|
|
Simultaneous Zeeman deceleration of polyatomic free radical with lithium atoms |
Yang Liu( ), Le Luo( ) |
School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082, China |
|
|
Abstract Chemistry in the ultracold regime enables fully quantum-controlled interactions between atoms and molecules, leading to the discovery of the hidden mechanisms in chemical reactions which are usually curtained by thermal averaging in the high temperature. Recently a couple of diatomic molecules have been cooled to ultracold regime based on laser cooling techniques, but the chemistry associated with these simple molecules is highly limited. In comparison, free radicals play a major role in many important chemical reactions, but yet to be cooled to submillikelvin temperature. Here we propose a novel method of decelerating CH3, the simplest polyatomic free radical, with lithium atoms simultaneously by travelling wave magnetic decelerator. This scheme paves the way towards co-trapping CH3 and lithium, so that sympathetical cooling can be used to preparing ultracold free radical sample.
|
Keywords
travelling wave magnetic decelerator
simultaneous deceleration
methyl radical
|
Corresponding Author(s):
Yang Liu,Le Luo
|
Just Accepted Date: 14 September 2020
Issue Date: 19 October 2020
|
|
1 |
M. A. Baranov, Theoretical progress in many-body physics with ultracold dipolar gases, Phys. Rep. 464(3), 71 (2008)
https://doi.org/10.1016/j.physrep.2008.04.007
|
2 |
J. Eisert, M. Friesdorf, and C. Gogolin, Quantum manybody systems out of equilibrium, Nat. Phys. 11(2), 124 (2015)
https://doi.org/10.1038/nphys3215
|
3 |
D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88(6), 067901 (2002)
https://doi.org/10.1103/PhysRevLett.88.067901
|
4 |
P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. Schoelkopf, and P. Zoller, Hybrid quantum processors: Molecular ensembles as quantum memory for solid state circuits, Phys. Rev. Lett. 97(3), 033003 (2006)
https://doi.org/10.1103/PhysRevLett.97.033003
|
5 |
A. Micheli, G. Brennen, and P. Zoller, A toolbox for lattice-spin models with polar molecules, Nat. Phys. 2(5), 341 (2006)
https://doi.org/10.1038/nphys287
|
6 |
A. V. Gorshkov, S. R. Manmana, G. Chen, J. Ye, E. Demler, M. D. Lukin, and A. M. Rey, Tunable superfluidity and quantum magnetism with ultracold polar molecules, Phys. Rev. Lett. 107(11), 115301 (2011)
https://doi.org/10.1103/PhysRevLett.107.115301
|
7 |
B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Observation of dipolar spin-exchange interactions with lattice-confined polar molecules, Nature 501(7468), 521 (2013)
https://doi.org/10.1038/nature12483
|
8 |
N. Balakrishnan and A. Dalgarno, Chemistry at ultracold temperatures, Chem. Phys. Lett. 341(5–6), 652 (2001)
https://doi.org/10.1016/S0009-2614(01)00515-2
|
9 |
R. V. Krems, Cold controlled chemistry, Phys. Chem. Chem. Phys. 10(28), 4079 (2008)
https://doi.org/10.1039/b802322k
|
10 |
M. T. Bell and T. P. Softley, Ultracold molecules and ultracold chemistry, Mol. Phys. 107(2), 99 (2009)
https://doi.org/10.1080/00268970902724955
|
11 |
S. Ospelkaus, K. K. Ni, D. Wang, M. De Miranda, B. Neyenhuis, G. Quéméner, P. Julienne, J. Bohn, D. Jin, and J. Ye, Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules, Science 327(5967), 853 (2010)
https://doi.org/10.1126/science.1184121
|
12 |
B. K. Stuhl, M. T. Hummon, and J. Ye, Cold stateselected molecular collisions and reactions, Annu. Rev. Phys. Chem. 65(1), 501 (2014)
https://doi.org/10.1146/annurev-physchem-040513-103744
|
13 |
O. Dulieu and A. Osterwalder, Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero, Vol. 11, Royal Society of Chemistry, 2017
https://doi.org/10.1039/9781782626800
|
14 |
E. R. Hudson, H. Lewandowski, B. C. Sawyer, and J. Ye, Cold molecule spectroscopy for constraining the evolution of the fine structure constant, Phys. Rev. Lett. 96(14), 143004 (2006)
https://doi.org/10.1103/PhysRevLett.96.143004
|
15 |
T. Zelevinsky, S. Kotochigova, and J. Ye, Precision test of mass-ratio variations with lattice-confined ultracold molecules, Phys. Rev. Lett. 100(4), 043201 (2008)
https://doi.org/10.1103/PhysRevLett.100.043201
|
16 |
C. Chin, V. Flambaum, and M. Kozlov, Ultracold molecules: New probes on the variation of fundamental constants, New J. Phys. 11(5), 055048 (2009)
https://doi.org/10.1088/1367-2630/11/5/055048
|
17 |
J. Kobayashi, A. Ogino, and S. Inouye, Measurement of the variation of electron-to-proton mass ratio using ultracold molecules produced from laser-cooled atoms, Nat. Commun. 10, 3771 (2019)
https://doi.org/10.1038/s41467-019-11761-1
|
18 |
J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev, B. R. O’Leary, C. D. Panda, M. F. Parsons, E. S. Petrik, B. Spaun, A. C. Vutha, and A. D. West, Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343(6168), 269 (2014)
https://doi.org/10.1126/science.1248213
|
19 |
D. DeMille, J. M. Doyle, and A. O. Sushkov, Probing the frontiers of particle physics with tabletop-scale experiments, Science 357(6355), 990 (2017)
https://doi.org/10.1126/science.aal3003
|
20 |
V. Andreev and N. Hutzler, Improved limit on the electric dipole moment of the electron, Nature 562(7727), 355 (2018)
https://doi.org/10.1038/s41586-018-0599-8
|
21 |
T. Momose, H. Hoshina, N. Sogoshi, H. Katsuki, T. Wakabayashi, and T. Shida, Tunneling chemical reactions in solid parahydrogen: A case of CD3+H2→CD3H+H at 5 K, J. Chem. Phys. 108(17), 7334 (1998)
https://doi.org/10.1063/1.476152
|
22 |
H. Hoshina, M. Fushitani, T. Momose, and T. Shida, Tunneling chemical reactions in solid parahydrogen: Direct measurement of the rate constants of R+H2→RH+H (R=CD3,CD2H,CDH2,CH3) at 5 K, J. Chem. Phys. 120(8), 3706 (2004)
https://doi.org/10.1063/1.1642582
|
23 |
A. W. Jasper, S. J. Klippenstein, L. B. Harding, and B. Ruscic, Kinetics of the reaction of methyl radical with hydroxyl radical and methanol decomposition, J. Phys. Chem. A 111(19), 3932 (2007)
https://doi.org/10.1021/jp067585p
|
24 |
T. Momose, Y. Liu, S. Zhou, P. Djuricanin, and D. Carty, Manipulation of translational motion of methyl radicals by pulsed magnetic fields, Phys. Chem. Chem. Phys. 15(6), 1772 (2013)
https://doi.org/10.1039/C2CP43796A
|
25 |
Y. Liu, S. Zhou, W. Zhong, P. Djuricanin, and T. Momose, One-dimensional confinement of magnetically decelerated supersonic beams of O2 molecules, Phys. Rev. A 91(2), 021403 (2015)
https://doi.org/10.1103/PhysRevA.91.021403
|
26 |
B. K. Stuhl, M. T. Hummon, M. Yeo, G. Quéméner, J. L. Bohn, and J. Ye, Evaporative cooling of the dipolar hydroxyl radical, Nature 492(7429), 396 (2012)
https://doi.org/10.1038/nature11718
|
27 |
Y. Liu, M. Vashishta, P. Djuricanin, S. Zhou, W. Zhong, T. Mittertreiner, D. Carty, and T. Momose, Magnetic trapping of cold methyl radicals, Phys. Rev. Lett. 118(9), 093201 (2017)
https://doi.org/10.1103/PhysRevLett.118.093201
|
28 |
N. Akerman, M. Karpov, Y. Segev, N. Bibelnik, J. Narevicius, and E. Narevicius, Trapping of molecular oxygen together with lithium atoms, Phys. Rev. Lett. 119(7), 073204 (2017)
https://doi.org/10.1103/PhysRevLett.119.073204
|
29 |
E. Lavert-Ofir, S. Gersten, A. B. Henson, I. Shani, L. David, J. Narevicius, and E. Narevicius, A moving magnetic trap decelerator: A new source of cold atoms and molecules, New J. Phys. 13(10), 103030 (2011)
https://doi.org/10.1088/1367-2630/13/10/103030
|
30 |
E. Lavert-Ofir, L. David, A. B. Henson, S. Gersten, J. Narevicius, and E. Narevicius, Stopping paramagnetic supersonic beams: The advantage of a co-moving magnetic trap decelerator, Phys. Chem. Chem. Phys. 13(42), 18948 (2011)
https://doi.org/10.1039/c1cp21225g
|
31 |
M. Jerkins, I. Chavez, U. Even, and M. Raizen, Efficient isotope separation by single-photon atomic sorting, Phys. Rev. A 82(3), 033414 (2010)
https://doi.org/10.1103/PhysRevA.82.033414
|
32 |
K. Melin, P. Nagornykh, Y. Lu, L. Hillberry, Y. Xu, and M. Raizen, Observation of a quasi-one-dimensional variation of the Stern-Gerlach effect, Phys. Rev. A 99(6), 063417 (2019)
https://doi.org/10.1103/PhysRevA.99.063417
|
33 |
S. Bililign, B. C. Hattaway, and G. H. Jeung, Nonradiative energy transfer in Li∗(3p)-CH4 collisions, J. Phys. Chem. A 106(2), 222 (2002)
https://doi.org/10.1021/jp012616w
|
34 |
B. C. Hattaway, S. Bililign, L. Uhl, V. Ledentu, and G. H. Jeung, Energy transfer in Li(4p)+(Ar,H2,CH4) collisions, J. Chem. Phys. 120(4), 1739 (2004)
https://doi.org/10.1063/1.1634557
|
35 |
K. Luria, N. Lavie, and U. Even, Dielectric barrier discharge source for supersonic beams, Rev. Sci. Instrum. 80(10), 104102 (2009)
https://doi.org/10.1063/1.3244085
|
36 |
T. Tscherbul, H. G. Yu, and A. Dalgarno, Sympathetic cooling of polyatomic molecules with S-state atoms in a magnetic trap, Phys. Rev. Lett. 106(7), 073201 (2011)
https://doi.org/10.1103/PhysRevLett.106.073201
|
37 |
T. Tscherbul, J. Kłos, and A. Buchachenko, Ultracold spin-polarized mixtures of 2Σ molecules with S-state atoms: Collisional stability and implications for sympathetic cooling, Phys. Rev. A 84(4), 040701 (2011)
https://doi.org/10.1103/PhysRevA.84.040701
|
38 |
A. O. Wallis, E. J. Longdon, P. S. Żuchowski, and J. M. Hutson, The prospects of sympathetic cooling of NH molecules with Li atoms, Eur. Phys. J. D 65(1–2), 151 (2011)
https://doi.org/10.1140/epjd/e2011-20025-4
|
39 |
M. Morita, J. Kłos, A. A. Buchachenko, and T. V. Tscherbul, Cold collisions of heavy 2Σ molecules with alkali-metal atoms in a magnetic field: Ab initioanalysis and prospects for sympathetic cooling of SrOH (2Σ+) by Li (2S), Phys. Rev. A 95(6), 063421 (2017)
https://doi.org/10.1103/PhysRevA.95.063421
|
40 |
D. E. Fagnan, J. Wang, C. Zhu, P. Djuricanin, B. G. Klappauf, J. L. Booth, and K. W. Madison, Observation of quantum diffractive collisions using shallow atomic traps, Phys. Rev. A 80(2), 022712 (2009)
https://doi.org/10.1103/PhysRevA.80.022712
|
41 |
Y. Segev, M. Pitzer, M. Karpov, N. Akerman, J. Narevicius, and E. Narevicius, Collisions between cold molecules in a superconducting magnetic trap, Nature 572(7768), 189 (2019)
https://doi.org/10.1038/s41586-019-1446-2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|