|
|
Dynamics of coherence-induced state ordering under Markovian channels |
Long-Mei Yang1, Bin Chen2( ), Shao-Ming Fei1, Zhi-Xi Wang1 |
1. School of Mathematical Sciences, Capital Normal University, Beijing 100048, China 2. School of Mathematical Sciences, Tianjin Normal University, Tianjin 300387, China |
|
|
Abstract We study the dynamics of coherence-induced state ordering under incoherent channels, particularly four specific Markovian channels: amplitude damping channel, phase damping channel, depolarizing channel and bit flit channel for single-qubit states. We show that the amplitude damping channel, phase damping channel, and depolarizing channel do not change the coherence-induced state ordering by l1 norm of coherence, relative entropy of coherence, geometric measure of coherence, and Tsallis relative α-entropies, while the bit flit channel does change for some special cases.
|
Keywords
l1-norm of coherence
relative entropy of coherence
geometric measure of coherence
Tsallis relative α-entropies of coherence
ordering state
|
Corresponding Author(s):
Bin Chen
|
Issue Date: 09 May 2018
|
|
1 |
J. Åberg, Catalytic coherence, Phys. Rev. Lett. 113(15), 150402 (2014)
https://doi.org/10.1103/PhysRevLett.113.150402
|
2 |
V. Narasimhachar and G. Gour, Low-temperature thermodynamics with quantum coherence, Nat. Commun. 6(1), 7689 (2015)
https://doi.org/10.1038/ncomms8689
|
3 |
P. Ćwikliński, M. Studzinski, M. Horodecki, and J. Oppenheim, Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics, Phys. Rev. Lett. 115(21), 210403 (2015)
https://doi.org/10.1103/PhysRevLett.115.210403
|
4 |
M. Lostaglio, D. Jennings, and T. Rudolph, Description of quantum coherence in thermodynamic processes requires constraints beyond free energy, Nat. Commun. 6(1), 6383 (2015)
https://doi.org/10.1038/ncomms7383
|
5 |
M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph, Quantum coherence, timetranslation symmetry, and thermodynamics, Phys. Rev. X 5(2), 021001 (2015)
https://doi.org/10.1103/PhysRevX.5.021001
|
6 |
M. B. Plenio and S. F. Huelga, Dephasing-assisted transport: Quantum networks and biomolecules, New J. Phys. 10(11), 113019 (2008)
https://doi.org/10.1088/1367-2630/10/11/113019
|
7 |
P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, Role of quantum coherence and environmental fluctuations in chromophoric energy transport, J. Phys. Chem. B 113(29), 9942 (2009)
https://doi.org/10.1021/jp901724d
|
8 |
S. Lloyd, Quantum coherence in biological systems, J. Phys. Conf. Ser. 302, 012037 (2011)
https://doi.org/10.1088/1742-6596/302/1/012037
|
9 |
C. M. Li, N. Lambert, Y. N. Chen, G. Y. Chen, and F. Nori, Witnessing quantum coherence: From solid-state to biological systems, Sci. Rep. 2(1), 885 (2012)
https://doi.org/10.1038/srep00885
|
10 |
S. Huelga and M. Plenio, Vibrations, quanta and biology, Contemp. Phys. 54(4), 181 (2013)
https://doi.org/10.1080/00405000.2013.829687
|
11 |
F. Levi and F. Mintert, A quantitative theory of coherent delocalization, New J. Phys. 16(3), 033007 (2014)
https://doi.org/10.1088/1367-2630/16/3/033007
|
12 |
H. Vazquez, R. Skouta, S. Schneebeli, M. Kamenetska, R. Breslow, L. Venkataraman, and M. Hybertsen, Probing the conductance superposition law in singlemolecule circuits with parallel paths, Nat. Nanotechnol. 7(10), 663 (2012)
https://doi.org/10.1038/nnano.2012.147
|
13 |
O. Karlström, H. Linke, G. Karlstrom, and A. Wacker, Increasing thermoelectric performance using coherent transport, Phys. Rev. B 84(11), 113415 (2011)
https://doi.org/10.1103/PhysRevB.84.113415
|
14 |
J. Åberg, Quanatifying superposition, arXiv: 0612146 (2006)
|
15 |
T. Baumgratz, M. Cramer, and M. B. Plenio, Quantifying coherence, Phys. Rev. Lett. 113(14), 140401 (2014)
https://doi.org/10.1103/PhysRevLett.113.140401
|
16 |
A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso, Measuring quantum coherence with entanglement, Phys. Rev. Lett. 115(2), 020403 (2015)
https://doi.org/10.1103/PhysRevLett.115.020403
|
17 |
F. G. Zhang, L. H. Shao, Y. Luo, and Y. M. Li, Ordering states with Tsallis relative a-entropies of coherence, Quant. Inf. Process 16, 31 (2017)
https://doi.org/10.1007/s11128-016-1488-4
|
18 |
F. G. Zhang and Y. M. Li, Coherent-induced state ordering with fixed mixedness, arXiv: 1704.02244v1 (2017)
|
19 |
C. L. Liu, X. D. Yu, G. F. Xu, and D. M. Tong, Ordering states with coherence measures, Quantum Inform. Process. 15(10), 4189 (2016)
https://doi.org/10.1007/s11128-016-1398-5
|
20 |
X. Y. Hu, Channels that do not generate coherence, Phys. Rev. A 94(1), 012326 (2016)
https://doi.org/10.1103/PhysRevA.94.012326
|
21 |
L. M. Yang, B. Chen, S. M. Fei, and Z. X. Wang, Ordering states with various coherence measures, Quant. Inf. Process 17, 91 (2018)
https://doi.org/10.1007/s11128-018-1856-3
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|