|
|
Cluster synchronization in complex network of coupled chaotic circuits: An experimental study |
Ben Cao1,2, Ya-Feng Wang1, Liang Wang1, Yi-Zhen Yu1, Xin-Gang Wang1( ) |
1. School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China 2. School of Physical Education, Shaanxi Normal University, Xi’an 710062, China |
|
|
Abstract By a small-size complex network of coupled chaotic Hindmarsh-Rose circuits, we study experimentally the stability of network synchronization to the removal of shortcut links. It is shown that the removal of a single shortcut link may destroy either completely or partially the network synchronization. Interestingly, when the network is partially desynchronized, it is found that the oscillators can be organized into different groups, with oscillators within each group being highly synchronized but are not for oscillators from different groups, showing the intriguing phenomenon of cluster synchronization. The experimental results are analyzed by the method of eigenvalue analysis, which implies that the formation of cluster synchronization is crucially dependent on the network symmetries. Our study demonstrates the observability of cluster synchronization in realistic systems, and indicates the feasibility of controlling network synchronization by adjusting network topology.
|
Keywords
chaos synchronization
pattern formation
neuronal circuits
|
Corresponding Author(s):
Xin-Gang Wang
|
Issue Date: 24 April 2018
|
|
1 |
Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Berlin: Springer, 1984
https://doi.org/10.1007/978-3-642-69689-3
|
2 |
A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Science, Cambridge: Cambridge University Press, 2001
https://doi.org/10.1017/CBO9780511755743
|
3 |
S. Strogatz, Sync: The Emerging Science of Spontaneous Order, New York: Hyperion, 2003
|
4 |
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep. 424(4–5), 175 (2006)
https://doi.org/10.1016/j.physrep.2005.10.009
|
5 |
A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. S. Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93 (2008)
https://doi.org/10.1016/j.physrep.2008.09.002
|
6 |
L. M. Pecora and T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett. 64(8), 821 (1990)
https://doi.org/10.1103/PhysRevLett.64.821
|
7 |
L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett. 80(10), 2109 (1998)
https://doi.org/10.1103/PhysRevLett.80.2109
|
8 |
G. Hu, J. Z. Yang, and W. Liu, Instability and controllability of linearly coupled oscillators: Eigenvalue analysis, Phys. Rev. E 58(4), 4440 (1998)
https://doi.org/10.1103/PhysRevE.58.4440
|
9 |
L. Huang, Q. Chen, Y. C. Lai, and L. M. Pecora, Generic behavior of master-stability functions in coupled nonlinear dynamical systems, Phys. Rev. E 80(3), 036204 (2009)
https://doi.org/10.1103/PhysRevE.80.036204
|
10 |
L. M. Pecora, Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems, Phys. Rev. E 58(1), 347 (1998)
https://doi.org/10.1103/PhysRevE.58.347
|
11 |
D. Hansel, G. Mato, and C. Meunier, Clustering and slow switching in globally coupled phase oscillators, Phys. Rev. E 48(5), 3470 (1993)
https://doi.org/10.1103/PhysRevE.48.3470
|
12 |
V. N. Belykh and E. Mosekilde, One-dimensional map lattices: Synchronization, bifurcations, and chaotic structures, Phys. Rev. E 54(4), 3196 (1996)
https://doi.org/10.1103/PhysRevE.54.3196
|
13 |
M. Hasler, Yu. Maistrenko, and O. Popovych, Simple example of partial synchronizaiton of chaotic systems, Phys. Rev. E 58(5), 6843 (1998)
https://doi.org/10.1103/PhysRevE.58.6843
|
14 |
Y. Zhang, G. Hu, H. A. Cerdeira, S. Chen, T. Braun, and Y. Yao, Partial synchronization and spontaneous spatial ordering in coupled chaotic systems, Phys. Rev. E 63(2), 026211 (2001)
https://doi.org/10.1103/PhysRevE.63.026211
|
15 |
A. Pikovsky, O. Popovych, and Yu. Maistrenko, Resolving clusters in chaotic ensembles of globally coupled identical oscillators, Phys. Rev. Lett. 87(4), 044102 (2001)
https://doi.org/10.1103/PhysRevLett.87.044102
|
16 |
I. A. Heisler, T. Braun, Y. Zhang, G. Hu, and H. A. Cerdeira, Experimental investigation of partial synchronization in coupled chaotic oscillators, Chaos 13(1), 185 (2003)
https://doi.org/10.1063/1.1505811
|
17 |
B. Ao and Z. G. Zheng, Partial synchronization on complex networks, Europhys. Lett. 74(2), 229 (2006)
https://doi.org/10.1209/epl/i2005-10533-0
|
18 |
C. S. Zhou and J. Kurths, Hierarchical synchronization in complex networks with heterogeneous degrees, Chaos 16(1), 015104 (2006)
https://doi.org/10.1063/1.2150381
|
19 |
J. Zhang, Y. Yu, and X. G. Wang, Synchronization of coupled metronomes on two layers, Front. Phys. 12(6), 120508 (2017)
https://doi.org/10.1007/s11467-017-0675-9
|
20 |
M. Golubitsky, I. Stewart, and D. G. Schaeffer, Singularities and Groups in Bifurcation Theory, Springer-Verlag, 1985
https://doi.org/10.1007/978-1-4612-5034-0
|
21 |
E. Basar, Brain Function and Oscillation, New York: Springer, 1998
https://doi.org/10.1007/978-3-642-72192-2
|
22 |
D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small world networks, Nature 393(6684), 440 (1998)
https://doi.org/10.1038/30918
|
23 |
A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science 286(5439), 509 (1999)
https://doi.org/10.1126/science.286.5439.509
|
24 |
P. M. Gade, Synchronization in coupled map lattices with random nonlocal connectivity, Phys. Rev. E 54(1), 64 (1996)
https://doi.org/10.1103/PhysRevE.54.64
|
25 |
P. M. Gade and C. K. Hu, Synchronous chaos in coupled map lattices with small-world interactions, Phys. Rev. E 62(5), 6409 (2000)
https://doi.org/10.1103/PhysRevE.62.6409
|
26 |
M. Barahona and L. M. Pecora, Synchronization in Small-World Systems, Phys. Rev. Lett. 89(5), 054101 (2002)
https://doi.org/10.1103/PhysRevLett.89.054101
|
27 |
T. Nishikawa, A. E. Motter, Y. C. Lai, and F. C. Hoppensteadt, Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize? Phys. Rev. Lett. 91(1), 014101 (2003)
https://doi.org/10.1103/PhysRevLett.91.014101
|
28 |
A. E. Motter, C. Zhou, and J. Kurths, Weighted networks are more synchronizable: How and why, AIP Conf. Proc. 776, 201 (2005)
https://doi.org/10.1063/1.1985389
|
29 |
X. G. Wang, Y. C. Lai, and C. H. Lai, Enhancing synchronization based on complex gradient networks, Phys. Rev. E 75(5), 056205 (2007)
https://doi.org/10.1103/PhysRevE.75.056205
|
30 |
C. Fu, H. Zhang, M. Zhan, and X. G. Wang, Synchronous patterns in complex systems? Phys. Rev. E 85(6), 066208 (2012)
https://doi.org/10.1103/PhysRevE.85.066208
|
31 |
Z. He, X. G. Wang, G. Y. Zhang, and M. Zhan, Control for a synchronization-desynchronization switch, Phys. Rev. E 90(1), 012909 (2014)
https://doi.org/10.1103/PhysRevE.90.012909
|
32 |
W. Yang, W. Lin, X. G. Wang, and L. Huang, Synchronization of networked chaotic oscillators under external periodic driving, Phys. Rev. E 91(3), 032912 (2015)
https://doi.org/10.1103/PhysRevE.91.032912
|
33 |
T. Nishikawa and A. E. Motter, Symmetric states requiring system asymmetry? Phys. Rev. Lett. 117(11), 114101 (2016)
https://doi.org/10.1103/PhysRevLett.117.114101
|
34 |
K. Park, L. Huang, and Y. C. Lai, Desynchronization waves in small-world networks, Phys. Rev. E 75(2), 026211 (2007)
https://doi.org/10.1103/PhysRevE.75.026211
|
35 |
F. Sorrentino and E. Ott, Network synchronization of groups, Phys. Rev. E 76(5), 056114 (2007)
https://doi.org/10.1103/PhysRevE.76.056114
|
36 |
V. N. Belykh, G. V. Osipov, V. S. Petrov, J. A. K. Suykens, and J. Vandewalle, Cluster synchronization in oscillatory networks, Chaos 18(3), 037106 (2008)
https://doi.org/10.1063/1.2956986
|
37 |
G. Russo and J. J. E. Slotine, Symmetries, stability, and control in nonlinear systems and networks,Phys. Rev. E 84(4), 041929 (2011)
https://doi.org/10.1103/PhysRevE.84.041929
|
38 |
T. Dahms, J. Lehnert, and E. Schöll, Cluster and group synchronization in delay-coupled networks, Phys. Rev. E 86(1), 016202 (2012)
https://doi.org/10.1103/PhysRevE.86.016202
|
39 |
V. Nicosia, M. Valencia, M. Chavez, A. Diaz-Guilera, and V. Latora, Remote synchronization reveals network symmetries and functional modules,Phys. Rev. Lett. 110(17), 174102 (2013)
https://doi.org/10.1103/PhysRevLett.110.174102
|
40 |
C. Fu, Z. Deng, L. Huang, and X. G. Wang, Topological control of synchronous patterns in systems of networked chaotic oscillators, Phys. Rev. E 87(3), 032909 (2013)
https://doi.org/10.1103/PhysRevE.87.032909
|
41 |
C. R. S. Williams, T. E. Murphy, R. Roy, F. Sorrentino, T. Dahms, and E. Schöll, Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators,Phys. Rev. Lett. 110(6), 064104 (2013)
https://doi.org/10.1103/PhysRevLett.110.064104
|
42 |
C. Fu, W. Lin, L. Huang, and X. G. Wang, Synchronization transition in networked chaotic oscillators: The viewpoint from partial synchronization, Phys. Rev. E 89(5), 052908 (2014)
https://doi.org/10.1103/PhysRevE.89.052908
|
43 |
L. M. Pecora, F. Sorrentino, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Cluster synchronization and isolated desynchronization in complex networks with symmetries, Nat. Commun. 5, 4079 (2014)
https://doi.org/10.1038/ncomms5079
|
44 |
F. Sorrentino, L. M. Pecora, A. M. Hagerstrom, T. E. Murphy, and R. Roy, Complete characterization of stability of cluster synchronization in complex dynamical networks, Sci. Adv. 2(4), e1501737 (2016)
https://doi.org/10.1126/sciadv.1501737
|
45 |
D. Hart, K. Bansal, T. E. Murphy, and R. Roy, Experimental observation of chimera and cluster states in a minimal globally coupled network, Chaos 26(9), 094801 (2016)
https://doi.org/10.1063/1.4953662
|
46 |
T. Nishikawa and A. E. Motter, Network-complement transitions, symmetries, and cluster synchronization, Chaos 26(9), 094818 (2016)
https://doi.org/10.1063/1.4960617
|
47 |
M. T. Schaub, N. O’Clery, Y. N. Billeh, J. C. Delvenne, R. Lambiotte, and M. Barahona, Graph partitions and cluster synchronization in networks of oscillators, Chaos 26(9), 094821 (2016)
https://doi.org/10.1063/1.4961065
|
48 |
F. Sorrentino and L. Pecora, Approximate cluster synchronization in networks with symmetries and parameter mismatches, Chaos 26(9), 094823 (2016)
https://doi.org/10.1063/1.4961967
|
49 |
Y. S. Cho, T. Nishikawa, and A. E. Motter, Stable chimeras and independently synchronizable clusters, Phys. Rev. Lett. 119(8), 084101 (2017)
https://doi.org/10.1103/PhysRevLett.119.084101
|
50 |
W. Stein,, 2013
|
51 |
W. Lin, H. Fan, Y. Wang, H. Ying, and X. G. Wang, Controlling synchronous patterns in complex networks, Phys. Rev. E 93(4), 042209 (2016)
https://doi.org/10.1103/PhysRevE.93.042209
|
52 |
W. Lin, H. Li, H. Ying, and X. G. Wang, Inducing isolated-desynchronization states in complex network of coupled chaotic oscillators, Phys. Rev. E 94(6), 062303 (2016)
https://doi.org/10.1103/PhysRevE.94.062303
|
53 |
J. Sun, E. M. Bollt, and T. Nishikawa, Master stability functions for coupled nearly identical dynamical systems, EPL 85(6), 60011 (2009)
https://doi.org/10.1209/0295-5075/85/60011
|
54 |
J. L. Hindmarsh and R. M. Rose, A model of neuronal bursting using three coupled first order differential equations, Proc. R. Soc. Lond. B Biol. Sci. 221(1222), 87 (1984)
https://doi.org/10.1098/rspb.1984.0024
|
55 |
G. Ren, J. Tang, J. Ma, and Y. Xu, Detection of noise effect on coupled neuronal circuits, Commun. Nonlinear Sci. Numer. Simul. 29(1–3), 170 (2015)
https://doi.org/10.1016/j.cnsns.2015.05.001
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|