|
|
Self-organized criticality in multi-pulse gamma-ray bursts |
Fen Lyu1,2, Ya-Ping Li3( ), Shu-Jin Hou4, Jun-Jie Wei1, Jin-Jun Geng6,7( ), Xue-Feng Wu1,5( ) |
1. Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China 2. University of Chinese Academy of Sciences, Beijing 100049, China 3. Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 4. College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China 5. School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China 6. School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China 7. Institute of Astronomy and Astrophysics, University of Tübingen, Auf der Morgenstelle 10, D-72076, Tübingen, Germany |
|
|
Abstract The variability in multi-pulse gamma-ray bursts (GRBs) may help to reveal the mechanism of underlying processes from the central engine. To investigate whether the self-organized criticality (SOC) phenomena exist in the prompt phase of GRBs, we statistically study the properties of GRBs with more than 3 pulses in each burst by fitting the distributions of several observed physical variables with a Markov Chain Monte Carlo approach, including the isotropic energy Eiso, the duration time T, and the peak count rate P of each pulse. Our sample consists of 454 pulses in 93 GRBs observed by the CGRO/BATSE satellite. The best-fitting values and uncertainties for these power-law indices of the differential frequency distributions are: , and , while the power-law indices in the cumulative frequency distributions are: , and . We find that these distributions are roughly consistent with the physical framework of a Fractal-Diffusive, Self-Organized Criticality (FD-SOC) system with the spatial dimension S = 3 and the classical diffusion β=1. Our results support that the jet responsible for the GRBs should be magnetically dominated and magnetic instabilities (e.g., kink model, or tearing-model instability) lead the GRB emission region into the SOC state.
|
Keywords
gamma-ray burst
general methods: statistical
|
Corresponding Author(s):
Ya-Ping Li,Jin-Jun Geng,Xue-Feng Wu
|
Just Accepted Date: 25 August 2020
Issue Date: 19 October 2020
|
|
1 |
P. Meszaros and M. J. Rees, Tidal heating and mass loss in neutron star binaries- Implications for gamma-ray burst models, Astrophys. J. 397, 570 (1992)
https://doi.org/10.1086/171813
|
2 |
B. Paczynski, Gamma-ray bursters at cosmological distances, Astrophys. J. Lett. 308, L43 (1986)
https://doi.org/10.1086/184740
|
3 |
B. D. Metzger, D. Giannios, and S. Horiuchi, Heavy nuclei synthesized in gamma-ray burst outflows as the source of ultrahigh energy cosmic rays, Mon. Not. R. Astron. Soc. 415(3), 2495 (2011)
https://doi.org/10.1111/j.1365-2966.2011.18873.x
|
4 |
A. Goldstein, P. Veres, E. Burns, M. S. Briggs, R. Hamburg, et al., An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A, Astrophys. J. Lett. 848(2), L14 (2017)
https://doi.org/10.3847/2041-8213/aa8f41
|
5 |
Z. G. Dai, X. Y. Wang, and X. F. Wu, X-ray flares from postmerger millisecond pulsars, Science 311(5764), 1127 (2006)
https://doi.org/10.1126/science.1123606
|
6 |
A. I. MacFadyen and S. E. Woosley, Collapsars: Gammaray bursts and explosions in “failed supernovae”, Astrophys. J. 524(1), 262 (1999)
https://doi.org/10.1086/307790
|
7 |
D. N. Burrows, P. Romano, A. Falcone, et al., Bright X-ray flares in gamma-ray burst afterglows, Science 309(5742), 1833 (2005)
https://doi.org/10.1126/science.1116168
|
8 |
E. W. Liang, B. Zhang, P. T. O’Brien, R. Willingale, L. Angelini, D. N. Burrows, S. Campana, G. Chincarini, A. Falcone, N. Gehrels, M. R. Goad, D. Grupe, S. Kobayashi, P. Meszaros, J. A. Nousek, J. P. Osborne, K. L. Page, and G. Tagliaferri, Testing the curvature effect and internal origin of gamma-ray burst prompt emissions and X-ray flares with swift data, Astrophys. J. 646(1), 351 (2006)
https://doi.org/10.1086/504684
|
9 |
B. Zhang, Y. Z. Fan, J. Dyks, S. Kobayashi, P. Meszaros, D. N. Burrows, J. A. Nousek, and N. Gehrels, Physical processes shaping gamma-ray burst X-ray afterglow light curves: Theoretical implications from the swift X-ray telescope observations, Astrophys. J. 642(1), 354 (2006)
https://doi.org/10.1086/500723
|
10 |
C. Liu and J. Mao, GRB X-ray flare properties among different GRB subclasses, Astrophys. J. 884(1), 59 (2019)
https://doi.org/10.3847/1538-4357/ab3e75
|
11 |
M. L. Goodman, C. Kwan, B. Ayhan, and E. L. Shang, A new approach to solar flare prediction, Front. Phys. 15(3), 34601 (2020)
https://doi.org/10.1007/s11467-020-0956-6
|
12 |
F. Y. Wang and H. Yu, SGR-like behaviour of the repeating FRB 121102, J. Cosmol. Astropart. Phys. 2017, 023 (2017)
https://doi.org/10.1088/1475-7516/2017/03/023
|
13 |
B. Li, L. B. Li, Z. B. Zhang, et al., Statistical properties of the repeating fast radio burst source FRB 121102, arXiv: 1901.03484 (2019)
|
14 |
G. Q. Zhang, F. Y. Wang, and Z. G. Dai, Similar behaviors between FRB 121102 and solar type III radio bursts, arXiv: 1903.11895 (2019)
|
15 |
M. J. Aschwanden, A macroscopic description of a generalized self-organized criticality system: Astrophysical applications, Astrophys. J. 782(1), 54 (2014)
https://doi.org/10.1088/0004-637X/782/1/54
|
16 |
M. J. Aschwanden, N. B. Crosby, M. Dimitropoulou, M. K. Georgoulis, S. Hergarten, J. McAteer, A. V. Milovanov, S. Mineshige, L. Morales, N. Nishizuka, G. Pruessner, R. Sanchez, A. S. Sharma, A. Strugarek, and V. Uritsky, 25 years of self-organized criticality: Solar and astrophysics, Space Sci. Rev. 198(1–4), 47 (2016)
https://doi.org/10.1007/s11214-014-0054-6
|
17 |
J. I. Katz, A model of propagating brittle failure in heterogeneous media, J. Geophys. Res.: Solid Earth 91(B10), 10412 (1986)
https://doi.org/10.1029/JB091iB10p10412
|
18 |
P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality: An explanation of the 1/f noise, Phys. Rev. Lett. 59, 381 (1987)
https://doi.org/10.1103/PhysRevLett.59.381
|
19 |
P. Bak, C. Tang, and K. Wiesenfeld, Self-organized criticality, Phys. Rev. A 38, 364 (1988)
https://doi.org/10.1103/PhysRevA.38.364
|
20 |
M. J. Aschwanden and J. M. McTiernan, Reconciliation of waiting time statistics of solar flares observed in hard X-rays, Astrophys. J. 717(2), 683 (2010)
https://doi.org/10.1088/0004-637X/717/2/683
|
21 |
M. J. Aschwanden, A statistical fractal-diffusive avalanche model of a slowly-driven self-organized criticality system, Astron. Astrophys. 539, A2 (2012)
https://doi.org/10.1051/0004-6361/201118237
|
22 |
F. Y. Wang and Z. G. Dai, Self-organized criticality in Xray flares of gamma-ray-burst afterglows, Nat. Phys. 9(8), 465 (2013)
https://doi.org/10.1038/nphys2670
|
23 |
B. E. Stern and R. Svensson, Evidence for “chain reaction” in the time profiles of gamma-ray bursts, Astrophys. J. Lett. 469, L109 (1996)
https://doi.org/10.1086/310267
|
24 |
F. Y. Wang, Z. G. Dai, S. X. Yi, and S. Q. Xi, Universal behavior of X-ray flares from black hole systems, Astrophys. J. Suppl. 216(1), 8 (2015)
https://doi.org/10.1088/0067-0049/216/1/8
|
25 |
Y. P. Li, F. Yuan, Q. Yuan, Q. D. Wang, P. F. Chen, J. Neilsen, T. Fang, S. Zhang, and J. Dexter, Statistics of X-ray flares of sagittarius A*: Evidence for solar-like selforganized criticality phenomena, Astrophys. J. 810(1), 19 (2015)
https://doi.org/10.1088/0004-637X/810/1/19
|
26 |
C. Guidorzi, S. Dichiara, F. Frontera, R. Margutti, A. Baldeschi, and L. Amati, A common stochastic process rules gamma-ray burst prompt emission and X-ray flares, Astrophys. J. 801(1), 57 (2015)
https://doi.org/10.1088/0004-637X/801/1/57
|
27 |
S. X. Yi, S. Q. Xi, H. Yu, F. Y. Wang, H. J. Mu, L. Z. Lü, and E. W. Liang, Comprehensive study of the X-ray flares from gamma-ray bursts observed by swift, Astrophys. J. Suppl. 224(2), 20 (2016)
https://doi.org/10.3847/0067-0049/224/2/20
|
28 |
S. X. Yi, H. Yu, F. Y. Wang, and Z. G. Dai, Statistical distributions of optical flares from gamma-ray bursts, Astrophys. J. 844(1), 79 (2017)
https://doi.org/10.3847/1538-4357/aa7b7b
|
29 |
A. M. Beloborodov, B. E. Stern, and R. Svensson, Power density spectra of gamma-ray bursts, Astrophys. J. 535(1), 158 (2000)
https://doi.org/10.1086/308836
|
30 |
Z. L. Uhm and B. Zhang, On the curvature effect of a relativistic spherical shell, Astrophys. J. 808(1), 33 (2015)
https://doi.org/10.1088/0004-637X/808/1/33
|
31 |
J. J. Geng, Y. F. Huang, X. F. Wu, L. M. Song, and H. S. Zong, Probing magnetic fields of GRB X-ray flares with polarization observations, Astrophys. J. 862(2), 115 (2018)
https://doi.org/10.3847/1538-4357/aacd05
|
32 |
M. J. Aschwanden, Thresholded power law size distributions of instabilities in astrophysics, Astrophys. J. 814(1), 19 (2015)
https://doi.org/10.1088/0004-637X/814/1/19
|
33 |
G. J. Fishman, C. A. Meegan, R. B. Wilson, et al., The BATSE experiment for the GRO- Solar flare hard Xray and γ-ray capabilities, Bull. Am. Astron. Soc. 21, 860 (1989)
|
34 |
C. A. Meegan, G. J. Fishman, R. B. Wilson, W. S. Paciesas, G. N. Pendleton, J. M. Horack, M. N. Brock, and C. Kouveliotou, Spatial distribution of γ-ray bursts observed by BATSE, Nature 355(6356), 143 (1992)
https://doi.org/10.1038/355143a0
|
35 |
N. Gehrels, E. Chipman, and D. Kniffen, The Compton gamma ray observatory, Astrophys. J. Suppl. 92, 351 (1994)
https://doi.org/10.1086/191978
|
36 |
J. Hakkila and R. D. Preece, Unification of pulses in long and short gamma-ray bursts: Evidence from pulse properties and their correlations, Astrophys. J. 740(2), 104 (2011)
https://doi.org/10.1088/0004-637X/740/2/104
|
37 |
D. Yonetoku, T. Murakami, T. Nakamura, R. Yamazaki, A. K. Inoue, and K. Ioka, Gamma-ray burst formation rate inferred from the spectral peak energy-peak luminosity relation, Astrophys. J. 609(2), 935 (2004)
https://doi.org/10.1086/421285
|
38 |
A. Goldstein, R. D. Preece, R. S. Mallozzi, M. S. Briggs, G. J. Fishman, C. Kouveliotou, W. S. Paciesas, and J. M. Burgess, The BATSE 5B gamma-ray burst spectral catalog, Astrophys. J. Suppl. 208(2), 21 (2013)
https://doi.org/10.1088/0067-0049/208/2/21
|
39 |
D. Band, J. Matteson, L. Ford, B. Schaefer, D. Palmer, B. Teegarden, T. Cline, M. Briggs, W. Paciesas, G. Pendleton, G. Fishman, C. Kouveliotou, C. Meegan, R. Wilson, and P. Lestrade, BATSE observations of gamma-ray burst spectra (I): Spectral diversity, Astrophys. J. 413, 281 (1993)
https://doi.org/10.1086/172995
|
40 |
L. Amati, F. Frontera, M. Tavani, J. J. M. in’t Zand, A. Antonelli, E. Costa, M. Feroci, C. Guidorzi, J. Heise, N. Masetti, E. Montanari, L. Nicastro, E. Palazzi, E. Pian, L. Piro, and P. Soffitta, Intrinsic spectra and energetics of BeppoSAX gamma-ray bursts with known redshifts, Astron. Astrophys. 390(1), 81 (2002)
https://doi.org/10.1051/0004-6361:20020722
|
41 |
J. P. Norris, J. T. Bonnell, D. Kazanas, J. D. Scargle, J. Hakkila, and T. W. Giblin, Long-lag, wide-pulse gammaray bursts, Astrophys. J. 627(1), 324 (2005)
https://doi.org/10.1086/430294
|
42 |
D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, EMCEE: The MCMC hammer, Publications of the Astronomical Society of the Pacific 125, 306 (2013)
https://doi.org/10.1086/670067
|
43 |
F. Lyu, Y. Wang, Y. Liang, T. T. Lin, Y. D. Hu, and E. W. Liang, Comparison between the time-integrated spectrum and the peak time spectrum of gamma-ray bursts and possible implications, Sci. China Phys. Mech. Astron. 58(3), 5575 (2015)
https://doi.org/10.1007/s11433-014-5575-1
|
44 |
P. Meszaros and M. J. Rees, Relativistic fireballs and their impact on external matter: Models for cosmological gamma-ray bursts, Astrophys. J. 405, 278 (1993)
https://doi.org/10.1086/172360
|
45 |
T. Piran, A. Shemi, and R. Narayan, Hydrodynamics of relativistic fireballs, Mon. Not. R. Astron. Soc. 263(4), 861 (1993)
https://doi.org/10.1093/mnras/263.4.861
|
46 |
S. J. Hou, B. B. Zhang, Y. Z. Meng, X. F. Wu, E. W. Liang, H. J. Lü, T. Liu, Y. F. Liang, L. Lin, R. Lu, J. S. Huang, and B. Zhang, Multicolor blackbody emission in GRB 081221, Astrophys. J. 866(1), 13 (2018)
https://doi.org/10.3847/1538-4357/aadc07
|
47 |
Y. Z. Meng, J. J. Geng, B. B. Zhang, J. J. Wei, D. Xiao, L. D. Liu, H. Gao, X. F. Wu, E. W. Liang, Y. F. Huang, Z. G. Dai, and B. Zhang, The origin of the prompt emission for short GRB 170817A: Photosphere emission or synchrotron emission? Astrophys. J. 860(1), 72 (2018)
https://doi.org/10.3847/1538-4357/aac2d9
|
48 |
Y. Z. Meng, L. D. Liu, J. J. Wei, X. F. Wu, and B. B. Zhang, The time-resolved spectra of photospheric emission from a structured jet for gamma-ray bursts, Astrophys. J. 882(1), 26 (2019)
https://doi.org/10.3847/1538-4357/ab30c7
|
49 |
B. Zhang and H. Yan, The internal-collision-induced magnetic reconnection and turbulence (ICMART) model of gamma-ray bursts, Astrophys. J. 726(2), 90 (2011)
https://doi.org/10.1088/0004-637X/726/2/90
|
50 |
F. Lyu, E. W. Liang, Y. F. Liang, et al., Distributions of gamma-ray bursts and blazars in the Lp–Ep-plane and possible implications for their radiation physics, Astrophys. J. 793, 36 (2014)
https://doi.org/10.1088/0004-637X/793/1/36
|
51 |
Z. L. Uhm and B. Zhang, Fast-cooling synchrotron radiation in a decaying magnetic field and γ-ray burst emission mechanism, Nat. Phys. 10(5), 351 (2014)
https://doi.org/10.1038/nphys2932
|
52 |
R. D. Blandford and R. L. Znajek, Electromagnetic extraction of energy from Kerr black holes, Mon. Not. R. Astron Soc. 179(3), 433 (1977)
https://doi.org/10.1093/mnras/179.3.433
|
53 |
Y. D. Hu, E. W. Liang, S. Q. Xi, F. K. Peng, R. J. Lu, L. Z. Lü, and B. Zhang, Internal energy dissipation of gamma-ray bursts observed with swift: Precursors, prompt gamma-rays, extended emission, and late X-ray flares, Astrophys. J. 789(2), 145 (2014)
https://doi.org/10.1088/0004-637X/789/2/145
|
54 |
B. Zhang and B. Zhang, Gamma-ray burst prompt emission light curves and power density spectra in the ICMART model, Astrophys. J. 782(2), 92 (2014)
https://doi.org/10.1088/0004-637X/782/2/92
|
55 |
A. Lazarian, G. L. Eyink, A. Jafari, et al., 3D turbulent reconnection: Theory, tests, and astrophysical implications, Phys. Plasmas 27, 012305 (2020)
https://doi.org/10.1063/1.5110603
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|