Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (4) : 43501    https://doi.org/10.1007/s11467-020-1034-9
RESEARCH ARTICLE
Tuning the magnetic and electronic properties of strontium titanate by carbon doping
Hui Zeng1, Meng Wu1, Hui-Qiong Wang1,2(), Jin-Cheng Zheng1,2(), Junyong Kang1
1. Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China
2. Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia
 Download: PDF(5776 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The magnetic and electronic properties of strontium titanate with different carbon dopant configurations are explored using first-principles calculations with a generalized gradient approximation (GGA) and the GGA+U approach. Our results show that the structural stability, electronic properties and magnetic properties of C-doped SrTiO3 strongly depend on the distance between carbon dopants. In both GGA and GGA+U calculations, the doping structure is mostly stable with a nonmagnetic feature when the carbon dopants are nearest neighbors, which can be ascribed to the formation of a C–C dimer pair accompanied by stronger C–C and weaker C–Ti hybridizations as the C–C distance becomes smaller. As the C–C distance increases, C-doped SrTiO3 changes from an n-type nonmagnetic metal to ferromagnetic/antiferromagnetic half-metal and to an antiferromagnetic/ferromagnetic semiconductor in GGA calculations, while it changes from a nonmagnetic semiconductor to ferromagnetic half-metal and to an antiferromagnetic semiconductor using the GGA+U method. Our work demonstrates the possibility of tailoring the magnetic and electronic properties of C-doped SrTiO3, which might provide some guidance to extend the applications of strontium titanate as a magnetic or optoelectronic material.

Keywords strontium titanate      carbon doping      magnetic and electronic states      carbon coupling      C–C dimer pair      GGA+U     
Corresponding Author(s): Hui-Qiong Wang,Jin-Cheng Zheng   
Issue Date: 15 January 2021
 Cite this article:   
Hui Zeng,Meng Wu,Hui-Qiong Wang, et al. Tuning the magnetic and electronic properties of strontium titanate by carbon doping[J]. Front. Phys. , 2021, 16(4): 43501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-1034-9
https://academic.hep.com.cn/fop/EN/Y2021/V16/I4/43501
1 E. Breckenfeld, R. Wilson, J. Karthik, A. R. Damodaran, D. G. Cahill, and L. W. Martin, Effect of growth induced (non)stoichiometry on the structure, dielectric response, and thermal conductivity of SrTiO3 thin films, Chem. Mater. 24(2), 331 (2012)
https://doi.org/10.1021/cm203042q
2 B. Luo, X. Wang, E. Tian, G. Li, and L. Li, Electronic structure, optical and dielectric proper-ties of BaTiO3/SrTiO3/CaTiO3 ferroelectric superlattices from first-principles calculations, J. Mater. Chem. C 3(33), 8625 (2015)
https://doi.org/10.1039/C5TC01622C
3 S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, Hightemperature carrier transport and thermoelectric properties of heavily La- or Nb-doped SrTiO3 single crystals, J. Appl. Phys. 97(3), 034106 (2005)
https://doi.org/10.1063/1.1847723
4 K. L. Zhao, D. Chen, and D. X. Li, Effects of N adsorption on the structural and electronic properties of SrTiO3(001) surface, Appl. Surf. Sci. 256(21), 6262 (2010)
https://doi.org/10.1016/j.apsusc.2010.03.152
5 B. Modak and S. K. Ghosh, Enhancement of visible light photocatalytic activity of SrTiO3: A hybrid density functional study, J. Phys. Chem. C 119(41), 23503 (2015)
https://doi.org/10.1021/acs.jpcc.5b06667
6 F. Yang, Y. Liang, L. X. Liu, Q. Zhu, W. H. Wang, X. T. Zhu, and J. D. Guo, Controlled growth of complex polar oxide films with atomically precise molecular beam epitaxy, Front. Phys. 13(5), 136802 (2018)
https://doi.org/10.1007/s11467-018-0769-z
7 E. Guo, H. Lü, K. Jin, and G. Yang, Ultrafast photoelectric effects and high-sensitive photo-voltages in perovskite oxides and heterojunctions, Front. Phys. China 5(2), 176 (2010)
https://doi.org/10.1007/s11467-010-0020-z
8 B. Modak, and S. K. Ghosh, Exploring the role of La codoping beyond charge compensation for enhanced hydrogen evolution by Rh-SrTiO3, J. Phys. Chem. B 119(34), 11089 (2015)
https://doi.org/10.1021/acs.jpcb.5b02906
9 B. Modak, K. Srinivasu, and S. K. Ghosh, A hybrid DFT based investigation of the photocat-alytic activity of cation-anion codoped SrTiO3 for water splitting under visible light, Phys. Chem. Chem. Phys. 16(44), 24527 (2014)
https://doi.org/10.1039/C4CP02856B
10 W. Wei, Y. Dai, M. Guo, L. Yu, H. Jin, S. Han, and B. Huang, Codoping synergistic effects in N-doped SrTiO3 for higher energy conversion efficiency, Phys. Chem. Chem. Phys. 12(27), 7612 (2010)
https://doi.org/10.1039/b922399a
11 T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, and K. Domen, Photocatalytic water splitting with a quantum efficiency of almost unity, Nature 581(7809), 411 (2020)
https://doi.org/10.1038/s41586-020-2278-9
12 W. Zhang, A. R. Mohamed, and W. J. Ong, Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angew. Chem. Int. Ed. 10, 1002 (2020)
https://doi.org/10.1002/anie.201914925
13 M. Humayun, L. Xu, L. Zhou, Z. Zheng, Q. Fu, and W. Luo, Exceptional co-catalyst free ph-otocatalytic activities of B and Fe co-doped SrTiO3 for CO2 conversion and H2 evolution, Nano Res. 11(12), 6391 (2018)
https://doi.org/10.1007/s12274-018-2164-z
14 W. Luo, W. Duan, S. G. Louie, and M. L. Cohen, Structural and electronic properties of n-doped and p-doped Sr- TiO3, Phys. Rev. B 70(21), 214109 (2004)
https://doi.org/10.1103/PhysRevB.70.214109
15 J. Carrasco, F. Illas, N. Lopez, E. A. Kotomin, Y. F. Zhukovskii, R. A. Evarestov, Y. A. Mastrikov, S. Piskunov, and J. Maier, First-principles calculations of the atomic and electronic structure of F centers in the bulk and on the (001) surface of SrTiO3, Phys. Rev. B 73(6), 064106 (2006)
https://doi.org/10.1103/PhysRevB.73.064106
16 M. Rizwan, A. Ali, Z. Usman, N. R. Khalid, H. B. Jin, and C. B. Cao, Structural, electronic and optical properties of copper-doped SrTiO3 perovskite: A DFT study, Physica B 552, 52 (2019)
https://doi.org/10.1016/j.physb.2018.09.022
17 K. Yang, Y. Dai, and B. Huang, First-principles characterization of ferromagnetism in N-doped SrTiO3 and BaTiO3, Appl. Phys. Lett. 100(6), 062409 (2012)
https://doi.org/10.1063/1.3684832
18 X. L. Dong, K. H. Zhang, and M. X. Xue, First-principles study of electronic structure and magnetic properties of SrTi1−xMxO3 (M= Cr, Mn, Fe, Co, or Ni), Front. Phys. 13(5), 137106 (2018)
https://doi.org/10.1007/s11467-018-0807-x
19 H. F. Liu, Effect of nitrogen and carbon doping on electronic properties of SrTiO3, Solid State Commun. 152(22), 2063 (2012)
https://doi.org/10.1016/j.ssc.2012.08.027
20 C. Zhang, Y. Jia, Y. Jing, Y. Yao, J. Ma, and J. Sun, Effect of non-metal elements (B,C,N,F,P,S) mono-doping as anions on electronic structure of SrTiO3, Comput. Mater. Sci. 79, 69 (2013)
https://doi.org/10.1016/j.commatsci.2013.06.009
21 A. Shkabko, M. H. Aguirre, A. Kumar, Y. Kim, S. Jesse, R. Waser, S. V. Kalinin, and A. Weidenkaff, Surface deformations as a necessary requirement for resistance switching at the surface of SrTiO3:N, Nanotechnology 24(47), 475701 (2013)
https://doi.org/10.1088/0957-4484/24/47/475701
22 W. Akbar, T. Liaqat, I. Elahi, M. Zulfiqar, and S. Nazir, Modulated electronic and magnetic properties of 3d TMdoped SrTiO3: DFT+Ustudy, J. Magn. Magn. Mater. 500, 166325 (2020)
https://doi.org/10.1016/j.jmmm.2019.166325
23 C. Adessi, S. Thébaud, R. Bouzerar, and G. Bouzerar, Ab initio investigation of the role of vanadium impurity states in SrTiO3 for thermoelectricity, J. Phys. Chem. Solids 138, 138 (2020)
https://doi.org/10.1016/j.jpcs.2019.109180
24 W. J. Yin, H. Tang, S. H. Wei, M. M. Al-Jassim, J. Turner, and Y. Yan, Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: The case of TiO2, Phys. Rev. B 82(4), 045106 (2010)
https://doi.org/10.1103/PhysRevB.82.045106
25 Y. Gai, J. Li, S. S. Li, J. B. Xia, and S. H. Wei, Design of narrow-gap TiO2: A passivated codoping approachfor enhanced photoelectrochemical activity, Phys. Rev. Lett. 102(3), 036402 (2009)
https://doi.org/10.1103/PhysRevLett.102.036402
26 W. Zhu, X. Qiu, V. Iancu, X. Q. Chen, H. Pan, W. Wang, N. M. Dimitrijevic, T. Rajh, M. P. Meyer, G. M. Paranthaman, H. H. Stocks, B. Weitering, G. Gu, Eres, and Z. Zhang, Band gap narrowing of titanium oxide semiconductors by noncompensated anion-cation codoping for enhanced visible-light photoactivity, Phys. Rev. Lett. 103(22), 226401 (2009)
https://doi.org/10.1103/PhysRevLett.103.226401
27 J. Liu, L. Wang, J. Liu, T. Wang, W. Qu, and Z. Li, DFT study on electronic structures and optical absorption properties of C, S cation-doped SrTiO3, Cent. Eur. J. Phys. 7(4), 762 (2009)
https://doi.org/10.2478/s11534-009-0009-9
28 T. Shen, C. Hu, H. L. Dai, W. L. Yang, H. C. Liu, C. L. Tan, and X. L. Wei, First principles calculations of magnetic, electronic and optical properties of (Mn–Fe) codoped SrTiO3, Optik (Stuttg.) 127(5), 3055 (2015)
https://doi.org/10.1016/j.ijleo.2015.12.028
29 C. W. Chang and C. Hu, Graphene oxide-derived carbondoped SrTiO3 for highly efficient photocatalytic degradation of organic pollutants under visible light irradiation, Chem. Eng. J. 383, 123116 (2020)
https://doi.org/10.1016/j.cej.2019.123116
30 V. V. Bannikov, I. R. Shein, V. L. Kozhevnikov, and A. L. Ivanovskii, Magnetism without magnetic ions in non-magnetic perovskites SrTiO3, SrZrO3 and SrSnO3, J. Magn. Magn. Mater. 320(6), 936 (2008)
https://doi.org/10.1016/j.jmmm.2007.09.012
31 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
32 G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
33 W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140(4A), A1133 (1965)
https://doi.org/10.1103/PhysRev.140.A1133
34 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
35 K. Yang, Y. Dai, B. Huang, and Y. P. Feng, Firstprinciples GGA+U study of the different conducting properties in pentavalent-ion-doped anatase and rutile TiO2, J. Phys. D Appl. Phys. 47(27), 275101 (2014)
https://doi.org/10.1088/0022-3727/47/27/275101
36 S. Nazir, M. Behtash, and K. Yang, Enhancing interfacial conductivity and spatial charge confinement of LaAlO3/SrTiO3 heterostructures via strain engineering, Appl. Phys. Lett. 105(14), 141602 (2014)
https://doi.org/10.1063/1.4897626
37 S. Nazir, M. Behtash, and K. Yang, The role of uniaxial strain in tailoring the interfacial pro-perties of LaAlO3/SrTiO3 heterostructure, RSC Advances 5(20), 15682 (2015)
https://doi.org/10.1039/C4RA15866K
38 H. Guo, Y. Zhao, N. Lu, E. Kan, X. C. Zeng, X. Wu, and J. Yang, Tunable magnetism in a nonmetal-substituted ZnO monolayer: A first-principles study, J. Phys. Chem. C 116(20), 11336 (2012)
https://doi.org/10.1021/jp2125069
39 D. D. Cuong, B. Lee, K. M. Choi, H. S. Ahn, S. Han, and J. Lee, Oxygen vacancy clustering and electron localization in oxygen-deficient SrTiO3: LDA+U study, Phys. Rev. Lett. 98(11), 115503 (2007)
https://doi.org/10.1103/PhysRevLett.98.115503
40 P. Sikam, P. Moontragoon, C. Sararat, A. Karaphun, E. Swatsitang, S. Pinitsoontorn, and P. Thongbai, DFT calculation and experimental study on structural, optical and magnetic properties of Co-doped SrTiO3, Appl. Surf. Sci. 446, 92 (2018)
https://doi.org/10.1016/j.apsusc.2018.02.161
41 X. X. Liao, H. Q. Wang, and J. C. Zheng, Tuning the structural, electronic, and magnetic properties of strontium titanate through atomic design: A comparison between oxygen vacancies and nitrogen doping, J. Am. Ceram. Soc. 96(2), 538 (2013)
https://doi.org/10.1111/jace.12072
[1] Supplemental materials Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed