Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (1) : 13201    https://doi.org/10.1007/s11467-020-1002-4
TOPICAL REVIEW
Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses
Lin Ju1,2, Mei Bie3, Xiwei Zhang2, Xiangming Chen2, Liangzhi Kou1()
1. School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Gardens Point Campus, QLD 4001, Brisbane, Australia
2. School of Physics and Electric Engineering, Anyang Normal University, Anyang 455000, China
3. Shandong Institute for Food and Drug Control, Jinan 250101, China
 Download: PDF(3274 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two-dimensional Janus van der Waals (vdW) heterojunctions, referring to the junction containing at least one Janus material, are found to exhibit tuneable electronic structures, wide light adsorption spectra, controllable contact resistance, and sufficient redox potential due to the intrinsic polarization and unique interlayer coupling. These novel structures and properties are promising for the potential applications in electronics and energy conversion devices. To provide a comprehensive picture about the research progress and guide the following investigations, here we summarize their fundamental properties of different types of two-dimensional Janus vdW heterostructures including electronic structure, interface contact and optical properties, and discuss the potential applications in electronics and energy conversion devices. The further challenges and possible research directions of the novel heterojunctions are discussed at the end of this review.

Keywords Janus materials      van der Waals heterojunctions      energy conversion devices     
Corresponding Author(s): Liangzhi Kou   
Just Accepted Date: 14 September 2020   Issue Date: 23 October 2020
 Cite this article:   
Lin Ju,Mei Bie,Xiwei Zhang, et al. Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses[J]. Front. Phys. , 2021, 16(1): 13201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-1002-4
https://academic.hep.com.cn/fop/EN/Y2021/V16/I1/13201
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
https://doi.org/10.1126/science.1102896
2 F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nat. Mater. 6(9), 652 (2007)
https://doi.org/10.1038/nmat1967
3 X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8(1), 76 (2009)
https://doi.org/10.1038/nmat2317
4 X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen, Y. Hou, X. Fu, and M. Antonietti, Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light, J. Am. Chem. Soc. 131(5), 1680 (2009)
https://doi.org/10.1021/ja809307s
5 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
6 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
https://doi.org/10.1038/nnano.2010.279
7 M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, and H. Zhang, 2D black phosphorus saturable absorbers for ultrafast photonics, Adv. Opt. Mater. 7(1), 1800224 (2019)
https://doi.org/10.1002/adom.201800224
8 S. Guo, Y. Zhang, Y. Ge, S. Zhang, H. Zeng, and H. Zhang, 2D V-V binary materials: Status and challenges, Adv. Mater. 31(39), 1902352 (2019)
https://doi.org/10.1002/adma.201902352
9 X. Jiang, A. V. Kuklin, A. Baev, Y. Ge, H. Ågren, H. Zhang, and P. N. Prasad, Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications, Phys. Rep. 848, 1 (2020)
https://doi.org/10.1016/j.physrep.2019.12.006
10 Y. Zhang, C. K. Lim, Z. Dai, G. Yu, J. W. Haus, H. Zhang, and P. N. Prasad, Photonics and optoelectronics using nano-structured hybrid perovskite media and their optical cavities, Phys. Rep. 795, 1 (2019)
https://doi.org/10.1016/j.physrep.2019.01.005
11 J. Low, J. Yu, M. Jaroniec, S. Wageh, and A. A. Al-Ghamdi, Heterojunction photocatalysts, Adv. Mater. 29(20), 1601694 (2017)
https://doi.org/10.1002/adma.201601694
12 Y. Boyjoo, H. Sun, J. Liu, V. K. Pareek, and S. Wang, A review on photocatalysis for air treatment: From catalyst development to reactor design, Chem. Eng. J. 310, 537 (2017)
https://doi.org/10.1016/j.cej.2016.06.090
13 J. Zhang, G. Xiao, F. X. Xiao, and B. Liu, Revisiting one-dimensional TiO2 based hybrid heterostructures for heterogeneous photocatalysis: A critical review, Mater. Chem. Front. 1(2), 231 (2017)
https://doi.org/10.1039/C6QM00141F
14 S. Chen, and L. W. Wang, Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution, Chem. Mater. 24(18), 3659 (2012)
https://doi.org/10.1021/cm302533s
15 F. Wu, Y. Liu, G. Yu, D. Shen, Y. Wang, and E. Kan, Visible-light-absorption in graphitic C3N4 bilayer: Enhanced by interlayer coupling, J. Phys. Chem. Lett. 3(22), 3330 (2012)
https://doi.org/10.1021/jz301536k
16 A. Du, S. Sanvito, Z. Li, D. Wang, Y. Jiao, T. Liao, Q. Sun, Y. H. Ng, Z. Zhu, R. Amal, and S. C. Smith, Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response, J. Am. Chem. Soc. 134(9), 4393 (2012)
https://doi.org/10.1021/ja211637p
17 C. F. Fu, Q. Luo, X. Li, and J. Yang, Two-dimensional van der Waals nanocomposites as Z-scheme type photocatalysts for hydrogen production from overall water splitting, J. Mater. Chem. A 4(48), 18892 (2016)
https://doi.org/10.1039/C6TA08769H
18 L. Ju, Y. Dai, W. Wei, M. Li, and B. Huang, DFT investigation on two-dimensional GeS/WS2 van der Waals heterostructure for direct Z-scheme photocatalytic overall water splitting, Appl. Surf. Sci. 434, 365 (2018)
https://doi.org/10.1016/j.apsusc.2017.10.172
19 W. J. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan, Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters, Nat. Mater. 12(3), 246 (2013)
https://doi.org/10.1038/nmat3518
20 R. Moriya, T. Yamaguchi, Y. Inoue, S. Morikawa, Y. Sata, S. Masubuchi, and T. Machida, Large current modulation in exfoliated-graphene/MoS2/metal vertical heterostructures, Appl. Phys. Lett. 105(8), 083119 (2014)
https://doi.org/10.1063/1.4894256
21 S. Wi, H. Kim, M. Chen, H. Nam, L. J. Guo, E. Meyhofer, and X. Liang, Enhancement of photovoltaic response in multilayer MoS2 induced by plasma doping, ACS Nano 8(5), 5270 (2014)
https://doi.org/10.1021/nn5013429
22 Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B. I. Yakobson, H. Terrones, M. Terrones, B. K. Tay, J. Lou, S. T. Pantelides, Z. Liu, W. Zhou, and P. M. Ajayan, Vertical and in-plane heterostructures from WS2/MoS2 monolayers, Nat. Mater. 13(12), 1135 (2014)
https://doi.org/10.1038/nmat4091
23 F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, and K. S. Novoselov, Light-emitting diodes by band-structure engineering in van der Waals heterostructures, Nat. Mater. 14(3), 301 (2015)
https://doi.org/10.1038/nmat4205
24 K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, G. Ramalingam, S. Raghavan, and A. Ghosh, Graphene- MoS2 hybrid structures for multifunctional photoresponsive memory devices, Nat. Nanotechnol. 8(11), 826 (2013)
https://doi.org/10.1038/nnano.2013.206
25 L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, Strong light–matter interactions in heterostructures of atomically thin films, Science 340(6138), 1311 (2013)
https://doi.org/10.1126/science.1235547
26 Y. C. Lin, C. Liu, Y. Yu, E. Zarkadoula, M. Yoon, A. A. Puretzky, L. Liang, X. Kong, Y. Gu, A. Strasser, M. III Meyer, M. F. Lorenz, I. N. Chisholm, C. M. Ivanov, G. Rouleau, K. Duscher, Xiao, and D. B. Geohegan, Low energy implantation into transition-metal dichalcogenide monolayers to form Janus structures, ACS Nano 14(4), 3896 (2020)
https://doi.org/10.1021/acsnano.9b10196
27 A. Y. Lu, H. Zhu, J. Xiao, C. P. Chuu, Y. Han, M. H. Chiu, C. C. Cheng, C. W. Yang, K. H. Wei, Y. Yang, Y. Wang, D. Sokaras, D. Nordlund, P. Yang, D. A. Muller, M. Y. Chou, X. Zhang, and L. J. Li, Janus monolayers of transition metal dichalcogenides, Nat. Nanotechnol. 12(8), 744 (2017)
https://doi.org/10.1038/nnano.2017.100
28 J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V. B. Shenoy, L. Shi, and J. Lou, Janus monolayer transition-metal dichalcogenides, ACS Nano 11(8), 8192 (2017)
https://doi.org/10.1021/acsnano.7b03186
29 K. Ray, A. E. Yore, T. Mou, S. Jha, K. K. H. Smithe, B. Wang, E. Pop, and A. K. M. Newaz, Photoresponse of natural van der Waals heterostructures, ACS Nano 11(6), 6024 (2017)
https://doi.org/10.1021/acsnano.7b01918
30 A. J. Molina-Mendoza, E. Giovanelli, W. S. Paz, M. A. Nino, J. O. Island, C. Evangeli, L. Aballe, M. Foerster, H. S. van der Zant, G. Rubio-Bollinger, N. Agrait, J. J. Palacios, E. M. Perez, and A. Castellanos-Gomez, Franckeite as a naturally occurring van der Waals heterostructure, Nat. Commun. 8(1), 14409 (2017)
https://doi.org/10.1038/ncomms14409
31 M. Velický, P. S. Toth, A. M. Rakowski, A. P. Rooney, A. Kozikov, C. R. Woods, A. Mishchenko, L. Fumagalli, J. Yin, V. Zolyomi, T. Georgiou, S. J. Haigh, K. S. Novoselov, and R. A. Dryfe, Exfoliation of natural van der Waals heterostructures to a single unit cell thickness, Nat. Commun. 8(1), 14410 (2017)
https://doi.org/10.1038/ncomms14410
32 T. Zhang, B. Jiang, Z. Xu, R. G. Mendes, Y. Xiao, L. Chen, L. Fang, T. Gemming, S. Chen, M. H. Rummeli, and L. Fu, Twinned growth behaviour of two-dimensional materials, Nat. Commun. 7(1), 13911 (2016)
https://doi.org/10.1038/ncomms13911
33 M. B. Alemayehu, M. Falmbigl, K. Ta, J. Ditto, D. L. Medlin, and D. C. Johnson, Designed synthesis of van der Waals heterostructures: The power of kinetic control, Angew. Chem. Int. Ed. Engl. 54(51), 15468 (2015)
https://doi.org/10.1002/anie.201506152
34 S. Wang, X. Wang, and J. H. Warner, All chemical vapor deposition growth of MoS2:h-BN vertical van der Waals heterostructures, ACS Nano 9(5), 5246 (2015)
https://doi.org/10.1021/acsnano.5b00655
35 X. Ji, N. Kong, J. Wang, W. Li, Y. Xiao, S. T. Gan, Y. Zhang, Y. Li, X. Song, Q. Xiong, S. Shi, Z. Li, W. Tao, H. Zhang, L. Mei, and J. Shi, A novel topdown synthesis of ultrathin 2D boron nanosheets for multimodal imaging-guided cancer therapy, Adv. Mater. 30(36), 1803031 (2018)
https://doi.org/10.1002/adma.201803031
36 Y. Song, Z. Liang, X. Jiang, Y. Chen, Z. Li, L. Lu, Y. Ge, K. Wang, J. Zheng, S. Lu, J. Ji, and H. Zhang, Few-layer antimonene decorated microfiber: Ultra-short pulse generation and all-optical thresholding with enhanced long term stability, 2D Mater. 4(4), 045010 (2017)
https://doi.org/10.1088/2053-1583/aa87c1
37 B. Guo, S. H. Wang, Z. X. Wu, Z. X. Wang, D. H. Wang, H. Huang, F. Zhang, Y. Q. Ge, and H. Zhang, Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber, Opt. Express 26(18), 22750 (2018)
https://doi.org/10.1364/OE.26.022750
38 Z. Li, H. Qiao, Z. Guo, X. Ren, Z. Huang, X. Qi, S. C. Dhanabalan, J. S. Ponraj, D. Zhang, J. Li, J. Zhao, J. Zhong, and H. Zhang, High-performance photoelectrochemical photodetector based on liquid-exfoliated few-layered InSe nanosheets with enhanced stability, Adv. Funct. Mater. 28(16), 1705237 (2018)
https://doi.org/10.1002/adfm.201705237
39 P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, and Q. Bao, Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers, ACS Appl. Mater. Interfaces 9(14), 12759 (2017)
https://doi.org/10.1021/acsami.7b01709
40 Y. Liu, N. O. Weiss, X. Duan, H. C. Cheng, Y. Huang, and X. Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater. 1(9), 16042 (2016)
https://doi.org/10.1038/natrevmats.2016.42
41 Y. Liang, J. Li, H. Jin, B. Huang, and Y. Dai, Photoexcitation dynamics in Janus-MoSSe/WSe2 heterobilayers: Ab initio time-domain study, J. Phys. Chem. Lett. 9(11), 2797 (2018)
https://doi.org/10.1021/acs.jpclett.8b00903
42 M. Idrees, H. U. Din, S. U. Rehman, M. Shafiq, Y. Saeed, H. D. Bui, C. V. Nguyen, and B. Amin, Electronic properties and enhanced photocatalytic performance of van der Waals heterostructures of ZnO and Janus transition metal dichalcogenides, Phys. Chem. Chem. Phys. 22(18), 10351 (2020)
https://doi.org/10.1039/D0CP01264E
43 W. Guo, X. Ge, S. Sun, Y. Xie, and X. Ye, The strain effect on the electronic properties of the MoSSe/WSSe van der Waals heterostructure: A first-principles study, Phys. Chem. Chem. Phys. 22(9), 4946 (2020)
https://doi.org/10.1039/D0CP00403K
44 H. U. Din, M. Idrees, A. Albar, M. Shafiq, I. Ahmad, C. V. Nguyen, and B. Amin, Rashba spin splitting and photocatalytic properties of GeC MSSe (M=Mo, W) van der Waals heterostructures, Phys. Rev. B 100(16), 165425 (2019)
https://doi.org/10.1103/PhysRevB.100.165425
45 M. Idrees, H. U. Din, R. Ali, G. Rehman, T. Hussain, C. V. Nguyen, I. Ahmad, and B. Amin, Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures, Phys. Chem. Chem. Phys. 21(34), 18612 (2019)
https://doi.org/10.1039/C9CP02648G
46 K. Ren, S. Wang, Y. Luo, J. P. Chou, J. Yu, W. Tang, and M. Sun, High-efficiency photocatalyst for water splitting: a Janus MoSSe/XN (X= Ga, Al) van der Waals heterostructure, J. Phys. D Appl. Phys. 53(18), 185504 (2020)
https://doi.org/10.1088/1361-6463/ab71ad
47 X. Li, X. Wang, W. Hao, C. Mi, and H. Zhou, Structural, electronic, and electromechanical properties of MoSSe/blue phosphorene heterobilayer, AIP Adv. 9(11), 115302 (2019)
https://doi.org/10.1063/1.5122755
48 D. Chen, X. Lei, Y. Wang, S. Zhong, G. Liu, B. Xu, and C. Ouyang, Tunable electronic structures in BP/MoSSe van der Waals heterostructures by external electric field and strain, Appl. Surf. Sci. 497, 143809 (2019)
https://doi.org/10.1016/j.apsusc.2019.143809
49 Q. Peng, Z. Guo, B. Sa, J. Zhou, and Z. Sun, New gallium chalcogenides/arsenene van der Waals heterostructures promising for photocatalytic water splitting, Int. J. Hydrogen Energy 43(33), 15995 (2018)
https://doi.org/10.1016/j.ijhydene.2018.07.008
50 Z. H. Liu, Y. Lin, C. Cao, S. L. Zou, J. T. Xiao, J. Xiao, and L. N. Chen, First-principles study of electronic and sodium-ion transport properties of transition-metal dichalcogenides, Int. J. Mod. Phys. B 32(20), 1850215 (2018)
https://doi.org/10.1142/S0217979218502156
51 H. Hu, Z. Zhang, and G. Ouyang, Transition from Schottky-to-Ohmic contacts in 1T VSe2-based van der Waals heterojunctions: Stacking and strain effects, Appl. Surf. Sci. 517, 146168 (2020)
https://doi.org/10.1016/j.apsusc.2020.146168
52 X. Li, B. Zhai, X. Song, Y. Yan, J. Li, and C. Xia, Twodimensional Janus-In2STe/InSe heterostructure with direct gap and staggered band alignment, Appl. Surf. Sci. 509, 145317 (2020)
https://doi.org/10.1016/j.apsusc.2020.145317
53 D. Xu, B. Zhai, Q. Gao, T. Wang, J. Li, and C. Xia, Interface-controlled band alignment transition and optical properties of Janus MoSSe/GaN vdW heterobilayers, J. Phys. D Appl. Phys. 53(5), 055104 (2020)
https://doi.org/10.1088/1361-6463/ab50f9
54 Z. Cui, K. Bai, Y. Ding, X. Wang, E. Li, and J. Zheng, Janus XSSe/SiC (X= Mo, W) van der Waals heterostructures as promising water-splitting photocatalysts, Phys. E 123, 114207 (2020)
https://doi.org/10.1016/j.physe.2020.114207
55 C. Yu and Z. Wang, Strain engineering and electric field tunable electronic properties of Janus MoSSe/WX2 (X= S, Se) van der Waals heterostructures, Phys. Status Solidi B 256(11), 1900261 (2019)
https://doi.org/10.1002/pssb.201900261
56 W. Yin, B. Wen, Q. Ge, D. Zou, Y. Xu, M. Liu, X. Wei, M. Chen, and X. Fan, Role of intrinsic dipole on photocatalytic water splitting for Janus MoSSe/nitrides heterostructure: A first-principles study, Prog. Nat. Sci. 29(3), 335 (2019)
https://doi.org/10.1016/j.pnsc.2019.05.003
57 Y. Ji, M. Yang, H. Lin, T. Hou, L. Wang, Y. Li, and S. T. Lee, Janus structures of transition metal dichalcogenides as the heterojunction photocatalysts for water splitting, J. Phys. Chem. C 122(5), 3123 (2018)
https://doi.org/10.1021/acs.jpcc.7b11584
58 L. Hu and D. Wei, Janus group-III chalcogenide monolayers and derivative type-II heterojunctions as watersplitting photocatalysts with strong visible-light absorbance, J. Phys. Chem. C 122(49), 27795 (2018)
https://doi.org/10.1021/acs.jpcc.8b06575
59 L. Ju, M. Bie, J. Shang, X. Tang, and L. Kou, Janus transition metal dichalcogenides: A superior platform for photocatalytic water splitting, J. Phys. Mater. 3(2), 022004 (2020)
https://doi.org/10.1088/2515-7639/ab7c57
60 C. Xia, W. Xiong, J. Du, T. Wang, Y. Peng, and J. Li, Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides, Phys. Rev. B 98(16), 165424 (2018)
https://doi.org/10.1103/PhysRevB.98.165424
61 Y. C. Cheng, Z. Y. Zhu, M. Tahir, and U. Schwingenschlögl, Spin–orbit-induced spin splittings in polar transition metal dichalcogenide monolayers, EPL 102(5), 57001 (2013)
https://doi.org/10.1209/0295-5075/102/57001
62 S. LaShell, B. A. McDougall, and E. Jensen, Spin splitting of an Au (111) surface state band observed with angle resolved photoelectron spectroscopy, Phys. Rev. Lett. 77(16), 3419 (1996)
https://doi.org/10.1103/PhysRevLett.77.3419
63 C. R. Ast, J. Henk, A. Ernst, L. Moreschini, M. C. Falub, D. Pacilé, P. Bruno, K. Kern, and M. Grioni, Giant spin splitting through surface alloying, Phys. Rev. Lett. 98(18), 186807 (2007)
https://doi.org/10.1103/PhysRevLett.98.186807
64 K. Ishizaka, M. S. Bahramy, H. Murakawa, M. Sakano, T. Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara, A. Kimura, K. Miyamoto, T. Okuda, H. Namatame, M. Taniguchi, R. Arita, N. Nagaosa, K. Kobayashi, Y. Murakami, R. Kumai, Y. Kaneko, Y. Onose, and Y. Tokura, Giant Rashba-type spin splitting in bulk BiTeI, Nat. Mater. 10(7), 521 (2011)
https://doi.org/10.1038/nmat3051
65 W. Zhou, J. Chen, Z. Yang, J. Liu, and F. Ouyang, Geometry and electronic structure of monolayer, bilayer, and multilayer Janus WSSe, Phys. Rev. B 99(7), 075160 (2019)
https://doi.org/10.1103/PhysRevB.99.075160
66 F. Li, W. Wei, H. Wang, B. Huang, Y. Dai, and T. Jacob, Intrinsic electric field-induced properties in Janus MoSSe van der Waals structures, J. Phys. Chem. Lett. 10(3), 559 (2019)
https://doi.org/10.1021/acs.jpclett.8b03463
67 C. Yu, X. Cheng, C. Wang, and Z. Wang, Tuning the ntype contact of graphene on Janus MoSSe monolayer by strain and electric field, Physica E 110, 148 (2019)
https://doi.org/10.1016/j.physe.2019.02.027
68 T. V. Vu, N. V. Hieu, H. V. Phuc, N. N. Hieu, H. D. Bui, M. Idrees, B. Amin, and C. V. Nguyen, Graphene/WSeTe van der Waals heterostructure: Controllable electronic properties and Schottky barrier via interlayer coupling and electric field, Appl. Surf. Sci. 507, 145036 (2020)
https://doi.org/10.1016/j.apsusc.2019.145036
69 Y. Wang, W. Wei, B. Huang, and Y. Dai, Functionalized MXenes as ideal electrodes for Janus MoSSe, Phys. Chem. Chem. Phys. 21(1), 70 (2019)
https://doi.org/10.1039/C8CP06257A
70 T. Jing, D. Liang, J. Hao, M. Deng, and S. Cai, Interface Schottky barrier in Hf2NT2/MSSe (T= F, O, OH; M= Mo, W) heterostructures, Phys. Chem. Chem. Phys. 21(10), 5394 (2019)
https://doi.org/10.1039/C9CP00028C
71 N. Zhao and U. Schwingenschlogl, Transition from Schottky to Ohmic contacts in Janus MoSSe/germanene heterostructures, Nanoscale 12(21), 11448 (2020)
https://doi.org/10.1039/D0NR02084B
72 L. Cao, Y. S. Ang, Q. Wu, and L. K. Ang, Janus PtSSe and graphene heterostructure with tunable Schottky barrier, Appl. Phys. Lett. 115(24), 241601 (2019)
https://doi.org/10.1063/1.5130756
73 Y. Li, J. Wang, B. Zhou, F. Wang, Y. Miao, J. Wei, B. Zhang, and K. Zhang, Tunable interlayer coupling and Schottky barrier in graphene and Janus MoSSe heterostructures by applying an external field, Phys. Chem. Chem. Phys. 20(37), 24109 (2018)
https://doi.org/10.1039/C8CP04337J
74 L. Ju, C. Liu, L. Shi, and L. Sun, The high-speed channel made of metal for interfacial charge transfer in Z-scheme g-C3N4/MoS2 water-splitting photocatalyst, Mater. Res. Express 6(11), 115545 (2019)
https://doi.org/10.1088/2053-1591/ab509c
75 S. Deng, L. Li, and P. Rees, Graphene/MoXY heterostructures adjusted by interlayer distance, external electric field, and strain for tunable devices, ACS Appl. Nano Mater. 2(6), 3977 (2019)
https://doi.org/10.1021/acsanm.9b00871
76 Y. Jiang, L. Miao, G. Jiang, Y. Chen, X. Qi, X. F. Jiang, H. Zhang, and S. Wen, Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications, Sci. Rep. 5(1), 16372 (2015)
https://doi.org/10.1038/srep16372
77 Z. Huang, W. Han, H. Tang, L. Ren, D. S. Chander, X. Qi, and H. Zhang, Photoelectrochemical-type sunlight photodetector based on MoS2/graphene heterostructure, 2D Mater. 2(3), 035011 (2015)
https://doi.org/10.1088/2053-1583/2/3/035011
78 S. Liu, Z. Li, Y. Ge, H. Wang, R. Yue, X. Jiang, J. Li, Q. Wen, and H. Zhang, Graphene/phosphorene nanoheterojunction: Facile synthesis, nonlinear optics, and ultrafast photonics applications with enhanced performance, Photon. Res. 5(6), 662 (2017)
https://doi.org/10.1364/PRJ.5.000662
79 Z. Cui, K. Bai, Y. Ding, X. Wang, E. Li, J. Zheng, and S. Wang, Electronic and optical properties of Janus MoSSe and ZnO vdWs heterostructures, Superlattices Microstruct. 140, 106445 (2020)
https://doi.org/10.1016/j.spmi.2020.106445
80 F. Wang, Z. Wang, K. Xu, F. Wang, Q. Wang, Y. Huang, L. Yin, and J. He, Tunable GaTe–MoS2 van der Waals pn junctions with novel optoelectronic performance, Nano Lett. 15(11), 7558 (2015)
https://doi.org/10.1021/acs.nanolett.5b03291
81 J. Chen, Y. Hu, and H. Guo, First-principles analysis of photocurrent in graphene PN junctions, Phys. Rev. B 85(15), 155441 (2012)
https://doi.org/10.1103/PhysRevB.85.155441
82 L. E. Henrickson, Nonequilibrium photocurrent modeling in resonant tunneling photodetectors, J. Appl. Phys. 91(10), 6273 (2002)
https://doi.org/10.1063/1.1473677
83 L. Ju, Y. Dai, W. Wei, Y. Liang, and B. Huang, Potential of one-dimensional blue phosphorene nanotubes as a water splitting photocatalyst, J. Mater. Chem. A 6(42), 21087 (2018)
https://doi.org/10.1039/C8TA08469F
84 H. Jin, J. Li, B. Wang, Y. Yu, L. Wan, F. Xu, Y. Dai, Y. Wei, and H. Guo, Electronics and optoelectronics of lateral heterostructures within monolayer indium monochalcogenides, J. Mater. Chem. C 4(47), 11253 (2016)
https://doi.org/10.1039/C6TC04241D
85 M. M. Furchi, A. Pospischil, F. Libisch, J. Burgdorfer, and T. Mueller, Photovoltaic effect in an electrically tunable van der Waals heterojunction, Nano Lett. 14(8), 4785 (2014)
https://doi.org/10.1021/nl501962c
86 C. Long, Z. R. Gong, H. Jin, and Y. Dai, Observation of intrinsic dark exciton in Janus-MoSSe heterosturcture induced by intrinsic electric field, J. Phys.: Condens. Matter 30(39), 395001 (2018)
https://doi.org/10.1088/1361-648X/aadc32
87 S. Arra, R. Babar, and M. Kabir, Van der Waals heterostructure for photocatalysis: Graphitic carbon nitride and Janus transition-metal dichalcogenides, Phys. Rev. Mater. 3(9), 095402 (2019)
https://doi.org/10.1103/PhysRevMaterials.3.095402
88 L. Ju, J. Shang, X. Tang, and L. Kou, Tunable photocatalytic water splitting by the ferroelectric switch in a 2D AgBiP2Se6 monolayer, J. Am. Chem. Soc. 142(3), 1492 (2020)
https://doi.org/10.1021/jacs.9b11614
89 L. Ju, M. Bie, X. Tang, J. Shang, L. Kou, and W. S. Janus, Se monolayer: An excellent photocatalyst for overall water splitting, ACS Appl. Mater. Interfaces 12(26), 29335 (2020)
90 A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238(5358), 37 (1972)
https://doi.org/10.1038/238037a0
91 T. Y. Park, Y. S. Choi, S. M. Kim, G. Y. Jung, S. J. Park, B. J. Kwon, and Y. H. Cho, Electroluminescence emission from light-emitting diode of p-ZnO/(InGaN/GaN) multiquantum well/n-GaN, Appl. Phys. Lett. 98(25), 251111 (2011)
https://doi.org/10.1063/1.3601915
92 M. Cardona, Optical properties and band structure of SrTiO3 and BaTiO3, Phys. Rev. 140(2A), A651 (1965)
https://doi.org/10.1103/PhysRev.140.A651
93 T. Jafari, E. Moharreri, A. S. Amin, R. Miao, W. Song, and S. L. Suib, Photocatalytic water splitting-the untamed dream: A review of recent advances, Molecules 21(7), 900 (2016)
https://doi.org/10.3390/molecules21070900
94 K. Maeda and K. Domen, Photocatalytic water splitting: Recent progress and future challenges, J. Phys. Chem. Lett. 1(18), 2655 (2010)
https://doi.org/10.1021/jz1007966
95 E. Liu, C. Jin, C. Xu, J. Fan, and X. Hu, Facile strategy to fabricate Ni2P/g-C3N4 heterojunction with excellent photocatalytic hydrogen evolution activity, Int. J. Hydrogen Energy 43(46), 21355 (2018)
https://doi.org/10.1016/j.ijhydene.2018.09.195
96 E. Liu, J. Chen, Y. Ma, J. Feng, J. Jia, J. Fan, and X. Hu, Fabrication of 2D SnS2/g-C3N4 heterojunction with enhanced H2 evolution during photocatalytic water splitting, J. Colloid Interface Sci. 524, 313 (2018)
https://doi.org/10.1016/j.jcis.2018.04.038
97 Z. Zhou, X. Niu, Y. Zhang, and J. Wang, Janus MoSSe/WSeTe heterostructures: A direct Z-scheme photocatalyst for hydrogen evolution, J. Mater. Chem. A 7(38), 21835 (2019)
https://doi.org/10.1039/C9TA06407A
98 M. Palsgaard, T. Gunst, T. Markussen, K. S. Thygesen, and M. Brandbyge, Stacked Janus device concepts: Abrupt pn-junctions and cross-plane channels, Nano Lett. 18(11), 7275 (2018)
https://doi.org/10.1021/acs.nanolett.8b03474
99 S. Bai, J. Jiang, Q. Zhang, and Y. Xiong, Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations, Chem. Soc. Rev. 44(10), 2893 (2015)
https://doi.org/10.1039/C5CS00064E
100 P. Zhou, J. G. Yu, and M. Jaroniec, All-solid-state Zscheme photocatalytic systems, Adv. Mater. 26(29), 4920 (2014)
https://doi.org/10.1002/adma.201400288
101 K. Maeda, M. Higashi, D. Lu, R. Abe, and K. Domen, Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst, J. Am. Chem. Soc. 132(16), 5858 (2010)
https://doi.org/10.1021/ja1009025
102 D. J. Martin, P. J. T. Reardon, S. J. A. Moniz, and J. Tang, Visible light-driven pure water splitting by a nature-inspired organic semiconductor-based system, J. Am. Chem. Soc. 136(36), 12568 (2014)
https://doi.org/10.1021/ja506386e
103 H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, and K. Tanaka, All-solid-state Z-scheme in CdS–Au–TiO2 threecomponent nanojunction system, Nat. Mater. 5(10), 782 (2006)
https://doi.org/10.1038/nmat1734
104 A. Iwase, Y. H. Ng, Y. Ishiguro, A. Kudo, and R. Amal, Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light, J. Am. Chem. Soc. 133(29), 11054 (2011)
https://doi.org/10.1021/ja203296z
105 J. Low, C. Jiang, B. Cheng, S. Wageh, A. A. Al-Ghamdi, and J. Yu, A review of direct Z-scheme photocatalysts, Small Methods 1(5), 1700080 (2017)
https://doi.org/10.1002/smtd.201700080
106 W. J. Yu, Q. A. Vu, H. Oh, H. G. Nam, H. Zhou, S. Cha, J. Y. Kim, A. Carvalho, M. Jeong, H. Choi, A. H. Castro Neto, Y. H. Lee, and X. Duan, Unusually efficient photocurrent extraction in monolayer van der Waals heterostructure by tunnelling through discretized barriers, Nat. Commun. 7(1), 13278 (2016)
https://doi.org/10.1038/ncomms13278
107 S. Deng, L. Li, O. J. Guy, and Y. Zhang, Enhanced thermoelectric performance of monolayer MoSSe, bilayer MoSSe and graphene/MoSSe heterogeneous nanoribbons, Phys. Chem. Chem. Phys. 21(33), 18161 (2019)
https://doi.org/10.1039/C9CP03639C
108 S. H. Zhou, J. Zhang, Z. Z. Ren, J. F. Gu, Y. R. Ren, S. Huang, W. Lin, Y. Li, Y. F. Zhang, and W. K. Chen, First-principles study of MoSSe–graphene heterostructures as anode for Li-ion batteries, Chem. Phys. 529, 110583 (2020)
https://doi.org/10.1016/j.chemphys.2019.110583
109 X. Liu, P. Gao, W. Hu, and J. Yang, Photogeneratedcarrier separation and transfer in two-dimensional janus transition metal dichalcogenides and graphene van der Waals sandwich heterojunction photovoltaic cells, J. Phys. Chem. Lett. 11(10), 4070 (2020)
https://doi.org/10.1021/acs.jpclett.0c00706
110 F. Li, W. Wei, P. Zhao, B. Huang, and Y. Dai, Electronic and optical properties of pristine and vertical and lateral heterostructures of Janus MoSSe and WSSe, J. Phys. Chem. Lett. 8(23), 5959 (2017)
https://doi.org/10.1021/acs.jpclett.7b02841
111 L. S. R. Cavalcante, M. N. Gjerding, A. Chaves, and K. S. Thygesen, Enhancing and controlling plasmons in Janus MoSSe–graphene based van der Waals heterostructures, J. Phys. Chem. C 123(26), 16373 (2019)
https://doi.org/10.1021/acs.jpcc.9b04000
112 T. Stephenson, Z. Li, B. Olsen, and D. Mitlin, Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites, Energy Environ. Sci. 7(1), 209 (2014)
https://doi.org/10.1039/C3EE42591F
113 C. Shang, X. Lei, B. Hou, M. Wu, B. Xu, G. Liu, and C. Ouyang, Theoretical prediction of Janus MoSSe as a potential anode material for lithium-ion batteries, J. Phys. Chem. C 122(42), 23899 (2018)
https://doi.org/10.1021/acs.jpcc.8b07478
114 H. Yang, Y. Ma, S. Zhang, H. Jin, B. Huang, and Y. Dai, GeSe@SnS: Stacked Janus structures for overall water splitting, J. Mater. Chem. A 7(19), 12060 (2019)
https://doi.org/10.1039/C9TA02716E
115 Y. Fan, J. Wang, and M. Zhao, Spontaneous full photocatalytic water splitting on 2D MoSe2/SnSe2 and WSe2/SnSe2 vdW heterostructures, Nanoscale 11(31), 14836 (2019)
https://doi.org/10.1039/C9NR03469B
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed