 (2015)
https://doi.org/10.1002/adma.201503340
46 W. Ren, H. Geng, Z. Zhang, and L. Zhang, Fillingfraction fluctuation leading to glasslike ultralow thermal conductivity in caged skutterudites, Phys. Rev. Lett. 118(24), 245901 (2017)
https://doi.org/10.1103/PhysRevLett.118.245901
47 E. Cappelluti, C. Grimaldi, and F. Marsiglio, Topological change of the Fermi surface in low-density rashba gases: Application to superconductivity, Phys. Rev. Lett. 98(16), 167002 (2007)
https://doi.org/10.1103/PhysRevLett.98.167002
48 R. Winkler, S. J. Papadakis, E. P. Poortere, and M. Shayegan, Spin-orbit coupling in two-dimensional electron and hole systems, Adv. Solid State Phys. 41, 211 (2003)
https://doi.org/10.1007/3-540-44946-9_18
49 K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T. Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara, A. Kimura, K. Miyamoto, T. Okuda, H. Namatame, M. Taniguchi, R. Arita, N. Nagaosa, K. Kobayashi, Y. Murakami, R. Kumai, Y. Kaneko, Y. Onose, and Y. Tokura, Giant Rashba-type spin splitting in bulk BiTeI, Nat. Mater. 10(7), 521 (2011)
https://doi.org/10.1038/nmat3051
50 M. Sakano, M. S. Bahramy, A. Katayama, T. Shimojima, H. Murakawa, Y. Kaneko, W. Malaeb, S. Shin, K. Ono, H. Kumigashira, R. Arita, N. Nagaosa, H. Y. Hwang, Y. Tokura, and K. Ishizaka, Strongly spinorbit coupled two-dimensional electron gas emerging near the surface of polar semiconductors, Phys. Rev. Lett. 110(10), 107204 (2013)
https://doi.org/10.1103/PhysRevLett.110.107204
51 H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C. Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, and Y. Tokura, Detection of Berry’s phase in a bulk Rashba semiconductor, Science 342(6165), 1490 (2013)
https://doi.org/10.1126/science.1242247
52 S. Brown and G. Grüner, Charge and spin density waves, Sci. Am. 270(4), 50 (1994)
https://doi.org/10.1038/scientificamerican0494-50
53 J. S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. I. Kim, E. Lee, Y. S. Kwon, J. H. Shim, and G. Kotliar, Peierls distortion as a route to high thermoelectric performance in In4Se3−dcrystals, Nature 459(7249), 965 (2009)
https://doi.org/10.1038/nature08088
54 W. G. Zeier, A. Zevalkink, Z. M. Gibbs, G. Hautier, M. G. Kanatzidis, and G. J. Snyder, Thinking like a chemist: Intuition in thermoelectric materials, Angew. Chem. Int. Ed. 55(24), 6826 (2016)
https://doi.org/10.1002/anie.201508381
55 H. Wang, J. Wang, X. Cao, and G. J. Snyder, Thermoelectric alloys between PbSe and PbS with effective thermal conductivity reduction and high figure of merit, J. Mater. Chem. A 2(9), 3169 (2014)
https://doi.org/10.1039/c3ta14929c
56 W. Zhao, Z. Liu, P. Wei, Q. Zhang, W. Zhu, X. Su, X. Tang, J. Yang, Y. Liu, J. Shi, Y. Chao, S. Lin, and Y. Pei, Magnetoelectric interaction and transport behaviours in magnetic nanocomposite thermoelectric materials, Nat. Nanotechnol. 12(1), 55 (2016)
https://doi.org/10.1038/nnano.2016.182
57 W. Zhao, Z. Liu, Z. Sun, Q. Zhang, P. Wei, X. Mu, H. Zhou, C. Li, S. Ma, D. He, P. Ji, W. Zhu, X. Nie, X. Su, X. Tang, B. Shen, X. Dong, J. Yang, Y. Liu, and J. Shi, Superparamagnetic enhancement of thermoelectric performance, Nature 549(7671), 247 (2017)
https://doi.org/10.1038/nature23667
58 J. Zhang, L. Song, G. K. H. Madsen, K. F. F. Fischer, W. Zhang, X. Shi, and B. B. Iversen, Designing highperformance layered thermoelectric materials through orbital engineering, Nat. Commun. 7, 10892 (2016)
https://doi.org/10.1038/ncomms10892
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed