Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2020, Vol. 15 Issue (6) : 61502    https://doi.org/10.1007/s11467-020-1028-7
VIEW & PERSPECTIVE
Compact Greenberger–Horne–Zeilinger state generation via frequency combs and graph theory
Xuemei Gu1(), Mario Krenn2()
1. Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
2. Department of Chemistry & Computer Science, Uni- versity of Toronto, Toronto, ON, M5S 3H6, Canada; Vector Institute for Artificial Intelligence, Toronto, ON, M5S 1M1, Canada
 Download: PDF(1027 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Corresponding Author(s): Xuemei Gu,Mario Krenn   
Issue Date: 25 November 2020
 Cite this article:   
Xuemei Gu,Mario Krenn. Compact Greenberger–Horne–Zeilinger state generation via frequency combs and graph theory[J]. Front. Phys. , 2020, 15(6): 61502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-1028-7
https://academic.hep.com.cn/fop/EN/Y2020/V15/I6/61502
1 A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777 (1935)
https://doi.org/10.1103/PhysRev.47.777
2 J. S. Bell, On the Einstein–Podolsky–Rosen paradox, Physics 1(3), 195 (1964)
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
3 S. J. Freedman and J. F. Clauser, Experimental test of local hiddenvariable theories, Phys. Rev. Lett. 28(14), 938 (1972)
https://doi.org/10.1103/PhysRevLett.28.938
4 A. Aspect, J. Dalibard, and G. Roger, Experimental test of Bell’s inequalities using time-varying analyzers, Phys. Rev. Lett. 49(25), 1804 (1982)
https://doi.org/10.1103/PhysRevLett.49.1804
5 G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, Violation of Bell’s inequality under strict Einstein locality conditions, Phys. Rev. Lett. 81(23), 5039 (1998)
https://doi.org/10.1103/PhysRevLett.81.5039
6 B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. ABellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, Loopholefree Bell inequality violation using electron spins separated by 1.3 kilometres, Nature 526(7575), 682 (2015)
https://doi.org/10.1038/nature15759
7 M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J. Å. Larsson, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann, and A. Zeilinger, Significant-loophole-free test of Bell’s theorem with entangled photons, Phys. Rev. Lett. 115(25), 250401 (2015)
https://doi.org/10.1103/PhysRevLett.115.250401
8 J. Handsteiner, A. S. Friedman, D. Rauch, J. Gallicchio, B. Liu, H. Hosp, J. Kofler, D. Bricher, M. Fink, C. Leung, A. Mark, H. T. Nguyen, I. Sanders, F. Steinlechner, R. Ursin, S. Wengerowsky, A. H. Guth, D. I. Kaiser, T. Scheidl, and A. Zeilinger, Cosmic Bell test: Measurement settings from milky way stars, Phys. Rev. Lett. 118(6), 060401 (2017)
https://doi.org/10.1103/PhysRevLett.118.060401
9 D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going beyond Bell’s theorem, in: Bell’s Theorem, Quantum Theory and Conceptions of the Universe, Fundamental Theories of Physics, edited by M. Kafatos, Vol. 37, pp 69–72, Springer, Dordrecht, 1989
https://doi.org/10.1007/978-94-017-0849-4_10
10 D. M. Greenberger, M. A. Horne, A. Shimony, and A. Zeilinger, Bell’s theorem without inequalities, Am. J. Phys. 58(12), 1131 (1990)
https://doi.org/10.1119/1.16243
11 D. Bouwmeester, J. W. Pan, M. Daniell, H. Weinfurter, and A. Zeilinger, Observation of three-photon Greenberger–Horne–Zeilinger entanglement, Phys. Rev. Lett. 82(7), 1345 (1999)
https://doi.org/10.1103/PhysRevLett.82.1345
12 J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement, Nature 403(6769), 515 (2000)
https://doi.org/10.1038/35000514
13 C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, Experimental entanglement of six photons in graph states, Nat. Phys. 3(2), 91 (2007)
https://doi.org/10.1038/nphys507
14 Y. F. Huang, B. H. Liu, L. Peng, Y. H. Li, L. Li, C. F. Li, and G. C. Guo, Experimental generation of an eight-photon Greenberger– Horne–Zeilinger state, Nat. Commun. 2(1), 546 (2011)
https://doi.org/10.1038/ncomms1556
15 X. C. Yao, T. X. Wang, P. Xu, H. Lu, G. S. Pan, X. H. Bao, C. Z. Peng, C. Y. Lu, Y. A. Chen, and J. W. Pan, Observation of eightphoton entanglement,Nat. Photonics 6(4), 225 (2012)
https://doi.org/10.1038/nphoton.2011.354
16 X. L. Wang, L. K. Chen, W. Li, H. L. Huang, C. Liu, C. Chen, Y. H. Luo, Z. E. Su, D. Wu, Z. D. Li, H. Lu, Y. Hu, X. Jiang, C. Z. Peng, L. Li, N. L. Liu, Y. A. Chen, C. Y. Lu, and J. W. Pan, Experimental ten-photon entanglement, Phys. Rev. Lett. 117(21), 210502 (2016)
https://doi.org/10.1103/PhysRevLett.117.210502
17 L. K. Chen, Z. D. Li, X. C. Yao, M. Huang, W. Li, H. Lu, X. Yuan, Y. B. Zhang, X. Jiang, C. Z. Peng, L. Li, N. L. Liu, X. Ma, C. Y. Lu, Y. A. Chen, and J. W. Pan, Observation of ten-photon entanglement using thin BiB3O6 crystals, Optica 4(1), 77 (2017)
https://doi.org/10.1364/OPTICA.4.000077
18 H. S. Zhong, Y. Li, W. Li, L. C. Peng, Z. E. Su, Y. Hu, Y. M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X. L. Wang, X. Jiang, L. Li, Y. A. Chen, N. L. Liu, C. Y. Lu, and J. W. Pan, 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion, Phys. Rev. Lett. 121(25), 250505 (2018)
https://doi.org/10.1103/PhysRevLett.121.250505
19 C. Reimer, M. Kues, P. Roztocki, B. Wetzel, F. Grazioso, B. E. Little, S. T. Chu, T. Johnston, Y. Bromberg, L. Caspani, D. J. Moss, and R. Morandotti, Generation of multiphoton entangled quantum states by means of integrated frequency combs, Science 351(6278), 1176 (2016)
https://doi.org/10.1126/science.aad8532
20 P. Zhu, Q. Zheng, S. Xue, C. Wu, X. Yu, Y. Wang, Y. Liu, X. Qiang, J. Wu, and P. Xu, On-chip multiphoton Greenberger–Horne– Zeilinger state based on integrated frequency combs, Front. Phys. 15(6), 61501 (2020)
https://doi.org/10.1007/s11467-020-1028-7
21 L. Lu, L. Xia, Z. Chen, L. Chen, T. Yu, T. Tao, W. Ma, Y. Pan, X. Cai, Y. Lu, S. Zhu, and X.-S. Ma, Three-dimensional entanglement on a silicon chip, npj Quantum Inf. 6, 30 (2020)
https://doi.org/10.1038/s41534-020-0260-x
22 J. Wang, S. Paesani, Y. Ding, R. Santagati, P. Skrzypczyk, A. Salavrakos, J. Tura, R. Augusiak, L. Mančinska, D. Bacco, D. Bonneau, J. W. Silverstone, Q. Gong, A. Acín, K. Rottwitt, L. K. Oxenløwe, J. L. O’Brien, A. Laing, and M. G. Thompson, Multidimensional quantum entanglement with large-scale integrated optics, Science 360(6386), 285 (2018)
https://doi.org/10.1126/science.aar7053
23 C. Reimer, L. Caspani, M. Clerici, M. Ferrera, M. Kues, M. Peccianti, A. Pasquazi, L. Razzari, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, Integrated frequency comb source of heralded single photons, Opt. Express 22(6), 6535 (2014)
https://doi.org/10.1364/OE.22.006535
24 M. Kues, C. Reimer, P. Roztocki, L. R. Cortés, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, and R. Morandotti, On-chip generation of highdimensional entangled quantum states and their coherent control, Nature 546(7660), 622 (2017)
https://doi.org/10.1038/nature22986
25 M. Krenn, X. Gu, and A. Zeilinger, Quantum experiments and graphs: Multiparty states as coherent superpositions of perfect matchings, Phys. Rev. Lett. 119(24), 240403 (2017)
https://doi.org/10.1103/PhysRevLett.119.240403
26 X. Gu, M. Erhard, A. Zeilinger, and M. Krenn, Quantum experiments and graphs (ii): Quantum interference, computation, and state generation, Proc. Natl. Acad. Sci. USA 116(10), 4147 (2019)
https://doi.org/10.1073/pnas.1815884116
27 X. Gu, L. Chen, A. Zeilinger, and M. Krenn, Quantum experiments and graphs (iii): High-dimensional and multiparticle entanglement, Phys. Rev. A 99(3), 032338 (2019)
https://doi.org/10.1103/PhysRevA.99.032338
28 T. Feng, X. Zhang, Y. Tian, and Q. Feng, On-chip multiphoton entangled states by path identity, Int. J. Theor. Phys. 58(11), 3726 (2019)
https://doi.org/10.1007/s10773-019-04243-z
29 P. Zhu, S. Xue, Q. Zheng, C. Wu, X. Yu, Y. Wang, Y. Liu, X. Qiang, M. Deng, J. Wu, and P. Xu, Reconfigurable multiphoton entangled states based on quantum photonic chips, Opt. Express 28 (18), 26792 (2020)
https://doi.org/10.1364/OE.402383
30 X. Gu, L. Chen, and M. Krenn, Quantum experiments and hypergraphs: Multiphoton sources for quantum interference, quantum computation, and quantum entanglement, Phys. Rev. A 101(3), 033816 (2020)
https://doi.org/10.1103/PhysRevA.101.033816
31 A. Forbes and I. Nape, Quantum mechanics with patterns of light: Progress in high dimensional and multidimensional entanglement with structured light, AVS Quantum Science 1(1), 011701 (2019)
https://doi.org/10.1116/1.5112027
32 D. Cozzolino, B. Da Lio, D. Bacco, and L. K. Oxenløwe, Highdimensional quantum communication: Benefits, progress, and future challenges, Adv. Quant. Technol. 2(12), 1900038 (2019)
https://doi.org/10.1002/qute.201900038
33 M. Erhard, M. Krenn, and A. Zeilinger, Advances in high-dimensional quantum entanglement, Nat. Rev. Phys. 2(7), 365 (2020)
https://doi.org/10.1038/s42254-020-0193-5
34 M. Krenn, J. Kottmann, N. Tischler, and A. Aspuru-Guzik, Conceptual understanding through efficient inverse-design of quantum optical experiments, arXiv: 2005.06443 (2020)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed