Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2018, Vol. 13 Issue (5) : 130310    https://doi.org/10.1007/s11467-018-0780-4
RESEARCH ARTICLE
Dynamics of coherence-induced state ordering under Markovian channels
Long-Mei Yang1, Bin Chen2(), Shao-Ming Fei1, Zhi-Xi Wang1
1. School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
2. School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, China
 Download: PDF(6459 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the dynamics of coherence-induced state ordering under incoherent channels, particularly four specific Markovian channels: amplitude damping channel, phase damping channel, depolarizing channel and bit flit channel for single-qubit states. We show that the amplitude damping channel, phase damping channel, and depolarizing channel do not change the coherence-induced state ordering by l1 norm of coherence, relative entropy of coherence, geometric measure of coherence, and Tsallis relative α-entropies, while the bit flit channel does change for some special cases.

Keywords l1-norm of coherence      relative entropy of coherence      geometric measure of coherence      Tsallis relative α-entropies of coherence      ordering state     
Corresponding Author(s): Bin Chen   
Issue Date: 09 May 2018
 Cite this article:   
Long-Mei Yang,Bin Chen,Shao-Ming Fei, et al. Dynamics of coherence-induced state ordering under Markovian channels[J]. Front. Phys. , 2018, 13(5): 130310.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-018-0780-4
https://academic.hep.com.cn/fop/EN/Y2018/V13/I5/130310
1 J. Åberg, Catalytic coherence, Phys. Rev. Lett. 113(15), 150402 (2014)
https://doi.org/10.1103/PhysRevLett.113.150402
2 V. Narasimhachar and G. Gour, Low-temperature thermodynamics with quantum coherence, Nat. Commun. 6(1), 7689 (2015)
https://doi.org/10.1038/ncomms8689
3 P. Ćwikliński, M. Studzinski, M. Horodecki, and J. Oppenheim, Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics, Phys. Rev. Lett. 115(21), 210403 (2015)
https://doi.org/10.1103/PhysRevLett.115.210403
4 M. Lostaglio, D. Jennings, and T. Rudolph, Description of quantum coherence in thermodynamic processes requires constraints beyond free energy, Nat. Commun. 6(1), 6383 (2015)
https://doi.org/10.1038/ncomms7383
5 M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, Quantum coherence, timetranslation symmetry, and thermodynamics, Phys. Rev. X 5(2), 021001 (2015)
https://doi.org/10.1103/PhysRevX.5.021001
6 M. B. Plenio and S. F. Huelga, Dephasing-assisted transport: Quantum networks and biomolecules, New J. Phys. 10(11), 113019 (2008)
https://doi.org/10.1088/1367-2630/10/11/113019
7 P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, Role of quantum coherence and environmental fluctuations in chromophoric energy transport, J. Phys. Chem. B 113(29), 9942 (2009)
https://doi.org/10.1021/jp901724d
8 S. Lloyd, Quantum coherence in biological systems, J. Phys. Conf. Ser. 302, 012037 (2011)
https://doi.org/10.1088/1742-6596/302/1/012037
9 C. M. Li, N. Lambert, Y. N. Chen, G. Y. Chen, and F. Nori, Witnessing quantum coherence: From solid-state to biological systems, Sci. Rep. 2(1), 885 (2012)
https://doi.org/10.1038/srep00885
10 S. Huelga and M. Plenio, Vibrations, quanta and biology, Contemp. Phys. 54(4), 181 (2013)
https://doi.org/10.1080/00405000.2013.829687
11 F. Levi and F. Mintert, A quantitative theory of coherent delocalization, New J. Phys. 16(3), 033007 (2014)
https://doi.org/10.1088/1367-2630/16/3/033007
12 H. Vazquez, R. Skouta, S. Schneebeli, M. Kamenetska, R. Breslow, L. Venkataraman, and M. Hybertsen, Probing the conductance superposition law in singlemolecule circuits with parallel paths, Nat. Nanotechnol. 7(10), 663 (2012)
https://doi.org/10.1038/nnano.2012.147
13 O. Karlström, H. Linke, G. Karlstrom, and A. Wacker, Increasing thermoelectric performance using coherent transport, Phys. Rev. B 84(11), 113415 (2011)
https://doi.org/10.1103/PhysRevB.84.113415
14 J. Åberg, Quanatifying superposition, arXiv: 0612146 (2006)
15 T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113(14), 140401 (2014)
https://doi.org/10.1103/PhysRevLett.113.140401
16 A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, Measuring quantum coherence with entanglement, Phys. Rev. Lett. 115(2), 020403 (2015)
https://doi.org/10.1103/PhysRevLett.115.020403
17 F. G. Zhang, L. H. Shao, Y. Luo, and Y. M. Li, Ordering states with Tsallis relative a-entropies of coherence, Quant. Inf. Process 16, 31 (2017)
https://doi.org/10.1007/s11128-016-1488-4
18 F. G. Zhang and Y. M. Li, Coherent-induced state ordering with fixed mixedness, arXiv: 1704.02244v1 (2017)
19 C. L. Liu, X. D. Yu, G. F. Xu, and D. M. Tong, Ordering states with coherence measures, Quantum Inform. Process. 15(10), 4189 (2016)
https://doi.org/10.1007/s11128-016-1398-5
20 X. Y. Hu, Channels that do not generate coherence, Phys. Rev. A 94(1), 012326 (2016)
https://doi.org/10.1103/PhysRevA.94.012326
21 L. M. Yang, B. Chen, S. M. Fei, and Z. X. Wang, Ordering states with various coherence measures, Quant. Inf. Process 17, 91 (2018)
https://doi.org/10.1007/s11128-018-1856-3
[1] Alexey E. Rastegin. Degradation of Grover’s search under collective phase flips in queries to the oracle[J]. Front. Phys. , 2018, 13(5): 130318-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed