|
|
Tuning the magnetic and electronic properties of strontium titanate by carbon doping |
Hui Zeng1, Meng Wu1, Hui-Qiong Wang1,2( ), Jin-Cheng Zheng1,2( ), Junyong Kang1 |
1. Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China 2. Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia |
|
|
Abstract The magnetic and electronic properties of strontium titanate with different carbon dopant configurations are explored using first-principles calculations with a generalized gradient approximation (GGA) and the GGA+U approach. Our results show that the structural stability, electronic properties and magnetic properties of C-doped SrTiO3 strongly depend on the distance between carbon dopants. In both GGA and GGA+U calculations, the doping structure is mostly stable with a nonmagnetic feature when the carbon dopants are nearest neighbors, which can be ascribed to the formation of a C–C dimer pair accompanied by stronger C–C and weaker C–Ti hybridizations as the C–C distance becomes smaller. As the C–C distance increases, C-doped SrTiO3 changes from an n-type nonmagnetic metal to ferromagnetic/antiferromagnetic half-metal and to an antiferromagnetic/ferromagnetic semiconductor in GGA calculations, while it changes from a nonmagnetic semiconductor to ferromagnetic half-metal and to an antiferromagnetic semiconductor using the GGA+U method. Our work demonstrates the possibility of tailoring the magnetic and electronic properties of C-doped SrTiO3, which might provide some guidance to extend the applications of strontium titanate as a magnetic or optoelectronic material.
|
Keywords
strontium titanate
carbon doping
magnetic and electronic states
carbon coupling
C–C dimer pair
GGA+U
|
Corresponding Author(s):
Hui-Qiong Wang,Jin-Cheng Zheng
|
Issue Date: 15 January 2021
|
|
1 |
E. Breckenfeld, R. Wilson, J. Karthik, A. R. Damodaran, D. G. Cahill, and L. W. Martin, Effect of growth induced (non)stoichiometry on the structure, dielectric response, and thermal conductivity of SrTiO3 thin films, Chem. Mater. 24(2), 331 (2012)
https://doi.org/10.1021/cm203042q
|
2 |
B. Luo, X. Wang, E. Tian, G. Li, and L. Li, Electronic structure, optical and dielectric proper-ties of BaTiO3/SrTiO3/CaTiO3 ferroelectric superlattices from first-principles calculations, J. Mater. Chem. C 3(33), 8625 (2015)
https://doi.org/10.1039/C5TC01622C
|
3 |
S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, Hightemperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals, J. Appl. Phys. 97(3), 034106 (2005)
https://doi.org/10.1063/1.1847723
|
4 |
K. L. Zhao, D. Chen, and D. X. Li, Effects of N adsorption on the structural and electronic properties of SrTiO3(001) surface, Appl. Surf. Sci. 256(21), 6262 (2010)
https://doi.org/10.1016/j.apsusc.2010.03.152
|
5 |
B. Modak and S. K. Ghosh, Enhancement of visible light photocatalytic activity of SrTiO3: A hybrid density functional study, J. Phys. Chem. C 119(41), 23503 (2015)
https://doi.org/10.1021/acs.jpcc.5b06667
|
6 |
F. Yang, Y. Liang, L. X. Liu, Q. Zhu, W. H. Wang, X. T. Zhu, and J. D. Guo, Controlled growth of complex polar oxide films with atomically precise molecular beam epitaxy, Front. Phys. 13(5), 136802 (2018)
https://doi.org/10.1007/s11467-018-0769-z
|
7 |
E. Guo, H. Lü, K. Jin, and G. Yang, Ultrafast photoelectric effects and high-sensitive photo-voltages in perovskite oxides and heterojunctions, Front. Phys. China 5(2), 176 (2010)
https://doi.org/10.1007/s11467-010-0020-z
|
8 |
B. Modak, and S. K. Ghosh, Exploring the role of La codoping beyond charge compensation for enhanced hydrogen evolution by Rh-SrTiO3, J. Phys. Chem. B 119(34), 11089 (2015)
https://doi.org/10.1021/acs.jpcb.5b02906
|
9 |
B. Modak, K. Srinivasu, and S. K. Ghosh, A hybrid DFT based investigation of the photocat-alytic activity of cation-anion codoped SrTiO3 for water splitting under visible light, Phys. Chem. Chem. Phys. 16(44), 24527 (2014)
https://doi.org/10.1039/C4CP02856B
|
10 |
W. Wei, Y. Dai, M. Guo, L. Yu, H. Jin, S. Han, and B. Huang, Codoping synergistic effects in N-doped SrTiO3 for higher energy conversion efficiency, Phys. Chem. Chem. Phys. 12(27), 7612 (2010)
https://doi.org/10.1039/b922399a
|
11 |
T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, and K. Domen, Photocatalytic water splitting with a quantum efficiency of almost unity, Nature 581(7809), 411 (2020)
https://doi.org/10.1038/s41586-020-2278-9
|
12 |
W. Zhang, A. R. Mohamed, and W. J. Ong, Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angew. Chem. Int. Ed. 10, 1002 (2020)
https://doi.org/10.1002/anie.201914925
|
13 |
M. Humayun, L. Xu, L. Zhou, Z. Zheng, Q. Fu, and W. Luo, Exceptional co-catalyst free ph-otocatalytic activities of B and Fe co-doped SrTiO3 for CO2 conversion and H2 evolution, Nano Res. 11(12), 6391 (2018)
https://doi.org/10.1007/s12274-018-2164-z
|
14 |
W. Luo, W. Duan, S. G. Louie, and M. L. Cohen, Structural and electronic properties of n-doped and p-doped Sr- TiO3, Phys. Rev. B 70(21), 214109 (2004)
https://doi.org/10.1103/PhysRevB.70.214109
|
15 |
J. Carrasco, F. Illas, N. Lopez, E. A. Kotomin, Y. F. Zhukovskii, R. A. Evarestov, Y. A. Mastrikov, S. Piskunov, and J. Maier, First-principles calculations of the atomic and electronic structure of F centers in the bulk and on the (001) surface of SrTiO3, Phys. Rev. B 73(6), 064106 (2006)
https://doi.org/10.1103/PhysRevB.73.064106
|
16 |
M. Rizwan, A. Ali, Z. Usman, N. R. Khalid, H. B. Jin, and C. B. Cao, Structural, electronic and optical properties of copper-doped SrTiO3 perovskite: A DFT study, Physica B 552, 52 (2019)
https://doi.org/10.1016/j.physb.2018.09.022
|
17 |
K. Yang, Y. Dai, and B. Huang, First-principles characterization of ferromagnetism in N-doped SrTiO3 and BaTiO3, Appl. Phys. Lett. 100(6), 062409 (2012)
https://doi.org/10.1063/1.3684832
|
18 |
X. L. Dong, K. H. Zhang, and M. X. Xue, First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni), Front. Phys. 13(5), 137106 (2018)
https://doi.org/10.1007/s11467-018-0807-x
|
19 |
H. F. Liu, Effect of nitrogen and carbon doping on electronic properties of SrTiO3, Solid State Commun. 152(22), 2063 (2012)
https://doi.org/10.1016/j.ssc.2012.08.027
|
20 |
C. Zhang, Y. Jia, Y. Jing, Y. Yao, J. Ma, and J. Sun, Effect of non-metal elements (B,C,N,F,P,S) mono-doping as anions on electronic structure of SrTiO3, Comput. Mater. Sci. 79, 69 (2013)
https://doi.org/10.1016/j.commatsci.2013.06.009
|
21 |
A. Shkabko, M. H. Aguirre, A. Kumar, Y. Kim, S. Jesse, R. Waser, S. V. Kalinin, and A. Weidenkaff, Surface deformations as a necessary requirement for resistance switching at the surface of SrTiO3:N, Nanotechnology 24(47), 475701 (2013)
https://doi.org/10.1088/0957-4484/24/47/475701
|
22 |
W. Akbar, T. Liaqat, I. Elahi, M. Zulfiqar, and S. Nazir, Modulated electronic and magnetic properties of 3d TMdoped SrTiO3: DFT+Ustudy, J. Magn. Magn. Mater. 500, 166325 (2020)
https://doi.org/10.1016/j.jmmm.2019.166325
|
23 |
C. Adessi, S. Thébaud, R. Bouzerar, and G. Bouzerar, Ab initio investigation of the role of vanadium impurity states in SrTiO3 for thermoelectricity, J. Phys. Chem. Solids 138, 138 (2020)
https://doi.org/10.1016/j.jpcs.2019.109180
|
24 |
W. J. Yin, H. Tang, S. H. Wei, M. M. Al-Jassim, J. Turner, and Y. Yan, Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO2, Phys. Rev. B 82(4), 045106 (2010)
https://doi.org/10.1103/PhysRevB.82.045106
|
25 |
Y. Gai, J. Li, S. S. Li, J. B. Xia, and S. H. Wei, Design of narrow-gap TiO2: A passivated codoping approachfor enhanced photoelectrochemical activity, Phys. Rev. Lett. 102(3), 036402 (2009)
https://doi.org/10.1103/PhysRevLett.102.036402
|
26 |
W. Zhu, X. Qiu, V. Iancu, X. Q. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh, M. P. Meyer, G. M. Paranthaman, H. H. Stocks, B. Weitering, G. Gu, Eres, and Z. Zhang, Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity, Phys. Rev. Lett. 103(22), 226401 (2009)
https://doi.org/10.1103/PhysRevLett.103.226401
|
27 |
J. Liu, L. Wang, J. Liu, T. Wang, W. Qu, and Z. Li, DFT study on electronic structures and optical absorption properties of C, S cation-doped SrTiO3, Cent. Eur. J. Phys. 7(4), 762 (2009)
https://doi.org/10.2478/s11534-009-0009-9
|
28 |
T. Shen, C. Hu, H. L. Dai, W. L. Yang, H. C. Liu, C. L. Tan, and X. L. Wei, First principles calculations of magnetic, electronic and optical properties of (Mn–Fe) codoped SrTiO3, Optik (Stuttg.) 127(5), 3055 (2015)
https://doi.org/10.1016/j.ijleo.2015.12.028
|
29 |
C. W. Chang and C. Hu, Graphene oxide-derived carbondoped SrTiO3 for highly efficient photocatalytic degradation of organic pollutants under visible light irradiation, Chem. Eng. J. 383, 123116 (2020)
https://doi.org/10.1016/j.cej.2019.123116
|
30 |
V. V. Bannikov, I. R. Shein, V. L. Kozhevnikov, and A. L. Ivanovskii, Magnetism without magnetic ions in non-magnetic perovskites SrTiO3, SrZrO3 and SrSnO3, J. Magn. Magn. Mater. 320(6), 936 (2008)
https://doi.org/10.1016/j.jmmm.2007.09.012
|
31 |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
|
32 |
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
|
33 |
W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)
https://doi.org/10.1103/PhysRev.140.A1133
|
34 |
J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
|
35 |
K. Yang, Y. Dai, B. Huang, and Y. P. Feng, Firstprinciples GGA+U study of the different conducting properties in pentavalent-ion-doped anatase and rutile TiO2, J. Phys. D Appl. Phys. 47(27), 275101 (2014)
https://doi.org/10.1088/0022-3727/47/27/275101
|
36 |
S. Nazir, M. Behtash, and K. Yang, Enhancing interfacial conductivity and spatial charge confinement of LaAlO3/SrTiO3 heterostructures via strain engineering, Appl. Phys. Lett. 105(14), 141602 (2014)
https://doi.org/10.1063/1.4897626
|
37 |
S. Nazir, M. Behtash, and K. Yang, The role of uniaxial strain in tailoring the interfacial pro-perties of LaAlO3/SrTiO3 heterostructure, RSC Advances 5(20), 15682 (2015)
https://doi.org/10.1039/C4RA15866K
|
38 |
H. Guo, Y. Zhao, N. Lu, E. Kan, X. C. Zeng, X. Wu, and J. Yang, Tunable magnetism in a nonmetal-substituted ZnO monolayer: A first-principles study, J. Phys. Chem. C 116(20), 11336 (2012)
https://doi.org/10.1021/jp2125069
|
39 |
D. D. Cuong, B. Lee, K. M. Choi, H. S. Ahn, S. Han, and J. Lee, Oxygen vacancy clustering and electron localization in oxygen-deficient SrTiO3: LDA+U study, Phys. Rev. Lett. 98(11), 115503 (2007)
https://doi.org/10.1103/PhysRevLett.98.115503
|
40 |
P. Sikam, P. Moontragoon, C. Sararat, A. Karaphun, E. Swatsitang, S. Pinitsoontorn, and P. Thongbai, DFT calculation and experimental study on structural, optical and magnetic properties of Co-doped SrTiO3, Appl. Surf. Sci. 446, 92 (2018)
https://doi.org/10.1016/j.apsusc.2018.02.161
|
41 |
X. X. Liao, H. Q. Wang, and J. C. Zheng, Tuning the structural, electronic, and magnetic properties of strontium titanate through atomic design: A comparison between oxygen vacancies and nitrogen doping, J. Am. Ceram. Soc. 96(2), 538 (2013)
https://doi.org/10.1111/jace.12072
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|