Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (1) : 13304    https://doi.org/10.1007/s11467-020-0993-1
TOPICAL REVIEW
Research progress of rubrene as an excellent multifunctional organic semiconductor
Si Liu, Hongnan Wu, Xiaotao Zhang(), Wenping Hu
Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
 Download: PDF(2216 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Rubrene, a superstar in organic semiconductors, has achieved unprecedented achievements in the application of electronic devices, and research based on its various photoelectric properties is still in progress. In this review, we introduced the preparation of rubrene crystal, summarized the applications in organic optoelectronic devices with the latest research achievements based on rubrene semiconductors. An outlook of future research directions and challenges of rubrene semiconductor for applications is also provided.

Keywords rubrene      organic semiconductor      optoelectronic devices     
Corresponding Author(s): Xiaotao Zhang   
Just Accepted Date: 31 August 2020   Issue Date: 23 October 2020
 Cite this article:   
Si Liu,Hongnan Wu,Xiaotao Zhang, et al. Research progress of rubrene as an excellent multifunctional organic semiconductor[J]. Front. Phys. , 2021, 16(1): 13304.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-0993-1
https://academic.hep.com.cn/fop/EN/Y2021/V16/I1/13304
1 C. L. Wang, H. L. Dong, L. Jiang, and W. P. Hu, Organic semiconductor crystals, Chem. Soc. Rev. 47(2), 422 (2018)
https://doi.org/10.1039/C7CS00490G
2 B. H. Lee, G. C. Bazan, and A. J. Heeger, Doping-induced carrier density modulation in polymer field-effect transistors, Adv. Mater. 28(1), 57 (2016)
https://doi.org/10.1002/adma.201504307
3 X. T. Zhang, H. L. Dong, and W. P. Hu, Organic semiconductor single crystals for electronics and photonics, Adv. Mater. 30(44), 1801048 (2018)
https://doi.org/10.1002/adma.201801048
4 H. L. Dong, X. L. Fu, J. Liu, Z. R. Wang, and W. P. Hu, 25th Anniversary article: Key points for high-mobility organic field-effect transistors, Adv. Mater. 25(43), 6158 (2013)
https://doi.org/10.1002/adma.201302514
5 C. Wang, X. C. Ren, C. H. Xu, B. B. Fu, R. H. Wang, X. T. Zhang, R. J. Li, H. X. Li, H. L. Dong, Y. G. Zhen, S. B. Lei, L. Jiang, and W. P. Hu, N-type 2D organic single crystals for high-performance organic field-effect transistors and near-infrared phototransistors, Adv. Mater. 30(16), 1706260 (2018)
https://doi.org/10.1002/adma.201706260
6 L. G. Kaake, Y. M. Sun, G. C. Bazan, and A. J. Heeger, Fullerene concentration dependent bimolecular recombination in organic photovoltaic films, Appl. Phys. Lett. 102(13), 133302 (2013)
https://doi.org/10.1063/1.4799348
7 F. Y. Lin, W. Huang, H. T. Sun, J. M. Xin, H. Zeng, T. B. Yang, M. L. Li, X. Zhang, W. Ma, and Y. Y. Liang, Thieno 3, 4-c pyrrole-4, 6(5H)-dione Polymers with optimized energy level alignments for fused-ring electron acceptor based polymer solar cells, Chem. Mater. 29(13), 5636 (2017)
https://doi.org/10.1021/acs.chemmater.7b01335
8 C. Deng, L. W. Zhang, D. Wang, T. Tsuboi, and Q. S. Zhang, Exciton and polaron-induced reversible dipole reorientation in amorphous organic semiconductor films, Adv. Opt. Mater. 7(8), 1801644 (2019)
https://doi.org/10.1002/adom.201801644
9 F. T. Liu, H. Liu, X. Y. Tang, S. H. Ren, X. He, J. Y. Li, C. Y. Du, Z. J. Feng, and P. Lu, Novel blue fluorescent materials for high-performance nondoped blue OLEDs and hybrid pure white OLEDs with ultrahigh color rendering index, Nano Energy 68, 104325 (2020)
https://doi.org/10.1016/j.nanoen.2019.104325
10 V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, and M. E. Gershenson, Intrinsic charge transport on the surface of organic semiconductors, Phys. Rev. Lett. 93(8), 086602 (2004)
https://doi.org/10.1103/PhysRevLett.93.086602
11 S. J. Strickler and R. A. Berg, Relationship between absorption intensity and fluorescence lifetime of molecules, J. Chem. Phys. 37(4), 814 (1962)
https://doi.org/10.1063/1.1733166
12 L. W. Huang, Q. Liao, Q. Shi, H. B. Fu, J. S. Ma, and J. N. Yao, Rubrene micro-crystals from solution routes: their crystallography, morphology and optical properties, J. Mater. Chem. 20(1), 159 (2010)
https://doi.org/10.1039/B914334C
13 T. R. Fielitz and R. J. Holmes, Crystal morphology and growth in annealed rubrene thin films, Cryst. Growth Des. 16(8), 4720 (2016)
https://doi.org/10.1021/acs.cgd.6b00783
14 C. L. Wang, H. L. Dong, W. P. Hu, Y. Q. Liu, and D. B. Zhu, Semiconducting π-conjugated systems in fieldeffect transistors: A material odyssey of organic electronics, Chem. Rev. 112(4), 2208 (2012)
https://doi.org/10.1021/cr100380z
15 W. Y. Jia, Q. S. Chen, L. X. Chen, D. Yuan, J. Xiang, Y. B. Chen, and Z. H. Xiong, Molecular spacing modulated conversion of singlet fission to triplet fusion in rubrenebased organic light-emitting diodes at ambient temperature, J. Phys. Chem. C 120(15), 8380 (2016)
https://doi.org/10.1021/acs.jpcc.6b01889
16 X. T. Tang, Y. Q. Hu, W. Y. Jia, R. H. Pan, J. Q. Deng, J. Q. Deng, Z. H. He, and Z. H. Xiong, Intersystem crossing and triplet fusion in singlet-fission-dominated rubrenebased OLEDs under high bias current, ACS Appl. Mater. Interfaces 10(2), 1948 (2018)
https://doi.org/10.1021/acsami.7b17695
17 R. Nagata, H. Nakanotani, W. J. Jr Potscavage, and C. Adachi, Exploiting singlet fission in organic light-emitting diodes, Adv. Mater. 30(33), 1801484 (2018)
https://doi.org/10.1002/adma.201801484
18 W. C. Su, C. C. Lee, Y. Z. Li, and S. W. Liu, The influence of singlet and charge-transfer excitons on the opencircuit voltage of rubrene/fullerene organic photovoltaic device, ACS Appl. Mater. Interfaces 8(42), 28757 (2016)
https://doi.org/10.1021/acsami.6b08363
19 G. O. N. Ndjawa, K. R. Graham, S. Mollinger, D. M. Wu, D. Hanifi, R. Prasanna, B. D. Rose, S. Dey, L. Y. Yu, J. L. Bredas, M. D. McGehee, A. Salleo, and A. Amassian, Open-circuit voltage in organic solar cells: The impacts of donor semicrystallinity and coexistence of multiple interfacial charge-transfer bands, Adv. Energy Mater. 7(12), 1601995 (2017)
https://doi.org/10.1002/aenm.201601995
20 M. Kikuchi, S. Makmuang, S. Izawa, K. Wongravee, and M. Hiramoto, Doped organic single-crystal photovoltaic cells, Org. Electron. 64, 92 (2019)
https://doi.org/10.1016/j.orgel.2018.10.015
21 J. H. Shim, K. V. Raman, Y. J. Park, T. S. Santos, G. X. Miao, B. Satpati, and J. S. Moodera, Large spin diffusion length in an amorphous organic semiconductor, Phys. Rev. Lett. 100(22), 226603 (2008)
https://doi.org/10.1103/PhysRevLett.100.226603
22 K. M. Alam, S. C. Bodepudi, R. Starko-Bowes, and S. Pramanik, Suppression of spin relaxation in rubrene nanowire spin valves, Appl. Phys. Lett. 101(19), 192403 (2012)
https://doi.org/10.1063/1.4765655
23 K. Yano, H. Katsuki, and H. Yanagi, Mode selective excitation of terahertz vibrations in single crystalline rubrene, J. Chem. Phys. 150(5), 054503 (2019)
https://doi.org/10.1063/1.5068732
24 J. J. Kim, S. Bachevillier, D. L. G. Arellano, B. P. Cherniawski, E. K. Burnett, N. Stingelin, C. Ayela, Ö. Usluer, S. C. B. Mannsfeld, G. Wantz, and A. L. Briseno, Correlating crystal thickness, surface morphology, and charge transport in pristine and doped rubrene single crystals, ACS Appl. Mater. Interfaces 10(31), 26745 (2018)
https://doi.org/10.1021/acsami.8b04451
25 O. D. Jurchescu, A. Meetsma, and T. T. M. Palstra, Lowtemperature structure of rubrene single crystals grown by vapor transport, Acta Crystallogr. B 62(2), 330 (2006)
https://doi.org/10.1107/S0108768106003053
26 J. W. Lee, K. Kim, J. S. Jung, S. G. Jo, H. M. Kim, H. S. Lee, J. Kim, and J. Joo, Luminescence, charge mobility, and optical waveguiding of two-dimensional organic rubrene nanosheets: Comparison with one-dimensional nanorods, Org. Electron. 13(10), 2047 (2012)
https://doi.org/10.1016/j.orgel.2012.05.056
27 X. H. Zeng, D. Q. Zhang, L. A. Duan, L. D. Wang, G. F. Dong, and Y. Qiu, Morphology and fluorescence spectra of rubrene single crystals grown by physical vapor transport, Appl. Surf. Sci. 253(14), 6047 (2007)
https://doi.org/10.1016/j.apsusc.2007.01.008
28 K. Y. Lin, Y. J. Wang, K. L. Chen, C. C. Yang, C. Y. Ho, K. R. Lee, J. L. Shen, and K. C. Chiu, Rubrene polycrystalline films growth from vacuum deposition at various substrate temperatures, J. Cryst. Growth 439, 54 (2016)
https://doi.org/10.1016/j.jcrysgro.2016.01.002
29 L. J. Wang, C. Yan, L. Zhang, Y. Sun, L. Yin, L. J. Sun, H. Du, X. F. Song, J. D. Zhang, and J. L. Yang, Mechanism of rubrene thin film growth using alphaquaterthiophene inducing layer at low temperature, Thin Solid Films 621, 131 (2017)
https://doi.org/10.1016/j.tsf.2016.11.048
30 T. Matsukawa, M. Yoshimura, M. Uchiyama, M. Yamagishi, A. Nakao, Y. Takahashi, J. Takeya, Y. Kitaoka, Y. Mori, and T. Sasaki, Polymorphs of rubrene crystal grown from solution, Jpn. J. Appl. Phys. 49(8), 085502 (2010)
https://doi.org/10.1143/JJAP.49.085502
31 P. S. Jo, D. T. Duong, J. Park, R. Sinclair, and A. Salleo, Control of rubrene polymorphs via polymer binders: Applications in organic field-effect transistors, Chem. Mater. 27(11), 3979 (2015)
https://doi.org/10.1021/acs.chemmater.5b00884
32 L. Carman, H. P. Martinez, L. Voss, S. Hunter, P. Beck, N. Zaitseva, S. A. Payne, P. Irkhin, H. H. Choi, and V. Podzorov, Solution-grown rubrene crystals as radiation detecting devices, IEEE Trans. Nucl. Sci. 64(2), 781 (2017)
https://doi.org/10.1109/TNS.2017.2652139
33 K. Sim, H. Na, J. Park, J. Lee, J. Do, and S. Pyo, High-performance organic transistors based on solutionprocessed rubrene crystals directly grown on a polymeric dielectric, Org. Electron. 56, 76 (2018)
https://doi.org/10.1016/j.orgel.2018.01.042
34 T. Matsukawa, M. Yoshimura, K. Sasai, M. Uchiyama, M. Yamagishi, Y. Tominari, Y. Takahashi, J. Takeya, Y. Kitaoka, Y. Mori, and T. Sasaki, Growth of thin rubrene single crystals from 1-propanol solvent, J. Cryst. Growth 312(2), 310 (2010)
https://doi.org/10.1016/j.jcrysgro.2009.10.048
35 J. M. Gu, Y. H. Gao, J. X. Wu, Q. Li, A. X. Li, W. Zhang, H. Y. Dong, B. Wen, F. M. Gao, and Y. S. Zhao, Polymorph-dependent electrogenerated chemiluminescence of low-dimensional organic semiconductor structures for sensing, ACS Appl. Mater. Interfaces 9(10), 8891 (2017)
https://doi.org/10.1021/acsami.6b16118
36 L. Raimondo, E. Fumagalli, M. Moret, M. Campione, A. Borghesi, and A. Sassella, Epitaxial Interfaces in rubrene thin film heterostructures, J. Phys. Chem. C 117(27), 13981 (2013)
https://doi.org/10.1021/jp402136f
37 Y. Nakayama, M. Iwashita, M. Kikuchi, R. Tsuruta, K. Yoshida, Y. Gunjo, Y. Yabara, T. Hosokai, T. Koganezawa, S. Izawa, and M. Hiramoto, Electronic and crystallographic examinations of the homoepitaxially grown rubrene single, Materials (Basel) 13(8), 1978 (2020)
https://doi.org/10.3390/ma13081978
38 X. Ye, Y. Liu, Q. X. Han, C. Ge, S. Y. Cui, L. L. Zhang, X. X. Zheng, G. F. Liu, J. Liu, D. Liu, and X. T. Tao, Microspacing in-air sublimation growth of organic crystals, Chem. Mater. 30(2), 412 (2018)
https://doi.org/10.1021/acs.chemmater.7b04170
39 M. Haemori, J. Yamaguchi, S. Yaginuma, K. Itaka, and H. Koinuma, Fabrication of highly oriented rubrene thin films by the use of atomically finished substrate and pentacene buffer layer, Jpn. J. Appl. Phys. 44(6A), 3740 (2005)
https://doi.org/10.1143/JJAP.44.3740
40 M. A. Fusella, S. Yang, K. Abbasi, H. H. Choi, Z. Yao, V. Podzorov, A. Avishai, and B. P. Rand, Use of an underlayer for large area crystallization of rubrene thin films, Chem. Mater. 29(16), 6666 (2017)
https://doi.org/10.1021/acs.chemmater.7b01143
41 Y. Sun, C. Yan, Q. Xie, C. Shi, L. Zhang, L. J. Wang, and L. J. Sun, Effect of heterogeneous inducing bilayer on the properties of rubrene thin film transistors, Chem. J. Chin. Univ. 39(6), 1221 (2018)
42 C. Du, W. C. Wang, L. Q. Li, H. Fuchs, and L. F. Chi, Growth of rubrene crystalline thin films using thermal annealing on DPPC LB monolayer, Org. Electron. 14(10), 2534 (2013)
https://doi.org/10.1016/j.orgel.2013.06.006
43 G. Gelinck, P. Heremans, K. Nomoto, and T. D. Anthopoulos, Organic transistors in optical displays and microelectronic applications, Adv. Mater. 22(34), 3778 (2010)
https://doi.org/10.1002/adma.200903559
44 M. A. Reyes-Martinez, A. J. Crosby, and A. L. Briseno, Rubrene crystal field-effect mobility modulation via conducting channel wrinkling, Nat. Commun. 6(1), 6948 (2015)
https://doi.org/10.1038/ncomms7948
45 J. Takeya, J. Kato, K. Hara, M. Yamagishi, R. Hirahara, K. Yamada, Y. Nakazawa, S. Ikehata, K. Tsukagoshi, Y. Aoyagi, T. Takenobu, and Y. Iwasa, In-crystal and surface charge transport of electric-field-induced carriers in organic single-crystal semiconductors, Phys. Rev. Lett. 98(19), 196804 (2007)
https://doi.org/10.1103/PhysRevLett.98.196804
46 H. T. Yi, Y. Chen, K. Czelen, and V. Podzorov, Vacuum lamination approach to fabrication of high-performance single-crystal organic field-effect transistors, Adv. Mater. 23(48), 5807 (2011)
https://doi.org/10.1002/adma.201103305
47 G. F. Jones, R. M. Pinto, A. De Sanctis, V. K. Nagareddy, C. D. Wright, H. Alves, M. F. Craciun, and S. Russo, Highly efficient rubrene-graphene charge-transfer interfaces as phototransistors in the visible regime, Adv. Mater. 29(41), 1702993 (2017)
https://doi.org/10.1002/adma.201702993
48 V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, Elastomeric transistor stamps: Reversible probing of charge transport in organic crystals, Science 303(5664), 1644 (2004)
https://doi.org/10.1126/science.1094196
49 J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, Very high-mobility organic single-crystal transistors with in-crystal conduction channels, Appl. Phys. Lett. 90(10), 102120 (2007)
https://doi.org/10.1063/1.2711393
50 M. Yamagishi, J. Takeya, Y. Tominari, Y. Nakazawa, T. Kuroda, S. Ikehata, M. Uno, T. Nishikawa, and T. Kawase, High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators, Appl. Phys. Lett. 90(18), 182117 (2007)
https://doi.org/10.1063/1.2736208
51 Y. J. Zhang, H. L. Dong, Q. X. Tang, Y. D. He, and W. P. Hu, Mobility dependence on the conducting channel dimension of organic field-effect transistors based on single-crystalline nanoribbons, J. Mater. Chem. 20(33), 7029 (2010)
https://doi.org/10.1039/c0jm01196g
52 J. M. Adhikari, M. R. Gadinski, Q. Li, K. G. Sun, M. A. Reyes-Martinez, E. Iagodkine, A. L. Briseno, T. N. Jackson, Q. Wang, and E. D. Gomez, Controlling chain conformations of high-k fluoropolymer dielectrics to enhance charge mobilities in rubrene single-crystal fieldeffect transistors, Adv. Mater. 28(45), 10095 (2016)
https://doi.org/10.1002/adma.201602873
53 T. Takahashi, T. Takenobu, J. Takeya, and Y. Iwasa, Ambipolar organic field-effect transistors based on rubrene single crystals, Appl. Phys. Lett. 88(3), 033505 (2006)
https://doi.org/10.1063/1.2166698
54 T. Takenobu, T. Takahashi, J. Takeya, and Y. Iwasa, Effect of metal electrodes on rubrene single-crystal transistors, Appl. Phys. Lett. 90(1), 013507 (2007)
https://doi.org/10.1063/1.2408642
55 S. Z. Bisri, T. Takenobu, T. Takahashi, and Y. Iwasa, Electron transport in rubrene single-crystal transistors, Appl. Phys. Lett. 96(18), 183304 (2010)
https://doi.org/10.1063/1.3419899
56 Y. Yomogida, J. Pu, H. Shimotani, S. Ono, S. Hotta, Y. Iwasa, and T. Takenobu, Ambipolar organic singlecrystal transistors based on ion gels, Adv. Mater. 24(32), 4392 (2012)
https://doi.org/10.1002/adma.201200655
57 T. Uemura, M. Yamagishi, Y. Okada, K. Nakayama, M. Yoshizumi, M. Uno, and J. Takeya, Monolithic complementary inverters based on organic single crystals, Adv. Mater. 22(35), 3938 (2010)
https://doi.org/10.1002/adma.201000480
58 T. Kanagasekaran, H. Shimotani, R. Shimizu, T. Hitosugi, and K. Tanigaki, A new electrode design for ambipolar injection in organic semiconductors, Nat. Commun. 8(1), 999 (2017)
https://doi.org/10.1038/s41467-017-01047-9
59 C. J. Park, H. J. Park, J. Y. Lee, J. Kim, C. H. Lee, and J. Joo, Photovoltaic field-effect transistors using a MoS2 and organic rubrene van der Waals hybrid, ACS Appl. Mater. Interfaces 10(35), 29848 (2018)
https://doi.org/10.1021/acsami.8b11559
60 G. H. Lee, C. H. Lee, A. M. van der Zande, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Hone, and P. Kim, Heterostructures based on inorganic and organic van der Waals systems, APL Mater. 2(9), 092511 (2014)
https://doi.org/10.1063/1.4894435
61 X. X. He, W. Chow, F. C. Liu, B. Tay, and Z. Liu, MoS2/rubrene van der Waals heterostructure: Toward ambipolar field-effect transistors and inverter circuits, Small 13(2), 1602558 (2017)
https://doi.org/10.1002/smll.201602558
62 M. Y. Lee, J. Park, and J. H. Oh, High-performance ambipolar organic phototransistors based on core-shell pn junction organic single crystals, ACS Appl. Electron. Mater. 2(1), 9 (2020)
https://doi.org/10.1021/acsaelm.9b00588
63 Z. Li, J. Du, Q. Tang, F. Wang, J. B. Xu, J. C. Yu, and Q. Miao, Induced crystallization of rubrene in thin-film transistors, Adv. Mater. 22(30), 3242 (2010)
https://doi.org/10.1002/adma.201000786
64 H. M. Lee, J. J. Kim, J. H. Choi, and S. O. Cho, In situ patterning of high-quality crystalline rubrene thin films for high-resolution patterned organic field-effect transistors, ACS Nano 5(10), 8352 (2011)
https://doi.org/10.1021/nn203068q
65 C. H. Lee, T. Schiros, E. J. G. Santos, B. Kim, K. G. Yager, S. J. Kang, S. Lee, J. Yu, K. Watanabe, T. Taniguchi, J. Hone, E. Kaxiras, C. Nuckolls, and P. Kim, Epitaxial growth of molecular crystals on van der Waals substrates for high-performance organic electronics, Adv. Mater. 26(18), 2812 (2014)
https://doi.org/10.1002/adma.201304973
66 H. Chang, W. L. Li, H. K. Tian, Y. H. Geng, H. B. Wang, D. H. Yan, and T. Wang, High performance of rubrene thin film transistor by weak epitaxy growth method, Org. Electron. 20, 43 (2015)
https://doi.org/10.1016/j.orgel.2015.02.003
67 X. R. Hu, Z. Wang, X. F. Zhu, T. Zhu, X. D. Zhang, B. Dong, L. Z. Huang, and L. F. Chi, Foreign particle promoted crystalline nucleation for growing high-quality ultrathin rubrene films, Small 12(30), 4086 (2016)
https://doi.org/10.1002/smll.201601130
68 L. N. Zhao, X. Jiang, J. H. Lang, W. L. Jiang, G. Zhang, C. Xue, L. M. H. Zheng, and S. Zhao, The influence of the Rubrene thickness on the performance of white organic light-emitting devices, Mater. Express 10(3), 384 (2020)
https://doi.org/10.1166/mex.2020.1655
69 G. Zhang, G. L. Xing, J. H. Lang, C. X. Li, X. Y. Wang, and D. D. Wang, Active emitting layer thickness dependence and interfaces engineering studies on the performance of DOPPP white organic light emitting diodes, Opt. Commun. 459, 124921 (2020)
https://doi.org/10.1016/j.optcom.2019.124921
70 B. Zhao, Y. Q. Miao, Z. Q. Wang, W. H. Chen, K. X. Wang, H. Wang, Y. Y. Hao, B. S. Xu, and W. L. Li, Highly efficient orange fluorescent OLEDs based on the energy transfer from bilayer interface exciplex, Org. Electron. 37, 1 (2016)
https://doi.org/10.1016/j.orgel.2016.06.016
71 T. Oyamada, H. Uchiuzou, S. Akiyama, Y. Oku, N. Shimoji, K. Matsushige, H. Sasabe, and C. Adachi, Lateral organic light-emitting diode with field-effect transistor characteristics, J. Appl. Phys. 98(7), 074506 (2005)
https://doi.org/10.1063/1.2060932
72 S. M. Li, X. Li, L. Z. Wang, and H. B. Liu, Study on the fabrication of white organic light-emitting devices using the doping characteristics of rubrene and programmed test circuit, J. Nanosci. Nanotechnol. 18(12), 8409 (2018)
https://doi.org/10.1166/jnn.2018.16380
73 W. Y. Hung, P. Y. Chiang, S. W. Lin, W. C. Tang, Y. T. Chen, S. H. Liu, P. T. Chou, Y. T. Hung, and K. T. Wong, Balance the carrier mobility to achieve high performance exciplex OLED using a triazine-based acceptor, ACS Appl. Mater. Interfaces 8(7), 4811 (2016)
https://doi.org/10.1021/acsami.5b11895
74 X. T. Tang, R. H. Pan, X. Zhao, H. Q. Zhu, and Z. H. Xiong, Achievement of high-level reverse intersystem crossing in rubrene-doped organic light emitting diodes, J. Phys. Chem. Lett. 11(8), 2804 (2020)
https://doi.org/10.1021/acs.jpclett.0c00451
75 Y. Q. Zheng, J. L. Yu, C. Wang, F. Yang, B. Wei, J. H. Zhang, C. H. Zeng, and Y. Yang, Highly efficient red fluorescent organic light-emitting diodes by sorbitol-doped PEDOT:PSS, J. Phys. D Appl. Phys. 51(22), 225302 (2018)
https://doi.org/10.1088/1361-6463/aabf7c
76 D. Saikia, and R. Sarma, Characterization of organic light-emitting diode using a rubrene interlayer between electrode and hole transport layer, Bull. Mater. Sci. 43(1), 35 (2020)
https://doi.org/10.1007/s12034-019-2003-1
77 Y. Liu, X. M. Wu, Z. H. Xiao, J. A. Gao, J. Zhang, H. S. Rui, X. Lin, N. Zhang, Y. L. Hua, and S. G. Yin, Highly efficient tandem OLED based on C60/rubrene: MoO3 as charge generation layer and LiF/Al as electron injection layer, Appl. Surf. Sci. 413(15), 302 (2017)
https://doi.org/10.1016/j.apsusc.2017.04.038
78 S. Engmann, A. J. Barito, E. G. Bittle, N. C. Giebink, L. J. Richter, and D. J. Gundlach, Higher order effects in organic LEDs with sub-bandgap turn-on, Nat. Commun. 10(1), 227 (2019)
https://doi.org/10.1038/s41467-018-08075-z
79 D. B. Wang, B. Liu, H. M. Zhang, H. Zhao, T. Tao, Z. L. Xie, R. Zhang, and Y. D. Zheng, Electrically injected hybrid organic/inorganicIII-nitride white light-emitting diodes based on rubrene/(InGaN/GaN) multiple-quantum-wells P-N junction, IEEE Photonics J. 11(4), 8200808 (2019)
https://doi.org/10.1109/JPHOT.2019.2926231
80 M. Ullah, S. D. Yambem, E. G. Moore, E. B. Namdas, and A. K. Pandey, Singlet fission and triplet exciton dynamics in rubrene/fullerene heterojunctions: implications for electroluminescence, Adv. Electron. Mater. 1(12), 1500229 (2015)
https://doi.org/10.1002/aelm.201500229
81 Q. S. Chen, W. Y. Jia, L. X. Chen, D. Yuan, Y. Zou, and Z. H. Xiong, Determining the origin of half-bandgapvoltage electroluminescence in bifunctional rubrene/C60 Devices, Sci. Rep. 6(1), 25331 (2016)
https://doi.org/10.1038/srep25331
82 Y. H. Lou, Z. K. Wang, S. Naka, and H. Okada, Bi-functional electroluminescent and photovoltaic devices based on rubrene-doped poly(3-hexylthiophene): 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends, Synth. Met. 162(3–4), 281 (2012)
https://doi.org/10.1016/j.synthmet.2011.12.006
83 Z. Q. Guan, R. F. Wu, Y. Zang, and J. S. Yu, Small molecule dye rubrene doped organic bulk heterojunction solar cells, Thin Solid Films 539(31), 278 (2013)
https://doi.org/10.1016/j.tsf.2013.05.074
84 L. L. Yang, J. H. Chen, K. P. Ge, J. X. Guo, Q. C. Duan, F. Li, Y. Xu, and Y. H. Mai, Polymer/Si heterojunction hybrid solar cells with rubrene:DMSO organic semiconductor film as an electron-selective contact, J. Phys. Chem. C 122(41), 23371 (2018)
https://doi.org/10.1021/acs.jpcc.8b07987
85 T. Zhang and R. J. Holmes, Overcoming the trade-off between exciton dissociation and charge recombination in organic photovoltaic cells, Appl. Phys. Lett. 113(14), 143302 (2018)
https://doi.org/10.1063/1.5045351
86 J. A. Huang, J. S. Yu, W. Wang, and Y. D. Jiang, Organic solar cells with a multicharge separation structure consisting of a thin rubrene fluorescent dye for open circuit voltage enhancement, Appl. Phys. Lett. 98(2), 023301 (2011)
https://doi.org/10.1063/1.3535603
87 C. M. Pelicano and H. Yanagi, Effect of rubrene:P3HT bilayer on photovoltaic performance of perovskite solar cells with electrodeposited ZnO nanorods, J. Energy. Chem 27(2), 455 (2018)
https://doi.org/10.1016/j.jechem.2017.11.018
88 S. Cong, H. Yang, Y. H. Lou, L. Han, Q. H. Yi, H. B. Wang, Y. H. Sun, and G. F. Zou, Organic small molecule as the underlayer toward high performance planar perovskite solar cells, ACS Appl. Mater. Interfaces 9(3), 2295 (2017)
https://doi.org/10.1021/acsami.6b12268
89 P. L. Qin, J. L. Zhang, G. Yang, X. L. Yu, and G. Li, Potassium-intercalated rubrene as a dual-functional passivation agent for high efficiency perovskite solar cells, J. Mater. Chem. A 7(4), 1824 (2019)
https://doi.org/10.1039/C8TA09026B
90 D. Wei, F. S. Ma, R. Wang, S. Y. Dou, P. Cui, H. Huang, J. Ji, E. D. Jia, X. J. Jia, S. Sajid, A. M. Eiseman, L. H. Chu, Y. F. Li, B. Jiang, J. Qiao, Y. B. Yuan, and M. C. Li, Ion-migration inhibition by the cation-π interaction in perovskite materials for efficient and stable perovskite solar cells, Adv. Mater. 30(31), 1707583 (2018)
https://doi.org/10.1002/adma.201707583
91 Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Giant magnetoresistance in organic spin-valves, Nature 427(6977), 821 (2004)
https://doi.org/10.1038/nature02325
92 S. Steil, N. Grossmann, M. Laux, A. Ruffing, D. Steil, M. Wiesenmayer, S. Mathias, O. L. A. Monti, M. Cinchetti, and M. Aeschlimann, Spin-dependent trapping of electrons at spinterfaces, Nat. Phys. 9(4), 242 (2013)
https://doi.org/10.1038/nphys2548
93 V. A. Dediu, L. E. Hueso, I. Bergenti, and C. Taliani, Spin routes in organic semiconductors, Nat. Mater. 8(9), 707 (2009)
https://doi.org/10.1038/nmat2510
94 H. J. Jang and C. A. Richter, Organic spin-valves and beyond: Spin injection and transport in organic semiconductors and the effect of interfacial engineering, Adv. Mater. 29(2), 1602739 (2017)
https://doi.org/10.1002/adma.201602739
95 Z. G. Yu, Spin–orbit coupling and its effects in organic solids, Phys. Rev. B 85(11), 115201 (2012)
https://doi.org/10.1103/PhysRevB.85.115201
96 B. Li, C. Y. Kao, J. W. Yoo, V. N. Prigodin, and A. J. Epstein, Magnetoresistance in an all-organic-based spin valve,Adv. Mater. 23(30), 3382 (2011)
https://doi.org/10.1002/adma.201100903
97 K. V. Raman, S. M. Watson, J. H. Shim, J. A. Borchers, J. Chang, and J. S. Moodera, Effect of molecular ordering on spin and charge injection in rubrene, Phys. Rev. B 80(19), 195212 (2009)
https://doi.org/10.1103/PhysRevB.80.195212
98 X. M. Zhang, S. Mizukami, T. Kubota, Q. L. Ma, H. Naganuma, M. Oogane, Y. Ando, and T. Miyazaki, Large change of perpendicular magnetic anisotropy in Cobalt ultrathin film induced by varying capping layers, J. Appl. Phys. 111(7), 07B320 (2012)
https://doi.org/10.1063/1.3676240
99 J. W. Yoo, H. W. Jang, V. N. Prigodin, C. Kao, C. B. Eom, and A. J. Epstein, Giant magnetoresistance in ferromagnet/organic semiconductor/ferromagnet heterojunctions, Phys. Rev. B 80(20), 205207 (2009)
https://doi.org/10.1103/PhysRevB.80.205207
100 J. W. Yoo, H. W. Jang, V. N. Prigodin, C. Kao, C. B. Eom, and A. J. Epstein, Tunneling vs. giant magnetoresistance in organic spin valve, Synth. Met. 160(3–4), 216 (2010)
https://doi.org/10.1016/j.synthmet.2009.11.019
101 J. W. Yoo, C. Y. Chen, H. W. Jang, C. W. Bark, V. N. Prigodin, C. B. Eom, and A. J. Epstein, Spin injection/detection using an organic-based magnetic semiconductor, Nat. Mater. 9(8), 638 (2010)
https://doi.org/10.1038/nmat2797
102 B. Li, C. Y. Kao, Y. Lu, J. W. Yoo, V. N. Prigodin, and A. J. Epstein, Room temperature organic-based spin polarizer, Appl. Phys. Lett. 99(15), 153503 (2011)
https://doi.org/10.1063/1.3651329
103 K. V. Raman, J. Chang, and J. S. Moodera, New method of spin injection into organic semiconductors using spin filtering tunnel barriers, Org. Electron. 12(7), 1275 (2011)
https://doi.org/10.1016/j.orgel.2011.04.012
104 X. N. Yao, Q. Q. Duan, J. W. Tong, Y. F. Chang, L. Q. Zhou, G. W. Qin, and X. M. Zhang, Magnetoresistance effect and the applications for organic spin valves using molecular spacers, Materials (Basel) 11(5), 721 (2018)
https://doi.org/10.3390/ma11050721
105 J. Devkota, R. G. Geng, R. C. Subedi, and T. D. Nguyen, Organic spin valves: A review, Adv. Funct. Mater. 26(22), 3881 (2016)
https://doi.org/10.1002/adfm.201504209
106 V. Dediu, L. E. Hueso, I. Bergenti, A. Riminucci, F. Borgatti, P. Graziosi, C. Newby, F. Casoli, M. P. De Jong, C. Taliani, and Y. Zhan, Room-temperature spintronic effects in Alq3-based hybrid devices, Phys. Rev. B 78(11), 115203 (2008)
https://doi.org/10.1103/PhysRevB.78.115203
107 X. M. Zhang, S. Mizukami, T. Kubota, Q. L. Ma, M. Oogane, H. Naganuma, Y. Ando, and T. Miyazaki, Observation of a large spin-dependent transport length in organic spin valves at room temperature, Nat. Commun. 4(1), 1392 (2013)
https://doi.org/10.1038/ncomms2423
108 Y. Liu, S. M. Watson, T. Lee, J. M. Gorham, H. E. Katz, J. A. Borchers, H. D. Fairbrother, and D. H. Reich, Correlation between microstructure and magnetotransport in organic semiconductor spin-valve structures, Phys. Rev. B 79(7), 075312 (2009)
https://doi.org/10.1103/PhysRevB.79.075312
109 R. Lin, F. Wang, J. Rybicki, M. Wohlgenannt, and K. A. Hutchinson, Distinguishing between tunneling and injection regimes of ferromagnet/organic semiconductor/ferromagnet junctions, Phys. Rev. B 81(19), 195214 (2010)
https://doi.org/10.1103/PhysRevB.81.195214
110 X. M. Zhang, Q. L. Ma, K. Suzuki, A. Sugihara, G. W. Qin, T. Miyazaki, and S. Mizukami, Magnetoresistance effect in rubrene-based spin valves at room ternperature, ACS Appl. Mater. Interfaces 7(8), 4685 (2015)
https://doi.org/10.1021/am508173j
111 Z. H. Li, T. Li, D. C. Qi, W. Tong, L. Q. Xu, J. Zhu, Z. T. Zhang, H. Xu, W. H. Zhang, Y. X. Guo, F. Chen, Y. Y. Han, L. Cao, F. P. Zhang, and Y. M. Xiong, Quantitative study of spin relaxation in rubrene thin films by inverse spin Hall effect, Appl. Phys. Lett. 115(5), 053301 (2019)
https://doi.org/10.1063/1.5108561
112 V. Podzorov, E. Menard, S. Pereversev, B. Yakshinsky, T. Madey, J. A. Rogers, and M. E. Gershenson, Interaction of organic surfaces with active species in the high-vacuum environment, Appl. Phys. Lett. 87(9), 093505 (2005)
https://doi.org/10.1063/1.2035323
113 E. Fumagalli, L. Raimondo, L. Silvestri, M. Moret, A. Sassella, and M. Campione, Oxidation dynamics of epitaxial rubrene ultrathin films, Chem. Mater. 23(13), 3246 (2011)
https://doi.org/10.1021/cm201230j
114 V. Nardello, M. J. Marti, C. Pierlot, and J. M. Aubry, Photochemistry without light: Oxidation of rubrene in a microemulsion with a chemical source of singlet molecular oxygen, J. Chem. Educ. 76(9), 1285 (1999)
https://doi.org/10.1021/ed076p1285
115 J. Ly, K. Martin, S. Thomas, M. Yamashita, B. Yu, C. A. Pointer, H. Yamada, K. R. Carter, S. Parkin, L. Zhang, J. L. Bredas, E. R. Young, and A. L. Briseno, Short excited-state lifetimes enable photo-oxidatively stable rubrene derivatives, J. Phys. Chem. A 124(1), 255 (2020)
https://doi.org/10.1021/acs.jpca.9b10839
116 G. Z. Xie, S. Hahn, F. Rominger, J. Freudenberg, and U. H. F. Bunz, Synthesis and characterization of two different azarubrenes, Chem. Commun. 54(55), 7593 (2018)
https://doi.org/10.1039/C8CC01662C
117 W. Xie, P. L. Prabhumirashi, Y. Nakayama, K. A. Mc-Garry, M. L. Geier, Y. Uragami, K. Mase, C. J. Douglas, H. Ishii, M. C. Hersam, and C. D. Frisbie, Utilizing carbon nanotube electrodes to improve charge injection and transport in bis(trifluoromethyl)-dimethyl-rubrene ambipolar single crystal transistors, ACS Nano 7(11), 10245 (2013)
https://doi.org/10.1021/nn4045694
118 J. F. Li, Z. J. Ni, X. T. Zhang, R. J. Li, H. L. Dong, and W. P. Hu, Enhanced stability of a rubrene analogue with a brickwork packing motif, J. Mater. Chem. C 5(33), 8376 (2017)
https://doi.org/10.1039/C7TC01790A
119 N. Stingelin-Stutzmann, E. Smits, H. Wondergem, C. Tanase, P. Blom, P. Smith, and D. de Leeuw, Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics, Nat. Mater. 4(8), 601 (2005)
https://doi.org/10.1038/nmat1426
[1] Shi-Qiang Luo, Ji-Fei Wang, Bin Yang, Yong-Bo Yuan. Recent advances in controlling the crystallization of two-dimensional perovskites for optoelectronic device[J]. Front. Phys. , 2019, 14(5): 53401-.
[2] Sajid-ur- Rehman, Faheem K. Butt, Chuanbo Li, Bakhtiar Ul Haq, Zeeshan Tariq, F. Aleem. First-principles calculations of nitrogen-doped antimony triselenide: A prospective material for solar cells and infrared optoelectronic devices[J]. Front. Phys. , 2018, 13(3): 137805-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed