|
|
Investigation on the Cs 6S1/2 to 7D electric quadrupole transition via monochromatic two-photon process at 767 nm |
San-Dan Wang1,2, Jin-Peng Yuan1,2( ), Li-Rong Wang1,2( ), Lian-Tuan Xiao1,2, Suo-Tang Jia1,2 |
1. State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China 2. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract We experimentally demonstrate the cesium electric quadrupole transition from the 6S1/2 ground state to the 7D3/2,5/2 excited state through a virtual level by using a single laser at 767 nm. The excited state energy level population is characterized by varying the laser power, the temperature of the vapor, and the polarization combinations of the laser beams. The optimized experimental parameters are obtained for a high resolution transition interval identification. The magnetic dipole coupling constant A and electric quadrupole coupling constant B for the 7D3/2,5/2 states are precisely determined by using the hyperfine levels intervals. The results, A = 7.39 (0.06) MHz, B = −0.19 (0.18) MHz for the 7D3/2 state, and A = −1.79 (0.05) MHz, B =1.05 (0.29) MHz for the 7D5/2 state, are in good agreement with the previous reported results. This work is beneficial for the determination of atomic structure information and parity non-conservation, which paves the way for the field of precision measurements and atomic physics.
|
Keywords
two-photon process
hyperfine structure
electric quadrupole transition
|
Corresponding Author(s):
Jin-Peng Yuan,Li-Rong Wang
|
Just Accepted Date: 25 August 2020
Issue Date: 10 October 2020
|
|
1 |
C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, Measurement of parity non-conservation and an anapole moment in cesium, Science 275(5307), 1759 (1997)
https://doi.org/10.1126/science.275.5307.1759
|
2 |
S. G. Porsev, K. Beloy, and A. Derevianko, Precision determination of electroweak coupling from atomic parity violation and implications for particle physics, Phys. Rev. Lett. 102(18), 181601 (2009)
https://doi.org/10.1103/PhysRevLett.102.181601
|
3 |
X. Zheng, Y. Sun, J. Chen, W. Jiang, K. Pachucki, and S. Hu, Measurement of the frequency of the 23S–23Ptransition of 4He, Phys. Rev. Lett. 119(26), 263002 (2017)
https://doi.org/10.1103/PhysRevLett.119.263002
|
4 |
J. Yuan, C. Wu, Y. Li, L. Wang, Y. Zhang, L. Xiao, and S. Jia, Controllable electromagnetically induced grating in a cascade-type atomic system, Front. Phys. 14(5), 52603 (2019)
https://doi.org/10.1007/s11467-019-0924-1
|
5 |
R. Li, Y. Wu, Y. Rui, B. Li, Y. Jiang, L. Ma, and H. Wu, Absolute frequency measurement of 6Li D lines with kHzlevel uncertainty, Phys. Rev. Lett. 124(6), 063002 (2020)
https://doi.org/10.1103/PhysRevLett.124.063002
|
6 |
A. Ramos, R. Cardman, and G. Raithel, Measurement of the hyperfine coupling constant for nS1/2 Rydberg states of 85Rb, Phys. Rev. A 100(6), 062515 (2019)
https://doi.org/10.1103/PhysRevA.100.062515
|
7 |
E. Arimondo, M. Inguscio, and P. Violino, Experimental determinations of the hyperfine structure in the alkali atoltls, Rev. Mod. Phys. 49(1), 31 (1977)
https://doi.org/10.1103/RevModPhys.49.31
|
8 |
J. Yuan, C. Wu, L. Wang, G. Chen, and S. Jia, Observation of diffraction pattern in two-dimensional optically induced atomic lattice, Opt. Lett. 44(17), 4123 (2019)
https://doi.org/10.1364/OL.44.004123
|
9 |
J. Kirkbride, A. R. Dalton, and G. A. D. Ritchie, Polarization spectroscopy of a velocity-selected molecular sample, Opt. Lett. 39(9), 2645 (2014)
https://doi.org/10.1364/OL.39.002645
|
10 |
J. Yuan, S. Dong, C. Wu, L. Wang, L. Xiao, and S. Jia, Optically tunable grating in a V+ Ξ configuration involving a Rydberg state, Opt. Express 28(16), 23820 (2020)
https://doi.org/10.1364/OE.400618
|
11 |
T. Ray, R. K. Gupta, V. Gokhroo, J. L. Everett, T. Nieddu, K. S. Rajasree, and S. N. Chormaic, Observation of the 87Rb 5S1/2 to 4D3/2 electric quadrupole transition at 516.6 nm mediated via an optical nanofibre, New J. Phys. 22, 062001 (2020)
https://doi.org/10.1088/1367-2630/ab8265
|
12 |
M. S. Safronova, U. I. Safronova, and C. W. Clark, Magic wavelengths, matrix elements, polarizabilities, and lifetimes of Cs, Phy. Rev. A 94(1), 012505 (2016)
https://doi.org/10.1103/PhysRevA.94.012505
|
13 |
K. Heshamia, D. G. Englanda, P. C. Humphreysb, P. J. Bustarda, V. M. Acostac, J. Nunnb, and B. J. Sussmana, Quantum memories: Emerging applications and recent advances, J. Mod. Opt. 63(20), 2005 (2016)
https://doi.org/10.1080/09500340.2016.1148212
|
14 |
M. Auzinsh, K. Blushs, R. Ferber, F. Gahbauer, A. Jarmola, and M. Tamanis, Electric field induced hyperfine level-crossings in (nD) Cs at two-step laser excitation: Experiment and theory, Opt. Commun. 264(2), 333 (2006)
https://doi.org/10.1016/j.optcom.2006.01.058
|
15 |
M. Auzinsh, K. Bluss, R. Ferber, F. Gahbauer, A. Jarmola, M. S. Safronova, U. I. Safronova, and M. Tamanis, Level crossing spectroscopy of the 7, 9, and 10D5/2 states of 133Cs and validation of relativistic many-body calculations of the polarizabilities and hyperfine constants, Phys. Rev. A 75(2), 022502 (2007)
https://doi.org/10.1103/PhysRevA.75.022502
|
16 |
A. Kortyna, V. Fiore, and J. Farrar, Measurement of the cesium 7d2D3/2 hyperfine coupling constants in a thermal beam using two-photon fluorescence spectroscopy, Phys. Rev. A 77(6), 062505 (2008)
https://doi.org/10.1103/PhysRevA.77.062505
|
17 |
J. E. Stalnaker, V. Mbele, V. Gerginov, T. M. Fortier, S. A. Diddams, L. Hollberg, and C. E. Tanner, Femtosecond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor, Phys. Rev. A 81(4), 043840 (2010)
https://doi.org/10.1103/PhysRevA.81.043840
|
18 |
Y. Lee, Y. Chang, Y. Chang, Y. Chen, C. Tsai, and H. C. Chui, Hyperfine coupling constants of cesium 7Dstates using two-photon spectroscopy, Appl. Phys. B 105(2), 391 (2011)
https://doi.org/10.1007/s00340-011-4493-4
|
19 |
P. V. Kiran Kumar, M. Sankari, and M. V. Suryanarayana, Hyperfine structure of the 7d2D3/2 level in cesium measured by Doppler-free two-photon spectroscopy, Phys. Rev. A 87(1), 012503 (2013)
https://doi.org/10.1103/PhysRevA.87.012503
|
20 |
W. Demtröder, Laser Spectroscopy, Vol. 2, Experimental Techniques, 4th Ed., Springer, Berlin, 2008
|
21 |
L. Wang, Y. Zhang, S. Xiang, S. Cao, L. Xiao, and S. Jia, Two-photon spectrum of 87Rb using optical frequency comb, Chin. Phys. B 24(6), 063201 (2015)
https://doi.org/10.1088/1674-1056/24/6/063201
|
22 |
H. Cheng, H. Wang, S. Zhang, P. Xin, J. Luo, and H. Liu, Electromagnetically induced transparency of 87Rb in a buffer gas cell with magnetic field, J. Phys. B 50(9), 095401 (2017)
https://doi.org/10.1088/1361-6455/aa6824
|
23 |
I. I. Sobelman, Atomic Spectra and Radiative Transitions, Springer, Berlin, 1996
|
24 |
Z. He, J. Tsai, Y. Chang, C. Liao, and C. Tsai, Laddertype electromagnetically induced transparency with optical pumping effect, Phys. Rev. A 87(3), 033402 (2013)
https://doi.org/10.1103/PhysRevA.87.033402
|
25 |
R. E. Ryan, L. A. Westling, and H. J. Metcalf, Two-photon spectroscopy in rubidium with a diode laser, J. Opt. Soc. Am. B 10(9), 1643 (1993)
https://doi.org/10.1364/JOSAB.10.001643
|
26 |
S. Wang, J. Yuan, L. Wang, L. Xiao, and S. Jia, A stable frequency standard based on the one-color two-photon 5S– 7Stransition of rubidium at 760 nm, Laser Phys. Lett. 16(12), 125204 (2019)
https://doi.org/10.1088/1612-202X/ab595c
|
27 |
S. Dai, W. Xia, Y. Zhang, J. Zhao, D. Zhou, Q. Wang, Q. Yu, K. Li, X. Qi, and X. Chen, Polarization dependence of the direct two photon transitions of 87Rb atoms by erbium: Fiber laser frequency comb, Opt. Commun. 378, 35 (2016)
https://doi.org/10.1016/j.optcom.2016.05.059
|
28 |
D. McGloin, M. H. Dunn, and D. J. Fulton, Polarization effects in electromagnetically induced transparency, Phys. Rev. A 62(5), 053802 (2000)
https://doi.org/10.1103/PhysRevA.62.053802
|
29 |
J. Wang, H. Liu, G. Yang, B. Yang, and J. Wang, Determination of the hyperfine structure constants of the 87Rb and 85Rb 4D5/2 state and the isotope hyperfine anomaly, Phys. Rev. A 90(5), 052505 (2014)
https://doi.org/10.1103/PhysRevA.90.052505
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|