|
|
Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice |
Lu Qi1, Guo-Li Wang1, Shutian Liu1( ), Shou Zhang1,2( ), Hong-Fu Wang2( ) |
1. School of Physics, Harbin Institute of Technology, Harbin 150001, China 2. Department of Physics, College of Science, Yanbian University, Yanji 133002, China |
|
|
Abstract We propose a scheme to investigate the topological phase transition and the topological state transfer based on the small optomechanical lattice under the realistic parameters regime. We find that the optomechanical lattice can be equivalent to a topologically nontrivial Su–Schrieffer–Heeger (SSH) model via designing the effective optomechanical coupling. Especially, the optomechanical lattice experiences the phase transition between topologically nontrivial SSH phase and topologically trivial SSH phase by controlling the decay of the cavity field and the optomechanical coupling. We stress that the topological phase transition is mainly induced by the decay of the cavity field, which is counter-intuitive since the dissipation is usually detrimental to the system. Also, we investigate the photonic state transfer between the two cavity fields via the topologically protected edge channel based on the small optomechanical lattice. We find that the quantum state transfer assisted by the topological zero energy mode can be achieved via implying the external lasers with the periodical driving amplitudes into the cavity fields. Our scheme provides the fundamental and the insightful explanations towards the mapping of the photonic topological insulator based on the micro-nano optomechanical quantum optical platform.
|
Keywords
topological phase transition
topological state transfer
optomechanical lattice
|
Corresponding Author(s):
Shutian Liu,Shou Zhang,Hong-Fu Wang
|
Just Accepted Date: 17 August 2020
Issue Date: 10 October 2020
|
|
1 |
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
|
2 |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
|
3 |
C. K. Chiu, J. C. Teo, A. P. Schnyder, and S. Ryu, Classification of topological quantum matter with symmetries, Rev. Mod. Phys. 88(3), 035005 (2016)
https://doi.org/10.1103/RevModPhys.88.035005
|
4 |
A. Bansil, H. Lin, and T. Das, Topological band theory, Rev. Mod. Phys. 88(2), 021004 (2016)
https://doi.org/10.1103/RevModPhys.88.021004
|
5 |
C. Dlaska, B. Vermersch, and P. Zoller, Robust quantum state transfer via topologically protected edge channels in dipolar arrays, Quantum Sci. Technol. 2(1), 015001 (2017)
https://doi.org/10.1088/2058-9565/2/1/015001
|
6 |
F. Mei, G. Chen, L. Tian, S. L. Zhu, and S. Jia, Robust quantum state transfer via topological edge states in superconducting qubit chains, Phys. Rev. A 98(1), 012331 (2018)
https://doi.org/10.1103/PhysRevA.98.012331
|
7 |
L. Qi, G. L. Wang, S. Liu, S. Zhang, and H. F. Wang, Controllable photonic and phononic topological state transfers in a small optomechanical lattice, Opt. Lett. 45(7), 2018 (2020)
https://doi.org/10.1364/OL.388835
|
8 |
D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, K. Flensberg, and J. Alicea, Milestones toward Majorana-based quantum computing, Phys. Rev. X 6(3), 031016 (2016)
https://doi.org/10.1103/PhysRevX.6.031016
|
9 |
S. D. Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological quantum computation, npj Quantum Inf. 1, 15001 (2015)
https://doi.org/10.1038/npjqi.2015.1
|
10 |
G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, and M. Segev, Topological insulator laser: Theory, Science 359, eaar4003 (2018)
https://doi.org/10.1126/science.aar4003
|
11 |
M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, and M. Khajavikhan, Topological insulator laser: Experiments, Science 359, eaar4005 (2018)
https://doi.org/10.1126/science.aar4005
|
12 |
A. B. Khanikaev, S. Hossein Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, Photonic topological insulators, Nat. Mater. 12(3), 233 (2013)
https://doi.org/10.1038/nmat3520
|
13 |
M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Photonic floquet topological insulators, Nature 496(7444), 196 (2013)
https://doi.org/10.1038/nature12066
|
14 |
P. Yan, R. Lin, H. Chen, H. Zhang, A. Liu, H. Yang, and S. Ruan, Topological insulator solution filled in photonic crystal fiber for passive mode-locked fiber laser, IEEE Photonics Technol. Lett. 27, 264 (2014)
https://doi.org/10.1109/LPT.2014.2361915
|
15 |
L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, Symmetry-protected topological photonic crystal in three dimensions, Nat. Phys. 12(4), 337 (2016)
https://doi.org/10.1038/nphys3611
|
16 |
L. Gao, T. Zhu, W. Huang, and Z. Luo, Stable, ultrafast pulse mode-locked by topological insulator Bi2Se3 nanosheets interacting with photonic crystal fiber: From anomalous dispersion to normal dispersion, IEEE Photonics J. 7, 1 (2015)
https://doi.org/10.1109/JPHOT.2015.2402594
|
17 |
M. I. Shalaev, W. Walasik, A. Tsukernik, Y. Xu, and N. M. Litchinitser, Robust topologically protected transport in photonic crystals at telecommunication wavelengths, Nat. Nanotechnol. 14(1), 31 (2019)
https://doi.org/10.1038/s41565-018-0297-6
|
18 |
S. A. Skirlo, L. Lu, Y. Igarashi, Q. Yan, J. Joannopoulos, and M. Soljačić, Experimental observation of large Chern numbers in photonic crystals, Phys. Rev. Lett. 115(25), 253901 (2015)
https://doi.org/10.1103/PhysRevLett.115.253901
|
19 |
L. Xu, H. X. Wang, Y. D. Xu, H. Y. Chen, and J. H. Jiang, Accidental degeneracy in photonic bands and topological phase transitions in two-dimensional core-shell dielectric photonic crystals, Opt. Express 24(16), 18059 (2016)
https://doi.org/10.1364/OE.24.018059
|
20 |
L. H. Wu and X. Hu, Scheme for achieving a topological photonic crystal by using dielectric material, Phys. Rev. Lett. 114(22), 223901 (2015)
https://doi.org/10.1103/PhysRevLett.114.223901
|
21 |
A. Tomita and R. Y. Chiao, Observation of Berry’s topological phase by use of an optical fiber, Phys. Rev. Lett. 57(8), 937 (1986)
https://doi.org/10.1103/PhysRevLett.57.937
|
22 |
W. J. Chen, S. J. Jiang, X. D. Chen, B. Zhu, L. Zhou, J. W. Dong, and C. T. Chan, Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide, Nat. Commun. 5(1), 5782 (2014)
https://doi.org/10.1038/ncomms6782
|
23 |
S. Ke, D. Zhao, J. Liu, Q. Liu, Q. Liao, B. Wang, and P. Lu, Topological bound modes in anti-PT-symmetric optical waveguide arrays, Opt. Express 27(10), 13858 (2019)
https://doi.org/10.1364/OE.27.013858
|
24 |
S. Longhi, Zak phase of photons in optical waveguide lattices, Opt. Lett. 38(19), 3716 (2013)
https://doi.org/10.1364/OL.38.003716
|
25 |
A. Blanco-Redondo, I. Andonegui, M. J. Collins, G. Harari, Y. Lumer, M. C. Rechtsman, B. J. Eggleton, and M. Segev, Topological optical waveguiding in silicon and the transition between topological and trivial defect states, Phys. Rev. Lett. 116(16), 163901 (2016)
https://doi.org/10.1103/PhysRevLett.116.163901
|
26 |
G. Liang and Y. Chong, Optical resonator analog of a two-dimensional topological insulator, Phys. Rev. Lett. 110(20), 203904 (2013)
https://doi.org/10.1103/PhysRevLett.110.203904
|
27 |
F. Mivehvar, H. Ritsch, and F. Piazza, Superradiant topological Peierls insulator inside an optical cavity, Phys. Rev. Lett. 118(7), 073602 (2017)
https://doi.org/10.1103/PhysRevLett.118.073602
|
28 |
G. Liang and Y. Chong, Optical resonator analog of a photonic topological insulator: A finite-difference timedomain study, Int. J. Mod. Phys. B 28(02), 1441007 (2014)
https://doi.org/10.1142/S0217979214410070
|
29 |
C. Poli, M. Bellec, U. Kuhl, F. Mortessagne, and H. Schomerus, Selective enhancement of topologically induced interface states in a dielectric resonator chain, Nat. Commun. 6(1), 6710 (2015)
https://doi.org/10.1038/ncomms7710
|
30 |
C. He, Z. Li, X. Ni, X. C. Sun, S. Y. Yu, M. H. Lu, X. P. Liu, and Y. F. Chen, Topological phononic states of underwater sound based on coupled ring resonators, Appl. Phys. Lett. 108(3), 031904 (2016)
https://doi.org/10.1063/1.4940403
|
31 |
D. Leykam, S. Mittal, M. Hafezi, and Y. D. Chong, Reconfigurable topological phases in next-nearest-neighbor coupled resonator lattices, Phys. Rev. Lett. 121(2), 023901 (2018)
https://doi.org/10.1103/PhysRevLett.121.023901
|
32 |
J. Tangpanitanon, V. M. Bastidas, S. Al-Assam, P. Roushan, D. Jaksch, and D. G. Angelakis, Topological pumping of photons in nonlinear resonator arrays, Phys. Rev. Lett. 117(21), 213603 (2016)
https://doi.org/10.1103/PhysRevLett.117.213603
|
33 |
M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. Taylor, Imaging topological edge states in silicon photonics, Nat. Photonics 7(12), 1001 (2013)
https://doi.org/10.1038/nphoton.2013.274
|
34 |
T. Ma and G. Shvets, All-Si valley-Hall photonic topological insulator, New J. Phys. 18(2), 025012 (2016)
https://doi.org/10.1088/1367-2630/18/2/025012
|
35 |
X. T. He, E. T. Liang, J. J. Yuan, H. Y. Qiu, X. D. Chen, F. L. Zhao, and J. W. Dong, A silicon-on-insulator slab for topological valley transport, Nat. Commun. 10(1), 872 (2019)
https://doi.org/10.1038/s41467-019-08881-z
|
36 |
F. Mei, Z. Y. Xue, D. W. Zhang, L. Tian, C. Lee, and S. L. Zhu, Witnessing topological Weyl semimetal phase in a minimal circuit-QED lattice, Quantum Sci. Technol. 1(1), 015006 (2016)
https://doi.org/10.1088/2058-9565/1/1/015006
|
37 |
Y. Huang, Z. Q. Yin, and W. Yang, Realizing a topological transition in a non-Hermitian quantum walk with circuit QED, Phys. Rev. A 94(2), 022302 (2016)
https://doi.org/10.1103/PhysRevA.94.022302
|
38 |
F. Mei, J. B. You, W. Nie, R. Fazio, S. L. Zhu, and L. C. Kwek, Simulation and detection of photonic Chern insulators in a one-dimensional circuit-QED lattice, Phys. Rev. A 92(4), 041805 (2015)
https://doi.org/10.1103/PhysRevA.92.041805
|
39 |
L. Qi, Y. Xing, J. Cao, X. X. Jiang, C. S. An, A. D. Zhu, S. Zhang, and H. F. Wang, Simulation and detection of the topological properties of a modulated Ricemele model in a one-dimensional circuit-QED lattice, Sci. China Phys. Mech. Astron. 61(8), 080313 (2018)
https://doi.org/10.1007/s11433-018-9212-4
|
40 |
X. Tan, Y. Zhao, Q. Liu, G. Xue, H. F. Yu, Z. Wang, and Y. Yu, Simulation and manipulation of tunable Weyl semimetal bands using superconducting quantum circuits, Phys. Rev. Lett. 122(1), 010501 (2019)
https://doi.org/10.1103/PhysRevLett.122.010501
|
41 |
M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)
https://doi.org/10.1103/RevModPhys.86.1391
|
42 |
T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science 321(5893), 1172 (2008)
https://doi.org/10.1126/science.1156032
|
43 |
M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Optomechanical crystals, Nature 462, 78 (2009)
https://doi.org/10.1038/nature08524
|
44 |
T. J. Kippenberg and K. J. Vahala, Cavity optomechanics, Opt. Express 15(25), 17172 (2007)
https://doi.org/10.1364/OE.15.017172
|
45 |
T. Wang, M. H. Zheng, C. H. Bai, D. Y. Wang, A. D. Zhu, H. F. Wang, and S. Zhang, Normal-mode splitting and optomechanically induced absorption, amplification, and transparency in a hybrid optomechanical system, Ann. Phys. 530(10), 1800228 (2018)
https://doi.org/10.1002/andp.201800228
|
46 |
J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, Parametric normal-mode splitting in cavity optomechanics, Phys. Rev. Lett. 101(26), 263602 (2008)
https://doi.org/10.1103/PhysRevLett.101.263602
|
47 |
Y. C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics, Phys. Rev. Lett. 110(15), 153606 (2013)
https://doi.org/10.1103/PhysRevLett.110.153606
|
48 |
D. Vitali, S. Gigan, A. Ferreira, H. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Optomechanical entanglement between a movable mirror and a cavity field, Phys. Rev. Lett. 98(3), 030405 (2007)
https://doi.org/10.1103/PhysRevLett.98.030405
|
49 |
R. Ghobadi, S. Kumar, B. Pepper, D. Bouwmeester, A. Lvovsky, and C. Simon, Optomechanical micro-macro entanglement, Phys. Rev. Lett. 112(8), 080503 (2014)
https://doi.org/10.1103/PhysRevLett.112.080503
|
50 |
C. H. Bai, D. Y. Wang, S. Zhang, S. Liu, and H. F. Wang, Engineering of strong mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving, Photon. Res. 7(11), 1229 (2019)
https://doi.org/10.1364/PRJ.7.001229
|
51 |
T. P. Purdy, P. L. Yu, R. Peterson, N. Kampel, and C. Regal, Strong optomechanical squeezing of light, Phys. Rev. X 3(3), 031012 (2013)
https://doi.org/10.1103/PhysRevX.3.031012
|
52 |
C. H. Bai, D. Y. Wang, S. Zhang, and H. F. Wang, Qubitassisted squeezing of mirror motion in a dissipative cavity optomechanical system, Sci. China Phys. Mech. Astron. 62(7), 970311 (2019)
https://doi.org/10.1007/s11433-018-9327-8
|
53 |
A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, Cooling and squeezing via quadratic optomechanical coupling, Phys. Rev. A 82(2), 021806 (2010)
https://doi.org/10.1103/PhysRevA.82.021806
|
54 |
D. Y. Wang, C. H. Bai, S. Liu, S. Zhang, and H. F. Wang, Optomechanical cooling beyond the quantum back-action limit with frequency modulation, Phys. Rev. A 98(2), 023816 (2018)
https://doi.org/10.1103/PhysRevA.98.023816
|
55 |
G. Heinrich, M. Ludwig, J. Qian, B. Kubala, and F. Marquardt, Collective dynamics in optomechanical arrays, Phys. Rev. Lett. 107(4), 043603 (2011)
https://doi.org/10.1103/PhysRevLett.107.043603
|
56 |
M. Ludwig and F. Marquardt, Quantum many-body dynamics in optomechanical arrays, Phys. Rev. Lett. 111(7), 073603 (2013)
https://doi.org/10.1103/PhysRevLett.111.073603
|
57 |
A. Xuereb, C. Genes, and A. Dantan, Strong coupling and long-range collective interactions in optomechanical arrays, Phys. Rev. Lett. 109(22), 223601 (2012)
https://doi.org/10.1103/PhysRevLett.109.223601
|
58 |
U. Akram, W. Munro, K. Nemoto, and G. Milburn, Photon–phonon entanglement in coupled optomechanical arrays, Phys. Rev. A 86(4), 042306 (2012)
https://doi.org/10.1103/PhysRevA.86.042306
|
59 |
H. Xiong, L. G. Si, X. Yang, and Y. Wu, Asymmetric optical transmission in an optomechanical array, Appl. Phys. Lett. 107(9), 091116 (2015)
https://doi.org/10.1063/1.4930166
|
60 |
L. Qi, Y. Yan, G. L. Wang, S. Zhang, and H. F. Wang, Bosonic Kitaev phase in a frequency-modulated optomechanical array, Phys. Rev. A 100(6), 062323 (2019)
https://doi.org/10.1103/PhysRevA.100.062323
|
61 |
A. Tomadin, S. Diehl, M. D. Lukin, P. Rabl, and P. Zoller, Reservoir engineering and dynamical phase transitions in optomechanical arrays, Phys. Rev. A 86(3), 033821 (2012)
https://doi.org/10.1103/PhysRevA.86.033821
|
62 |
J. H. Gan, H. Xiong, L. G. Si, X. Y. Lü, and Y. Wu, Solitons in optomechanical arrays, Opt. Lett. 41(12), 2676 (2016)
https://doi.org/10.1364/OL.41.002676
|
63 |
L. Qi, Y. Xing, H. F. Wang, A. D. Zhu, and S. Zhang, Simulating Z2 topological insulators via a onedimensional cavity optomechanical cells array, Opt. Express 25(15), 17948 (2017)
https://doi.org/10.1364/OE.25.017948
|
64 |
T. F. Roque, V. Peano, O. M. Yevtushenko, and F. Marquardt, Anderson localization of composite excitations in disordered optomechanical arrays, New J. Phys. 19(1), 013006 (2017)
https://doi.org/10.1088/1367-2630/aa52e2
|
65 |
S. Raeisi and F. Marquardt, Quench dynamics in onedimensional optomechanical arrays, Phys. Rev. A 101(2), 023814 (2020)
https://doi.org/10.1103/PhysRevA.101.023814
|
66 |
D. Obana, F. Liu, and K. Wakabayashi, Topological edge states in the Su–Schrieffer–Heeger model, Phys. Rev. B 100(7), 075437 (2019)
https://doi.org/10.1103/PhysRevB.100.075437
|
67 |
T. Liu and H. Guo, Topological phase transition in the quasiperiodic disordered Su–Schriffer–Heeger chain, Phys. Lett. A 382(45), 3287 (2018)
https://doi.org/10.1016/j.physleta.2018.09.023
|
68 |
F. L. J. Vos, D. P. Aalberts, and W. Saarloos, Su– Schrieffer–Heeger model applied to chains of finite length, Phys. Rev. B 53(22), 14922 (1996)
https://doi.org/10.1103/PhysRevB.53.14922
|
69 |
S. R. Barone, M. A. Narcowich, and F. J. Narcowich, Floquet theory and applications, Phys. Rev. A 15(3), 1109 (1977)
https://doi.org/10.1103/PhysRevA.15.1109
|
70 |
W. Berdanier, M. Kolodrubetz, R. Vasseur, and J. E. Moore, Floquet dynamics of boundary-driven systems at criticality, Phys. Rev. Lett. 118(26), 260602 (2017)
https://doi.org/10.1103/PhysRevLett.118.260602
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|