Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (1) : 12504    https://doi.org/10.1007/s11467-020-1003-3
RESEARCH ARTICLE
Simultaneous Zeeman deceleration of polyatomic free radical with lithium atoms
Yang Liu(), Le Luo()
School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082, China
 Download: PDF(1289 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Chemistry in the ultracold regime enables fully quantum-controlled interactions between atoms and molecules, leading to the discovery of the hidden mechanisms in chemical reactions which are usually curtained by thermal averaging in the high temperature. Recently a couple of diatomic molecules have been cooled to ultracold regime based on laser cooling techniques, but the chemistry associated with these simple molecules is highly limited. In comparison, free radicals play a major role in many important chemical reactions, but yet to be cooled to submillikelvin temperature. Here we propose a novel method of decelerating CH3, the simplest polyatomic free radical, with lithium atoms simultaneously by travelling wave magnetic decelerator. This scheme paves the way towards co-trapping CH3 and lithium, so that sympathetical cooling can be used to preparing ultracold free radical sample.

Keywords travelling wave magnetic decelerator      simultaneous deceleration      methyl radical     
Corresponding Author(s): Yang Liu,Le Luo   
Just Accepted Date: 14 September 2020   Issue Date: 19 October 2020
 Cite this article:   
Yang Liu,Le Luo. Simultaneous Zeeman deceleration of polyatomic free radical with lithium atoms[J]. Front. Phys. , 2021, 16(1): 12504.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-1003-3
https://academic.hep.com.cn/fop/EN/Y2021/V16/I1/12504
1 M. A. Baranov, Theoretical progress in many-body physics with ultracold dipolar gases, Phys. Rep. 464(3), 71 (2008)
https://doi.org/10.1016/j.physrep.2008.04.007
2 J. Eisert, M. Friesdorf, and C. Gogolin, Quantum manybody systems out of equilibrium, Nat. Phys. 11(2), 124 (2015)
https://doi.org/10.1038/nphys3215
3 D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88(6), 067901 (2002)
https://doi.org/10.1103/PhysRevLett.88.067901
4 P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. Schoelkopf, and P. Zoller, Hybrid quantum processors: Molecular ensembles as quantum memory for solid state circuits, Phys. Rev. Lett. 97(3), 033003 (2006)
https://doi.org/10.1103/PhysRevLett.97.033003
5 A. Micheli, G. Brennen, and P. Zoller, A toolbox for lattice-spin models with polar molecules, Nat. Phys. 2(5), 341 (2006)
https://doi.org/10.1038/nphys287
6 A. V. Gorshkov, S. R. Manmana, G. Chen, J. Ye, E. Demler, M. D. Lukin, and A. M. Rey, Tunable superfluidity and quantum magnetism with ultracold polar molecules, Phys. Rev. Lett. 107(11), 115301 (2011)
https://doi.org/10.1103/PhysRevLett.107.115301
7 B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Observation of dipolar spin-exchange interactions with lattice-confined polar molecules, Nature 501(7468), 521 (2013)
https://doi.org/10.1038/nature12483
8 N. Balakrishnan and A. Dalgarno, Chemistry at ultracold temperatures, Chem. Phys. Lett. 341(5–6), 652 (2001)
https://doi.org/10.1016/S0009-2614(01)00515-2
9 R. V. Krems, Cold controlled chemistry, Phys. Chem. Chem. Phys. 10(28), 4079 (2008)
https://doi.org/10.1039/b802322k
10 M. T. Bell and T. P. Softley, Ultracold molecules and ultracold chemistry, Mol. Phys. 107(2), 99 (2009)
https://doi.org/10.1080/00268970902724955
11 S. Ospelkaus, K. K. Ni, D. Wang, M. De Miranda, B. Neyenhuis, G. Quéméner, P. Julienne, J. Bohn, D. Jin, and J. Ye, Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules, Science 327(5967), 853 (2010)
https://doi.org/10.1126/science.1184121
12 B. K. Stuhl, M. T. Hummon, and J. Ye, Cold stateselected molecular collisions and reactions, Annu. Rev. Phys. Chem. 65(1), 501 (2014)
https://doi.org/10.1146/annurev-physchem-040513-103744
13 O. Dulieu and A. Osterwalder, Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero, Vol. 11, Royal Society of Chemistry, 2017
https://doi.org/10.1039/9781782626800
14 E. R. Hudson, H. Lewandowski, B. C. Sawyer, and J. Ye, Cold molecule spectroscopy for constraining the evolution of the fine structure constant, Phys. Rev. Lett. 96(14), 143004 (2006)
https://doi.org/10.1103/PhysRevLett.96.143004
15 T. Zelevinsky, S. Kotochigova, and J. Ye, Precision test of mass-ratio variations with lattice-confined ultracold molecules, Phys. Rev. Lett. 100(4), 043201 (2008)
https://doi.org/10.1103/PhysRevLett.100.043201
16 C. Chin, V. Flambaum, and M. Kozlov, Ultracold molecules: New probes on the variation of fundamental constants, New J. Phys. 11(5), 055048 (2009)
https://doi.org/10.1088/1367-2630/11/5/055048
17 J. Kobayashi, A. Ogino, and S. Inouye, Measurement of the variation of electron-to-proton mass ratio using ultracold molecules produced from laser-cooled atoms, Nat. Commun. 10, 3771 (2019)
https://doi.org/10.1038/s41467-019-11761-1
18 J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev, B. R. O’Leary, C. D. Panda, M. F. Parsons, E. S. Petrik, B. Spaun, A. C. Vutha, and A. D. West, Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343(6168), 269 (2014)
https://doi.org/10.1126/science.1248213
19 D. DeMille, J. M. Doyle, and A. O. Sushkov, Probing the frontiers of particle physics with tabletop-scale experiments, Science 357(6355), 990 (2017)
https://doi.org/10.1126/science.aal3003
20 V. Andreev and N. Hutzler, Improved limit on the electric dipole moment of the electron, Nature 562(7727), 355 (2018)
https://doi.org/10.1038/s41586-018-0599-8
21 T. Momose, H. Hoshina, N. Sogoshi, H. Katsuki, T. Wakabayashi, and T. Shida, Tunneling chemical reactions in solid parahydrogen: A case of CD3+H2→CD3H+H at 5 K, J. Chem. Phys. 108(17), 7334 (1998)
https://doi.org/10.1063/1.476152
22 H. Hoshina, M. Fushitani, T. Momose, and T. Shida, Tunneling chemical reactions in solid parahydrogen: Direct measurement of the rate constants of R+H2→RH+H (R=CD3,CD2H,CDH2,CH3) at 5 K, J. Chem. Phys. 120(8), 3706 (2004)
https://doi.org/10.1063/1.1642582
23 A. W. Jasper, S. J. Klippenstein, L. B. Harding, and B. Ruscic, Kinetics of the reaction of methyl radical with hydroxyl radical and methanol decomposition, J. Phys. Chem. A 111(19), 3932 (2007)
https://doi.org/10.1021/jp067585p
24 T. Momose, Y. Liu, S. Zhou, P. Djuricanin, and D. Carty, Manipulation of translational motion of methyl radicals by pulsed magnetic fields, Phys. Chem. Chem. Phys. 15(6), 1772 (2013)
https://doi.org/10.1039/C2CP43796A
25 Y. Liu, S. Zhou, W. Zhong, P. Djuricanin, and T. Momose, One-dimensional confinement of magnetically decelerated supersonic beams of O2 molecules, Phys. Rev. A 91(2), 021403 (2015)
https://doi.org/10.1103/PhysRevA.91.021403
26 B. K. Stuhl, M. T. Hummon, M. Yeo, G. Quéméner, J. L. Bohn, and J. Ye, Evaporative cooling of the dipolar hydroxyl radical, Nature 492(7429), 396 (2012)
https://doi.org/10.1038/nature11718
27 Y. Liu, M. Vashishta, P. Djuricanin, S. Zhou, W. Zhong, T. Mittertreiner, D. Carty, and T. Momose, Magnetic trapping of cold methyl radicals, Phys. Rev. Lett. 118(9), 093201 (2017)
https://doi.org/10.1103/PhysRevLett.118.093201
28 N. Akerman, M. Karpov, Y. Segev, N. Bibelnik, J. Narevicius, and E. Narevicius, Trapping of molecular oxygen together with lithium atoms, Phys. Rev. Lett. 119(7), 073204 (2017)
https://doi.org/10.1103/PhysRevLett.119.073204
29 E. Lavert-Ofir, S. Gersten, A. B. Henson, I. Shani, L. David, J. Narevicius, and E. Narevicius, A moving magnetic trap decelerator: A new source of cold atoms and molecules, New J. Phys. 13(10), 103030 (2011)
https://doi.org/10.1088/1367-2630/13/10/103030
30 E. Lavert-Ofir, L. David, A. B. Henson, S. Gersten, J. Narevicius, and E. Narevicius, Stopping paramagnetic supersonic beams: The advantage of a co-moving magnetic trap decelerator, Phys. Chem. Chem. Phys. 13(42), 18948 (2011)
https://doi.org/10.1039/c1cp21225g
31 M. Jerkins, I. Chavez, U. Even, and M. Raizen, Efficient isotope separation by single-photon atomic sorting, Phys. Rev. A 82(3), 033414 (2010)
https://doi.org/10.1103/PhysRevA.82.033414
32 K. Melin, P. Nagornykh, Y. Lu, L. Hillberry, Y. Xu, and M. Raizen, Observation of a quasi-one-dimensional variation of the Stern-Gerlach effect, Phys. Rev. A 99(6), 063417 (2019)
https://doi.org/10.1103/PhysRevA.99.063417
33 S. Bililign, B. C. Hattaway, and G. H. Jeung, Nonradiative energy transfer in Li∗(3p)-CH4 collisions, J. Phys. Chem. A 106(2), 222 (2002)
https://doi.org/10.1021/jp012616w
34 B. C. Hattaway, S. Bililign, L. Uhl, V. Ledentu, and G. H. Jeung, Energy transfer in Li(4p)+(Ar,H2,CH4) collisions, J. Chem. Phys. 120(4), 1739 (2004)
https://doi.org/10.1063/1.1634557
35 K. Luria, N. Lavie, and U. Even, Dielectric barrier discharge source for supersonic beams, Rev. Sci. Instrum. 80(10), 104102 (2009)
https://doi.org/10.1063/1.3244085
36 T. Tscherbul, H. G. Yu, and A. Dalgarno, Sympathetic cooling of polyatomic molecules with S-state atoms in a magnetic trap, Phys. Rev. Lett. 106(7), 073201 (2011)
https://doi.org/10.1103/PhysRevLett.106.073201
37 T. Tscherbul, J. Kłos, and A. Buchachenko, Ultracold spin-polarized mixtures of 2Σ molecules with S-state atoms: Collisional stability and implications for sympathetic cooling, Phys. Rev. A 84(4), 040701 (2011)
https://doi.org/10.1103/PhysRevA.84.040701
38 A. O. Wallis, E. J. Longdon, P. S. Żuchowski, and J. M. Hutson, The prospects of sympathetic cooling of NH molecules with Li atoms, Eur. Phys. J. D 65(1–2), 151 (2011)
https://doi.org/10.1140/epjd/e2011-20025-4
39 M. Morita, J. Kłos, A. A. Buchachenko, and T. V. Tscherbul, Cold collisions of heavy 2Σ molecules with alkali-metal atoms in a magnetic field: Ab initioanalysis and prospects for sympathetic cooling of SrOH (2Σ+) by Li (2S), Phys. Rev. A 95(6), 063421 (2017)
https://doi.org/10.1103/PhysRevA.95.063421
40 D. E. Fagnan, J. Wang, C. Zhu, P. Djuricanin, B. G. Klappauf, J. L. Booth, and K. W. Madison, Observation of quantum diffractive collisions using shallow atomic traps, Phys. Rev. A 80(2), 022712 (2009)
https://doi.org/10.1103/PhysRevA.80.022712
41 Y. Segev, M. Pitzer, M. Karpov, N. Akerman, J. Narevicius, and E. Narevicius, Collisions between cold molecules in a superconducting magnetic trap, Nature 572(7768), 189 (2019)
https://doi.org/10.1038/s41586-019-1446-2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed