Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (4) : 42300    https://doi.org/10.1007/s11467-020-1037-6
REVIEW ARTICLE
Molecular collisions: From near-cold to ultra-cold
Yang Liu(), Le Luo()
1School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082, China
 Download: PDF(3413 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the past two decades, the revolutionary technologies of creating cold and ultracold molecules have provided cutting-edge experiments for studying the fundamental phenomena of collision physics. To a large degree, the recent explosion of interest in the molecular collisions has been sparked by dramatic progress of experimental capabilities and theoretical methods, which permit molecular collisions to be explored deep in the quantum mechanical limit. Tremendous experimental advances in the field have already been achieved, and the authors, from an experimental perspective, provide a review of these studies for exploring the nature of molecular collisions occurring at temperatures ranging from the Kelvin to the nanoKelvin regime, as well as for applications of producing ultracold molecules.

Keywords molecular collision      near cold collisions      cold collisions      ultracold collisions     
Corresponding Author(s): Yang Liu,Le Luo   
Issue Date: 26 March 2021
 Cite this article:   
Yang Liu,Le Luo. Molecular collisions: From near-cold to ultra-cold[J]. Front. Phys. , 2021, 16(4): 42300.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-1037-6
https://academic.hep.com.cn/fop/EN/Y2021/V16/I4/42300
1 Y. T. Lee, J. McDonald, P. LeBreton, and D. Herschbach, Molecular beam reactive scattering apparatus with electron bombardment detector, Rev. Sci. Instrum. 40(11), 1402 (1969)
https://doi.org/10.1063/1.1683809
2 D. R. Herschbach, Molecular dynamics of elementary chemical reactions, Angew. Chem. Int. Ed. Engl. 26(12), 1221 (1987)
https://doi.org/10.1002/anie.198712211
3 J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Experiments and theory in cold and ultracold collisions, Rev. Mod. Phys. 71(1), 1 (1999)
https://doi.org/10.1103/RevModPhys.71.1
4 https://www.nobelprize.org/prizes/chemistry/1986/
5 https://www.nobelprize.org/prizes/physics/1997/
6 E. R. Hudson, H. Lewandowski, B. C. Sawyer, and J. Ye, Cold molecule spectroscopy for constraining the evolution of the fine structure constant, Phys. Rev. Lett. 96(14), 143004 (2006)
https://doi.org/10.1103/PhysRevLett.96.143004
7 T. Zelevinsky, S. Kotochigova, and J. Ye, Precision test of mass-ratio variations with lattice-confined ultracold molecules, Phys. Rev. Lett. 100(4), 043201 (2008)
https://doi.org/10.1103/PhysRevLett.100.043201
8 C. Chin, V. Flambaum, and M. Kozlov, Ultracold molecules: New probes on the variation of fundamental constants, New J. Phys. 11(5), 055048 (2009)
https://doi.org/10.1088/1367-2630/11/5/055048
9 J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev, B. R. O’Leary, C. D. Panda, M. F. Parsons, E. S. Petrik, B. Spaun, A. C. Vutha, and A. D. West, Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343(6168), 269 (2014)
https://doi.org/10.1126/science.1248213
10 J. Kobayashi, A. Ogino, and S. Inouye, Measurement of the variation of electron-to-proton mass ratio using ultracold molecules produced from laser-cooled atoms, Nat. commun. 10, 3771 (2019)
https://doi.org/10.1038/s41467-019-11761-1
11 M. A. Baranov, Theoretical progress in many-body physics with ultracold dipolar gases, Phys. Rep. 464(3), 71 (2008)
https://doi.org/10.1016/j.physrep.2008.04.007
12 J. Eisert, M. Friesdorf, and C. Gogolin, Quantum manybody systems out of equilibrium, Nat. Phys. 11(2), 124 (2015)
https://doi.org/10.1038/nphys3215
13 D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88(6), 067901 (2002)
https://doi.org/10.1103/PhysRevLett.88.067901
14 P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. Schoelkopf, and P. Zoller, Hybrid quantum processors: Molecular ensembles as quantum memory for solid state circuits, Phys. Rev. Lett. 97(3), 033003 (2006)
https://doi.org/10.1103/PhysRevLett.97.033003
15 A. Micheli, G. Brennen, and P. Zoller, A toolbox for lattice-spin models with polar molecules, Nat. Phys. 2(5), 341 (2006)
https://doi.org/10.1038/nphys287
16 A. V. Gorshkov, S. R. Manmana, G. Chen, J. Ye, E. Demler, M. D. Lukin, and A. M. Rey, Tunable superfluidity and quantum magnetism with ultracold polar molecules, Phys. Rev. Lett. 107(11), 115301 (2011)
https://doi.org/10.1103/PhysRevLett.107.115301
17 B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Observation of dipolar spin-exchange interactions with lattice-confined polar molecules, Nature 501(7468), 521 (2013)
https://doi.org/10.1038/nature12483
18 N. Balakrishnan and A. Dalgarno, Chemistry at ultracold temperatures, Chem. Phys. Lett. 341(5–6), 652 (2001)
https://doi.org/10.1016/S0009-2614(01)00515-2
19 R. V. Krems, Cold controlled chemistry, Phys. Chem. Chem. Phys. 10(28), 4079 (2008)
https://doi.org/10.1039/b802322k
20 M. T. Bell and T. P. Softley, Ultracold molecules and ultracold chemistry, Mol. Phys. 107(2), 99 (2009)
https://doi.org/10.1080/00268970902724955
21 K. K. Ni, S. Ospelkaus, D. Wang, G. Quéméner, B. Neyenhuis, M. De Miranda, J. Bohn, J. Ye, and D. Jin, Dipolar collisions of polar molecules in the quantum regime, Nature 464(7293), 1324 (2010)
https://doi.org/10.1038/nature08953
22 S. Ospelkaus, K. K. Ni, D. Wang, M. De Miranda, B. Neyenhuis, G. Quéméner, P. Julienne, J. Bohn, D. Jin, and J. Ye, Quantum-state controlled chemical reactions of ultracold potassium–rubidium molecules, Science 327(5967), 853 (2010)
https://doi.org/10.1126/science.1184121
23 B. K. Stuhl, M. T. Hummon, and J. Ye, Cold stateselected molecular collisions and reactions, Annu. Rev. Phys. Chem. 65(1), 501 (2014)
https://doi.org/10.1146/annurev-physchem-040513-103744
24 O. Dulieu and A. Osterwalder, Cold Chemistry: Molecular Scattering and Reactivity Near Absolute Zero, Vol. 11, Royal Society of Chemistry, 2017
https://doi.org/10.1039/9781782626800
25 C. Naulin and M. Costes, Experimental search for scattering resonances in near cold molecular collisions, Int. Rev. Phys. Chem. 33(4), 427 (2014)
https://doi.org/10.1080/0144235X.2014.957565
26 L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, Cold and ultracold molecules: Science, technology and applications, New J. Phys. 11(5), 055049 (2009)
https://doi.org/10.1088/1367-2630/11/5/055049
27 S. A. Harich, D. Dai, C. C. Wang, X. Yang, S. Der Chao, and R. T. Skodje, Forward scattering due to slow-down of the intermediate in the H+ HD → D+ H2 reaction, Nature 419(6904), 281 (2002)
https://doi.org/10.1038/nature01068
28 X. Yang and D. H. Zhang, Dynamical resonances in the fluorine atom reaction with the hydrogen molecule, Acc. Chem. Res. 41(8), 981 (2008)
https://doi.org/10.1021/ar700258g
29 C. Berteloite, M. Lara, A. Bergeat, S. D. Le Picard, F. Dayou, K. M. Hickson, A. Canosa, C. Naulin, J. M. Launay, I. R. Sims, and M. Costes, Kinetics and dynamics of the S(2D1) + H2 → SH+ H reaction at very low temperatures and collision energies, Phys. Rev. Lett. 105(20), 203201 (2010)
https://doi.org/10.1103/PhysRevLett.105.203201
30 A. Bergeat, J. Onvlee, C. Naulin, A. Van Der Avoird, and M. Costes, Quantum dynamical resonances in low-energy CO(j= 0) + He inelastic collisions, Nat. Chem. 7(4), 349 (2015)
https://doi.org/10.1038/nchem.2204
31 J. J. Gilijamse, S. Hoekstra, S. Y. van de Meerakker, G. C. Groenenboom, and G. Meijer, Near-threshold inelastic collisions using molecular beams with a tunable velocity, Science 313(5793), 1617 (2006)
https://doi.org/10.1126/science.1131867
32 H. L. Bethlem, G. Berden, and G. Meijer, Decelerating neutral dipolar molecules, Phys. Rev. Lett. 83(8), 1558 (1999)
https://doi.org/10.1103/PhysRevLett.83.1558
33 M. Kirste, X. Wang, H. C. Schewe, G. Meijer, K. Liu, A. van der Avoird, L. M. Janssen, K. B. Gubbels, G. C. Groenenboom, and S. Y. van de Meerakker, Quantumstate resolved bimolecular collisions of velocity-controlled OH with NO radicals, Science 338(6110), 1060 (2012)
https://doi.org/10.1126/science.1229549
34 S. N. Vogels, J. Onvlee, S. Chefdeville, A. van der Avoird, G. C. Groenenboom, and S. Y. van de Meerakker, Imaging resonances in low-energy NO–He inelastic collisions, Science 350(6262), 787 (2015)
https://doi.org/10.1126/science.aad2356
35 K. Liu, Crossed-beam studies of neutral reactions: Statespecific differential cross sections, Annu. Rev. Phys. Chem. 52(1), 139 (2001)
https://doi.org/10.1146/annurev.physchem.52.1.139
36 K. Liu, Vibrational control of bimolecular reactions with methane by mode, bond, and stereo selectivity, Annu. Rev. Phys. Chem. 67(1), 91 (2016)
https://doi.org/10.1146/annurev-physchem-040215-112522
37 R. Liu, F. Wang, B. Jiang, G. Czakó, M. Yang, K. Liu, and H. Guo, Rotational mode specificity in the Cl+ CHD3 → HCl+ CD3 reaction, J. Chem. Phys. 141(7), 074310 (2014)
https://doi.org/10.1063/1.4892598
38 Y. Shagam, A. Klein, W. Skomorowski, R. Yun, V. Averbukh, C. P. Koch, and E. Narevicius, Molecular hydrogen interacts more strongly when rotationally excited at low temperatures leading to faster reactions, Nat. Chem. 7(11), 921 (2015)
https://doi.org/10.1038/nchem.2359
39 Ian W. M. Smith, Low Temperatures and Cold Molecules, World Scientific, 2008
40 R. Krems, B. Friedrich, and W. C. Stwalley, Cold Molecules: Theory, Experiment, Applications, CRC Press, 2009
https://doi.org/10.1201/9781420059045
41 X. Yang, State-to-state dynamics of elementary bimolecular reactions, Annu. Rev. Phys. Chem. 58(1), 433 (2007)
https://doi.org/10.1146/annurev.physchem.58.032806.104632
42 R. B. Bernstein, Atom–Molecule Collision Theory, Plenum Press, 1979
https://doi.org/10.1007/978-1-4613-2913-8
43 M. S. Child, Molecular Collision Theory, Courier Corporation, 1996
44 R. D. Levine, Molecular Reaction Dynamics, Cambridge University Press, 2009
45 G. Chalasinski and M. M. Szczesniak, Origins of structure and energetics of van der Waals clusters from ab initiocalculations, Chem. Rev. 94(7), 1723 (1994)
https://doi.org/10.1021/cr00031a001
46 G. Chałasiński and M. M. Szcześniak, State of the art and challenges of the ab initio theory of intermolecular interactions, Chem. Rev. 100(11), 4227 (2000)
https://doi.org/10.1021/cr990048z
47 K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-Gordon, A fifth-order perturbation comparison of electron correlation theories, Chem. Phys. Lett. 157(6), 479 (1989)
https://doi.org/10.1016/S0009-2614(89)87395-6
48 B. O. Roos, The complete active space self-consistent field method and its applications in electronic structure calculations, Adv. Chem. Phys. 69, 399 (1987)
49 H. J. Werner and P. J. Knowles, A second order multiconfiguration SCF procedure with optimum convergence, J. Chem. Phys. 82(11), 5053 (1985)
https://doi.org/10.1063/1.448627
50 Jr Dunning, Gaussian basis sets for use in correlated molecular calculations (I): The atoms boron through neon and hydrogen, J. Chem. Phys. 90(2), 1007 (1989)
https://doi.org/10.1063/1.456153
51 E. S. Sachs, J. Hinze, and N. H. Sabelli, Frozen core approximation, a pseudopotential method tested on six states of NaH, J. Chem. Phys. 62(9), 3393 (1975)
https://doi.org/10.1063/1.430993
52 H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, Molpro: A general-purpose quantum chemistry program package, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2(2), 242 (2012)
https://doi.org/10.1002/wcms.82
53 G. C. Schatz, The analytical representation of electronic potential-energy surfaces, Rev. Mod. Phys. 61(3), 669 (1989)
https://doi.org/10.1103/RevModPhys.61.669
54 T. Hollebeek, T. S. Ho, and H. Rabitz, Constructing multidimensional molecular potential energy surfaces from ab initiodata, Annu. Rev. Phys. Chem. 50(1), 537 (1999)
https://doi.org/10.1146/annurev.physchem.50.1.537
55 P. Kuntz and A. Roach, Ion-molecule reactions of the rare gases with hydrogen (Part 1): Diatomics-in-molecules potential energy surface for ArH+2, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 68, 259 (1972)
https://doi.org/10.1039/F29726800259
56 T. S. Ho and H. Rabitz, Proper construction of ab initio global potential surfaces with accurate long-range interactions, J. Chem. Phys. 113(10), 3960 (2000)
https://doi.org/10.1063/1.1288268
57 A. Frishman, D. K. Hoffman, and D. J. Kouri, Distributed approximating functional fit of the H3ab initiopotentialenergy data of Liu and Siegbahn, J. Chem. Phys. 107(3), 804 (1997)
https://doi.org/10.1063/1.474380
58 E. Garcia and A. Lagana’, A fit of the potential energy surface of the LiHF system, Mol. Phys. 52(5), 1115 (1984)
https://doi.org/10.1080/00268978400101821
59 J. N. Murrell, Molecular Potential Energy Functions, John Wiley, 1984
60 G. S. Dhont, J. H. van Lenthe, G. C. Groenenboom, and A. van der Avoird, Ab initiocalculation of the NH(3Σ−)–NH(3Σ−) interaction potentials in the quintet, triplet,and singlet states, J. Chem. Phys. 123(18), 184302 (2005)
https://doi.org/10.1063/1.2079867
61 L. M. Janssen, G. C. Groenenboom, A. van der Avoird, P. S. Żuchowski, and R. Podeszwa, Ab initio potential energy surfaces for NH(3Σ−)–NH(3Σ−) with analytical long range, J. Chem. Phys. 131(22), 224314 (2009)
https://doi.org/10.1063/1.3268920
62 Z. Li, V. Apkarian, and L. B. Harding, A theoretical study of solid hydrogens doped with atomic oxygen, J. Chem. Phys. 106(3), 942 (1997)
https://doi.org/10.1063/1.473174
63 M. H. Alexander, Theoretical investigation of weaklybound complexes of O(3P) with H2, J. Chem. Phys. 108(11), 4467 (1998)
https://doi.org/10.1063/1.475858
64 S. Rogers, D. Wang, A. Kuppermann, and S. Walch, Chemically accurate ab initiopotential energy surfaces for the lowest 3A′ and 3A′′ electronically adiabatic states of O(3P) + H2, J. Phys. Chem. A 104(11), 2308 (2000)
https://doi.org/10.1021/jp992985g
65 J. Brandão, C. Mogo, and B. C. Silva, Potential energy surface for H2O(3A′′) from accurate ab initio data with inclusion of long-range interactions, J. Chem. Phys. 121(18), 8861 (2004)
https://doi.org/10.1063/1.1802434
66 S. Atahan, J. Kłos, P. S. Żuchowski, and M. H. Alexander, An ab initio investigation of the O(3P)–H2(1Σ+g) van der Waals well, Phys. Chem. Chem. Phys. 8(38), 4420 (2006)
https://doi.org/10.1039/B608871F
67 P. J. Knowles and H. J. Werner, An efficient method for the evaluation of coupling coefficients in configuration interaction calculations, Chem. Phys. Lett. 145(6), 514 (1988)
https://doi.org/10.1016/0009-2614(88)87412-8
68 H. J. Werner and P. J. Knowles, An efficient internally contracted multiconfiguration–reference configuration interaction method, J. Chem. Phys. 89(9), 5803 (1988)
https://doi.org/10.1063/1.455556
69 B. Jeziorski, R. Moszynski, and K. Szalewicz, Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes, Chem. Rev. 94(7), 1887 (1994)
https://doi.org/10.1021/cr00031a008
70 A. S. Zyubin, A. M. Mebel, S. Der Chao, and R. T. Skodje, Reaction dynamics of S(1D)+H2/D2 on a new ab initiopotential surface, J. Chem. Phys. 114(1), 320 (2001)
https://doi.org/10.1063/1.1329887
71 T. S. Ho, T. Hollebeek, H. Rabitz, S. Der Chao, R. T. Skodje, A. S. Zyubin, and A. M. Mebel, A globally smooth ab initiopotential surface of the 1A state for the reaction S(1D)+H2, J. Chem. Phys. 116(10), 4124 (2002)
https://doi.org/10.1063/1.1431280
72 R. T. Pack and G. A. Parker, Quantum reactive scattering in three dimensions using hyperspherical (APH) coordinates: Theory, J. Chem. Phys. 87(7), 3888 (1987)
https://doi.org/10.1063/1.452944
73 C. Makrides, J. Hazra, G. Pradhan, A. Petrov, B. K. Kendrick, T. González-Lezana, N. Balakrishnan, and S. Kotochigova, Ultracold chemistry with alkali-metal–rareearth molecules, Phys. Rev. A 91(1), 012708 (2015)
https://doi.org/10.1103/PhysRevA.91.012708
74 J. Croft, C. Makrides, M. Li, A. Petrov, B. Kendrick, N. Balakrishnan, and S. Kotochigova, Universality and chaoticity in ultracold K+KRb chemical reactions, Nat. Commun. 8(1), 15897 (2017)
https://doi.org/10.1038/ncomms15897
75 B. J. Braams and J. M. Bowman, Permutationally invariant potential energy surfaces in high dimensionality, Int. Rev. Phys. Chem. 28(4), 577 (2009)
https://doi.org/10.1080/01442350903234923
76 J. M. Bowman, G. Czako, and B. Fu, High-dimensional ab initio potential energy surfaces for reaction dynamics calculations, Phys. Chem. Chem. Phys. 13(18), 8094 (2011)
https://doi.org/10.1039/c0cp02722g
77 G. Czakó and J. M. Bowman, Dynamics of the reaction of methane with chlorine atom on an accurate potential energy surface, Science 334(6054), 343 (2011)
https://doi.org/10.1126/science.1208514
78 S. C. Althorpe and D. C. Clary, Quantum scattering calculations on chemical reactions, Annu. Rev. Phys. Chem. 54(1), 493 (2003)
https://doi.org/10.1146/annurev.physchem.54.011002.103750
79 M. Brouard and C. Vallance, Tutorials in Molecular Reaction Dynamics, Royal Society of Chemistry, 2015
80 A. Klein, Y. Shagam, W. Skomorowski, P. S. Żuchowski, M. Pawlak, L. M. Janssen, N. Moiseyev, S. Y. van de Meerakker, A. van der Avoird, C. P. Koch, and E. Narevicius, Directly probing anisotropy in atom–molecule collisions through quantum scattering resonances, Nat. Phys. 13(1), 35 (2017)
https://doi.org/10.1038/nphys3904
81 A. Arthurs and A. Dalgarno, The theory of scattering by a rigid rotator, Proc. R. Soc. Lond. A 256(1287), 540 (1960)
https://doi.org/10.1098/rspa.1960.0125
82 M. Quack and J. Troe, Specific rate constants of unimolecular processes (II): Adiabatic channel model, Ber. Bunsenges. Phys. Chem 78(3), 240 (1974)
https://doi.org/10.1002/bbpc.19740780306
83 D. Clary, Calculations of rate constants for ion–molecule reactions using a combined capture and centrifugal sudden approximation, Mol. Phys. 54(3), 605 (1985)
https://doi.org/10.1080/00268978500100461
84 D. C. Clary, Journal of the Chemical Society, Faraday Transactions2, Molecular and Chemical Physics 83, 139 (1987)
https://doi.org/10.1039/f29878300139
85 M. Ramillon and R. McCarroll, Adiabatic capture models for fast chemical reactions, J. Chem. Phys. 101(10), 8697 (1994)
https://doi.org/10.1063/1.468064
86 D. Clary, Fast chemical reactions: Theory challenges experiment, Annu. Rev. Phys. Chem. 41(1), 61 (1990)
https://doi.org/10.1146/annurev.pc.41.100190.000425
87 T. J. Frankcombe and G. Nyman, Adiabatic capture theory applied to N+ NH → N2+ H at low temperature, J. Phys. Chem. A 111(50), 13163 (2007)
https://doi.org/10.1021/jp076422d
88 T. V. Tscherbul and A. A. Buchachenko, Adiabatic channel capture theory applied to cold atom–molecule reactions: Li+ CaH → LiH+ Ca at 1 K, New J. Phys. 17(3), 035010 (2015)
https://doi.org/10.1088/1367-2630/17/3/035010
89 V. Singh, K. S. Hardman, N. Tariq, M. J. Lu, A. Ellis, M. J. Morrison, and J. D. Weinstein, Chemical reactions of atomic lithium and molecular calcium monohydride at 1 K, Phys. Rev. Lett. 108(20), 203201 (2012)
https://doi.org/10.1103/PhysRevLett.108.203201
90 M. Pawlak, Y. Shagam, E. Narevicius, and N. Moiseyev, Adiabatic theory for anisotropic cold molecule collisions, J. Chem. Phys. 143(7), 074114 (2015)
https://doi.org/10.1063/1.4928690
91 M. Pawlak, Y. Shagam, A. Klein, E. Narevicius, and N. Moiseyev, Adiabatic variational theory for cold atom– molecule collisions: Application to a metastable helium atom colliding with ortho- and para-hydrogen molecules, J. Phys. Chem. A 121(10), 2194 (2017)
https://doi.org/10.1021/acs.jpca.6b13038
92 D. Bhattacharya, A. Ben-Asher, I. Haritan, M. Pawlak, A. Landau, and N. Moiseyev, Polyatomic ab initio complex potential energy surfaces: Illustration of ultracold collisions, J. Chem. Theory Comput. 13(4), 1682 (2017)
https://doi.org/10.1021/acs.jctc.7b00083
93 D. Bhattacharya, M. Pawlak, A. Ben-Asher, A. Landau, I. Haritan, E. Narevicius, and N. Moiseyev, Quantum effects in cold molecular collisions from spatial polarization of electronic wave function,J. Phys. Chem. Lett. 10(4), 855 (2019)
https://doi.org/10.1021/acs.jpclett.8b03807
94 M. Pawlak, P. S. Żuchowski, N. Moiseyev, and P. Jankowski, Nonrigidity effects — a missing puzzle piece in the description of low-energy anisotropic molecular collisions, J. Chem. Theory Comput. 16, 2450 (2020)
https://doi.org/10.1021/acs.jctc.0c00183
95 R. Krems and A. Dalgarno, Quantum-mechanical theory of atom–molecule and molecular collisions in a magnetic field: Spin depolarization, J. Chem. Phys. 120(5), 2296 (2004)
https://doi.org/10.1063/1.1636691
96 T. Tscherbul, Y. V. Suleimanov, V. Aquilanti, and R. Krems, Magnetic field modification of ultracold molecule– molecule collisions, New J. Phys. 11(5), 055021 (2009)
https://doi.org/10.1088/1367-2630/11/5/055021
97 T. V. Tscherbul and A. Dalgarno, Quantum theory of molecular collisions in a magnetic field: Efficient calculations based on the total angular momentum representation, J. Chem. Phys. 133(18), 184104 (2010)
https://doi.org/10.1063/1.3503500
98 T. Tscherbul, Total-angular-momentum representation for atom–molecule collisions in electric fields, Phys. Rev. A 85(5), 052710 (2012)
https://doi.org/10.1103/PhysRevA.85.052710
99 L. M. Janssen, P. S. Żuchowski, A. van der Avoird, G. C. Groenenboom, and J. M. Hutson, Cold and ultracold NH–NH collisions in magnetic fields, Phys. Rev. A 83(2), 022713 (2011)
https://doi.org/10.1103/PhysRevA.83.022713
100 R. V. Krems, Molecules near absolute zero and external field control of atomic and molecular dynamics, Int. Rev. Phys. Chem. 24(1), 99 (2005)
https://doi.org/10.1080/01442350500167161
101 R. V. Krems, Molecules in Electromagnetic Fields: From Ultracold Physics to Controlled Chemistry, John Wiley & Sons, 2018
https://doi.org/10.1002/9781119382638
102 J. L. Bohn, Inelastic collisions of ultracold polar molecules, Phys. Rev. A 63(5), 052714 (2001)
https://doi.org/10.1103/PhysRevA.63.052714
103 A. V. Avdeenkov and J. L. Bohn, Collisional dynamics of ultracold OH molecules in an electrostatic field, Phys. Rev. A 66(5), 052718 (2002)
https://doi.org/10.1103/PhysRevA.66.052718
104 C. Ticknor and J. L. Bohn, Influence of magnetic fields on cold collisions of polar molecules, Phys. Rev. A 71(2), 022709 (2005)
https://doi.org/10.1103/PhysRevA.71.022709
105 A. V. Avdeenkov and J. L. Bohn, Ultracold collisions of oxygen molecules, Phys. Rev. A 64(5), 052703 (2001)
https://doi.org/10.1103/PhysRevA.64.052703
106 M. Hapka, G. Chałasiński, J. Kłos, and P. S. Żuchowski, First-principle interaction potentials for metastable He(3S) and Ne(3P) with closed-shell molecules: Application to Penning-ionizing systems, J. Chem. Phys. 139(1), 014307 (2013)
https://doi.org/10.1063/1.4812182
107 A. B. Henson, S. Gersten, Y. Shagam, J. Narevicius, and E. Narevicius, Observation of resonances in penning ionization reactions at sub-Kelvin temperatures in merged beams, Science 338(6104), 234 (2012)
https://doi.org/10.1126/science.1229141
108 N. Balakrishnan, G. C. Groenenboom, R. Krems, and A. Dalgarno, The He–CaH(2Σ+) interaction (II): Collisions at cold and ultracold temperatures, J. Chem. Phys. 118(16), 7386 (2003)
https://doi.org/10.1063/1.1562947
109 R. Krems, A. Dalgarno, N. Balakrishnan, and G. Groenenboom, Spin-flipping transitions in 2Σ molecules induced by collisions with structureless atoms, Phys. Rev. A 67(6), 060703 (2003)
https://doi.org/10.1103/PhysRevA.67.060703
110 R. Krems, H. Sadeghpour, A. Dalgarno, D. Zgid, J. Kłos, and G. Chałasiński, Low-temperature collisions of NH (X3Σ −) molecules with He atoms in a magnetic field: An ab initio study, Phys. Rev. A 68(5), 051401 (2003)
https://doi.org/10.1103/PhysRevA.68.051401
111 H. Cybulski, R. Krems, H. Sadeghpour, A. Dalgarno, J. Kłos, G. Groenenboom, A. van der Avoird, D. Zgid, and G. Chałasiński, Interaction of NH(X3Σ −) with He: Potential energy surface, bound states, and collisional Zeeman relaxation, J. Chem. Phys. 122(9), 094307 (2005)
https://doi.org/10.1063/1.1857473
112 W. C. Campbell, T. V. Tscherbul, H. I. Lu, E. Tsikata, R. V. Krems, and J. M. Doyle, Mechanism of collisional spin relaxation in 3Σ molecules, Phys. Rev. Lett. 102(1), 013003 (2009)
https://doi.org/10.1103/PhysRevLett.102.013003
113 H. A. Bethe, Theory of disintegration of nuclei by neutrons, Phys. Rev. 47(10), 747 (1935)
https://doi.org/10.1103/PhysRev.47.747
114 E. P. Wigner, On the behavior of cross sections near thresholds, Phys. Rev. 73(9), 1002 (1948)
https://doi.org/10.1103/PhysRev.73.1002
115 M. Langevin, in: Annales de chimie et de physique, Series, Vol. 5, 1905, pp 245–288
116 P. Soldán, M. T. Cvitaš, J. M. Hutson, P. Honvault, and J. M. Launay, Quantum dynamics of ultracold Na+ Na2 collisions, Phys. Rev. Lett. 89(15), 153201 (2002)
https://doi.org/10.1103/PhysRevLett.89.153201
117 G. Quéméner, P. Honvault, and J. M. Launay, Sensitivity of the dynamics of Na+ Na2 collisions on the three-body interaction at ultralow energies, Europ. Phys. J. D 30, 201 (2004)
https://doi.org/10.1140/epjd/e2004-00078-2
118 M. T. Cvitaš, P. Soldán, J. M. Hutson, P. Honvault, and J. M. Launay, Ultracold collisions involving heteronuclear alkali metal dimers, Phys. Rev. Lett. 94(20), 200402 (2005)
https://doi.org/10.1103/PhysRevLett.94.200402
119 M. T. Cvitaš, P. Soldán, J. M. Hutson, P. Honvault, and J. M. Launay, Ultracold Li+ Li2 collisions: Bosonic and fermionic cases, Phys. Rev. Lett. 94(3), 033201 (2005)
https://doi.org/10.1103/PhysRevLett.94.033201
120 M. T. Cvitaš, P. Soldán, J. M. Hutson, P. Honvault, and J. M. Launay, Interactions and dynamics in Li+Li2 ultracold collisions, J. Chem. Phys. 127(7), 074302 (2007)
https://doi.org/10.1063/1.2752162
121 G. Quéméner, J. M. Launay, and P. Honvault, Ultracold collisions between Li atoms and Li2 diatoms in high vibrational states, Phys. Rev. A 75(5), 050701 (2007)
https://doi.org/10.1103/PhysRevA.75.050701
122 G. Quéméner and J. L. Bohn, Strong dependence of ultracold chemical rates on electric dipole moments, Phys. Rev. A 81(2), 022702 (2010)
https://doi.org/10.1103/PhysRevA.81.022702
123 G. Quéméner, J. L. Bohn, A. Petrov, and S. Kotochigova, Universalities in ultracold reactions of alkali-metal polar molecules, Phys. Rev. A 84(6), 062703 (2011)
https://doi.org/10.1103/PhysRevA.84.062703
124 P. S. Julienne, T. M. Hanna, and Z. Idziaszek, Universal ultracold collision rates for polar molecules of two alkalimetal atoms, Phys. Chem. Chem. Phys. 13(42), 19114 (2011)
https://doi.org/10.1039/c1cp21270b
125 P. S. Julienne and F. H. Mies, Collisions of ultracoldtrapped atoms, J. Opt. Soc. Am. B 6(11), 2257 (1989)
https://doi.org/10.1364/JOSAB.6.002257
126 C. H. Burke, Greene, and J. L. Bohn, Multichannel cold collisions: Simple dependences on energy and magnetic field, Phys. Rev. Lett. 81(16), 3355 (1998)
https://doi.org/10.1103/PhysRevLett.81.3355
127 B. Gao, E. Tiesinga, C. J. Williams, and P. S. Julienne, Multichannel quantum-defect theory for slow atomic collisions, Phys. Rev. A 72(4), 042719 (2005)
https://doi.org/10.1103/PhysRevA.72.042719
128 Z. Idziaszek and P. S. Julienne, Universal rate constants for reactive collisions of ultracold molecules, Phys. Rev. Lett. 104(11), 113202 (2010)
https://doi.org/10.1103/PhysRevLett.104.113202
129 K. Jachymski, M. Krych, P. S. Julienne, and Z. Idziaszek, Quantum theory of reactive collisions for 1/rnpotentials, Phys. Rev. Lett. 110(21), 213202 (2013)
https://doi.org/10.1103/PhysRevLett.110.213202
130 P. S. Julienne, Ultracold molecules from ultracold atoms: A case study with the KRb molecule, Faraday Discuss. 142, 361 (2009)
https://doi.org/10.1039/b820917k
131 B. Gao, Universal model for exoergic bimolecular reactions and inelastic processes, Phys. Rev. Lett. 105(26), 263203 (2010)
https://doi.org/10.1103/PhysRevLett.105.263203
132 P. S. Żuchowski and J. M. Hutson, Reactions of ultracold alkali-metal dimers, Phys. Rev. A 81(6), 060703 (2010)
https://doi.org/10.1103/PhysRevA.81.060703
133 L. De Marco, G. Valtolina, K. Matsuda, W. G. Tobias, J. P. Covey, and J. Ye, A degenerate Fermi gas of polar molecules, Science 363(6429), 853 (2019)
https://doi.org/10.1126/science.aau7230
134 T. M. Rvachov, H. Son, A. T. Sommer, S. Ebadi, J. J. Park, M. W. Zwierlein, W. Ketterle, and A. O. Jamison, Long-lived ultracold molecules with electric and magnetic dipole moments, Phys. Rev. Lett. 119(14), 143001 (2017)
https://doi.org/10.1103/PhysRevLett.119.143001
135 B. Drews, M. Deiß, K. Jachymski, Z. Idziaszek, and J. H. Denschlag, Inelastic collisions of ultracold triplet Rb2 molecules in the rovibrational ground state, Nat. Commun. 8(1), 14854 (2017)
https://doi.org/10.1038/ncomms14854
136 X. Ye, M. Guo, M. L. González-Martínez, G. Quéméner, and D. Wang, Collisions of ultracold 23Na87Rb molecules with controlled chemical reactivities, Sci. Adv. 4(1), eaaq0083 (2018)
https://doi.org/10.1126/sciadv.aaq0083
137 P. D. Gregory, M. D. Frye, J. A. Blackmore, E. M. Bridge, R. Sawant, J. M. Hutson, and S. L. Cornish, Sticky collisions of ultracold RbCs molecules, Nat. Commun. 10(1), 1 (2019)
https://doi.org/10.1038/s41467-019-11033-y
138 M. Mayle, B. P. Ruzic, and J. L. Bohn, Statistical aspects of ultracold resonant scattering, Phys. Rev. A 85(6), 062712 (2012)
https://doi.org/10.1103/PhysRevA.85.062712
139 M. Mayle, G. Quéméner, B. P. Ruzic, and J. L. Bohn, Scattering of ultracold molecules in the highly resonant regime, Phys. Rev. A 87(1), 012709 (2013)
https://doi.org/10.1103/PhysRevA.87.012709
140 Z. Idziaszek, G. Quéméner, J. L. Bohn, and P. S. Julienne, Simple quantum model of ultracold polar molecule collisions, Phys. Rev. A 82(2), 020703 (2010)
https://doi.org/10.1103/PhysRevA.82.020703
141 F. H. Mies, A multichannel quantum defect analysis of diatomic predissociation and inelastic atomic scattering, J. Chem. Phys. 80(6), 2514 (1984)
https://doi.org/10.1063/1.447000
142 F. H. Mies and P. S. Julienne, A multichannel quantum defect analysis of two-state couplings in diatomic molecules, J. Chem. Phys. 80(6), 2526 (1984)
https://doi.org/10.1063/1.447046
143 J. Jankunas, B. Bertsche, K. Jachymski, M. Hapka, and A. Osterwalder, Dynamics of gas phase Ne∗ + NH3 and Ne∗ + ND3 Penning ionisation at low temperatures, J. Chem. Phys. 140(24), 244302 (2014)
https://doi.org/10.1063/1.4883517
144 J. Jankunas, K. Jachymski, M. Hapka, and A. Osterwalder, Observation of orbiting resonances in He(3S1) + NH3 Penning ionization, J. Chem. Phys. 142(16), 164305 (2015)
https://doi.org/10.1063/1.4919369
145 J. Jankunas, K. Jachymski, M. Hapka, and A. Osterwalder, Communication: Importance of rotationally inelastic processes in low-energy penning ionization of CHF3, J. Chem. Phys. 144, 221102 (2016)
https://doi.org/10.1063/1.4953908
146 E. Herbst and J. T. Yates Jr, Introduction: Astrochemistry, Chem. Rev. 113(12), 8707 (2013)
https://doi.org/10.1021/cr400579y
147 R. Sahai and L. Å. Nyman, The boomerang nebula: The coldest region of the universe? Astrophys. J. 487(2), L155 (1997)
https://doi.org/10.1086/310897
148 D. Herschbach, Molecular collisions, from warm to ultracold, Faraday Discuss. 142, 9 (2009)
https://doi.org/10.1039/b910118g
149 S. Chefdeville, T. Stoecklin, A. Bergeat, K. M. Hickson, C. Naulin, and M. Costes, Appearance of low energy resonances in CO–para-H2 inelastic collisions, Phys. Rev. Lett. 109(2), 023201 (2012)
https://doi.org/10.1103/PhysRevLett.109.023201
150 S. Chefdeville, Y. Kalugina, S. Y. van de Meerakker, C. Naulin, F. Lique, and M. Costes, Observation of partial wave resonances in low-energy O2–H2 inelastic collisions, Science 341(6150), 1094 (2013)
https://doi.org/10.1126/science.1241395
151 C. Xiao, X. Xu, S. Liu, T. Wang, W. Dong, T. Yang, Z. Sun, D. Dai, D. H. Zhang, and X. Yang, Experimental and theoretical differential cross sections for a four-atom reaction: HD+ OH → H2O+ D, Science 333(6041), 440 (2011)
https://doi.org/10.1126/science.1205770
152 D. R. Willey, R. L. Crownover, D. Bittner, and F. C. De Lucia, Very low temperature spectroscopy: The pressure broadening coefficients for CO–He between 4.3 and 1.7 K, J. Chem. Phys. 89(4), 1923 (1988)
https://doi.org/10.1063/1.455089
153 S. Nandi, S. J. Blanksby, X. Zhang, M. R. Nimlos, D. C. Dayton, and G. B. Ellison, Polarized infrared absorption spectrum of matrix-isolated methylperoxyl radicals, CH3OOX̃2A′′, J. Phys. Chem. A 106(33), 7547 (2002)
https://doi.org/10.1021/jp0126816
154 A. M. Morrison, J. Agarwal, H. F. Schaefer, and G. E. Douberly, Infrared laser spectroscopy of the CH3OO radical formed from the reaction of CH3 and O2 within a helium nanodroplet, J. Phys. Chem. A 116(22), 5299 (2012)
https://doi.org/10.1021/jp3026368
155 L. Schnieder, K. Seekamp-Rahn, J. Borkowski, E. Wrede, K. Welge, F. J. Aoiz, L. Bañiares, M. D’ Mello, V. J. Herrero, V. S. Rabanos, and R. E. Wyatt, Experimental studies and theoretical predictions for the H+ D2 → HD+ D Reaction, Science 269(5221), 207 (1995)
https://doi.org/10.1126/science.269.5221.207
156 R. T. Skodje, D. Skouteris, D. E. Manolopoulos, S. H. Lee, F. Dong, and K. Liu, Resonance-mediated chemical reaction: F+ HD → HF+ D, Phys. Rev. Lett. 85(6), 1206 (2000)
https://doi.org/10.1103/PhysRevLett.85.1206
157 W. Dong, C. Xiao, T. Wang, D. Dai, X. Yang, and D. H. Zhang, Transition-state spectroscopy of partial wave resonances in the F+ HD reaction, Science 327(5972), 1501 (2010)
https://doi.org/10.1126/science.1185694
158 T. Wang, J. Chen, T. Yang, C. Xiao, Z. Sun, L. Huang, D. Dai, X. Yang, and D. H. Zhang, Dynamical resonances accessible only by reagent vibrational excitation in the F+ HD → HF+ D reaction, Science 342(6165), 1499 (2013)
https://doi.org/10.1126/science.1246546
159 M. Qiu, Z. Ren, L. Che, D. Dai, S. A. Harich, X. Wang, X. Yang, C. Xu, D. Xie, M. Gustafsson, R. T. Skodje, Z. Sun, and D. H. Zhang, Observation of Feshbach resonances in the F+ H2 → HF+ H reaction, Science 311(5766), 1440 (2006)
https://doi.org/10.1126/science.1123452
160 J. B. Kim, M. L. Weichman, T. F. Sjolander, D. M. Neumark, J. Kłos, M. H. Alexander, and D. E. Manolopoulos, Spectroscopic observation of resonances in the F+ H2 reaction, Science 349(6247), 510 (2015)
https://doi.org/10.1126/science.aac6939
161 F. Wang, J. S. Lin, and K. Liu, Steric control of the reaction of CH stretch-excited CHD3 with chlorine atom, Science 331(6019), 900 (2011)
https://doi.org/10.1126/science.1199771
162 S. N. Vogels, T. Karman, J. Kłos, M. Besemer, J. Onvlee, A. van der Avoird, G. C. Groenenboom, and S. Y. van de Meerakker, Scattering resonances in bimolecularcollisions between NO radicals and H2 challenge the theoretical gold standard, Nat. Chem. 10(4), 435 (2018)
https://doi.org/10.1038/s41557-018-0001-3
163 A. von Zastrow, J. Onvlee, S. N. Vogels, G. C. Groenenboom, A. Van Der Avoird, and S. Y. Van De Meerakker, State-resolved diffraction oscillations imaged for inelastic collisions of NO radicals with He, Ne and Ar, Nat. Chem. 6(3), 216 (2014)
https://doi.org/10.1038/nchem.1860
164 J. Onvlee, S. D. Gordon, S. N. Vogels, T. Auth, T. Karman, B. Nichols, A. van der Avoird, G. C. Groenenboom, M. Brouard, and S. Y. van de Meerakker, Imaging quantum stereodynamics through Fraunhofer scattering of NO radicals with rare-gas atoms, Nat. Chem. 9(3), 226 (2017)
https://doi.org/10.1038/nchem.2640
165 M. Lara, F. Dayou, J. M. Launay, A. Bergeat, K. M. Hickson, C. Naulin, and M. Costes, Observation of partial wave structures in the integral cross section of the S(1D2) + H2(j= 0) reaction, Phys. Chem. Chem. Phys. 13(18), 8127 (2011)
https://doi.org/10.1039/c0cp02705g
166 M. Lara, S. Chefdeville, K. M. Hickson, A. Bergeat, C. Naulin, J. M. Launay, and M. Costes, Dynamics of the S(2D1) + HD (j= 0 ) reaction at collision energies approaching the cold regime: A stringent test for theory, Phys. Rev. Lett. 109(13), 133201 (2012)
https://doi.org/10.1103/PhysRevLett.109.133201
167 S. Y. van de Meerakker, H. L. Bethlem, N. Vanhaecke, and G. Meijer, Manipulation and control of molecular beams, Chem. Rev. 112(9), 4828 (2012)
https://doi.org/10.1021/cr200349r
168 L. Scharfenberg, J. Kłos, P. J. Dagdigian, M. H. Alexander, G. Meijer, and S. Y. van de Meerakker, State-to-state inelastic scattering of Stark-decelerated OH radicals with Ar atoms, Phys. Chem. Chem. Phys. 12(36), 10660 (2010)
https://doi.org/10.1039/c004422a
169 L. Scharfenberg, K. B. Gubbels, M. Kirste, G. C. Groenenboom, A. van der Avoird, G. Meijer, and S. Y. van de Meerakker, Scattering of Stark-decelerated OH radicals with rare-gas atoms, Eur. Phys. J. D 65(1–2), 189 (2011)
https://doi.org/10.1140/epjd/e2011-20009-4
170 M. Kirste, L. Scharfenberg, J. Kłos, F. Lique, M. H. Alexander, G. Meijer, and S. Y. van de Meerakker, Lowenergy inelastic collisions of OH radicals with He atoms and D2 molecules, Phys. Rev. A 82(4), 042717 (2010)
https://doi.org/10.1103/PhysRevA.82.042717
171 B. Rowe, G. Dupeyrat, J. Marquette, and P. Gaucherel, Study of the reactions N+2+2N2 → N+4+N2 and O+2+2O2 → O+4+O2 from 20 to 160 K by the CRESU technique, J. Chem. Phys. 80(10), 4915 (1984)
https://doi.org/10.1063/1.446513
172 G. Dupeyrat, J. Marquette, and B. Rowe, Design and testing of axisymmetric nozzles for ion–molecule reaction studies between 20 °K and 160 °K, Phys. Fluids 28(5), 1273 (1985)
https://doi.org/10.1063/1.865010
173 I. R. Sims and I. W. Smith, Gas–phase reactions and energy transfer at very low temperatures, Annu. Rev. Phys. Chem. 46(1), 109 (1995)
https://doi.org/10.1146/annurev.pc.46.100195.000545
174 I. W. Smith and B. R. Rowe, Reaction kinetics at very low temperatures: Laboratory studies and interstellar chemistry, Acc. Chem. Res. 33(5), 261 (2000)
https://doi.org/10.1021/ar990099i
175 I. W. Smith, Reactions at very low temperatures: Gas kinetics at a new frontier, Angew. Chem. Int. Ed. 45(18), 2842 (2006)
https://doi.org/10.1002/anie.200502747
176 P. L. James, I. R. Sims, I. W. Smith, M. H. Alexander, and M. Yang, A combined experimental and theoretical study of rotational energy transfer in collisions between NO(X2Π1/2, v=3,J) and He, Ar and N2 at temperatures down to 7 K, J. Chem. Phys. 109(10), 3882 (1998)
https://doi.org/10.1063/1.476517
177 D. Chastaing, P. L. James, I. R. Sims, and I. W. Smith, Neutral–neutral reactions at the temperatures of interstellar clouds: Rate coefficients for reactions of atomic carbon, C(3P), with O2, C2H2, C2H4 and C3H6 down to 15 K, Phys. Chem. Chem. Phys. 1(9), 2247 (1999)
https://doi.org/10.1039/a900449a
178 W. E. Perreault, N. Mukherjee, and R. N. Zare, Quantum control of molecular collisions at 1 kelvin, Science 358(6361), 356 (2017)
https://doi.org/10.1126/science.aao3116
179 W. E. Perreault, N. Mukherjee, and R. N. Zare, Cold quantum-controlled rotationally inelastic scattering of HD with H2 and D2 reveals collisional partner reorientation, Nat. Chem. 10(5), 561 (2018)
https://doi.org/10.1038/s41557-018-0028-5
180 W. E. Perreault, N. Mukherjee, and R. N. Zare, HD (v= 1, j= 2, m) orientation controls HD–He rotationally inelastic scattering near 1 K, J. Chem. Phys. 150(17), 174301 (2019)
https://doi.org/10.1063/1.5096531
181 J. D. Barnwell, J. G. Loeser, and D. R. Herschbach, Angular correlations in chemical reactions: Statistical theory for four-vector correlations,J. Phys. Chem. 87(15), 2781 (1983)
https://doi.org/10.1021/j100238a017
182 X. Wu, T. Gantner, M. Koller, M. Zeppenfeld, S. Chervenkov, and G. Rempe, A cryofuge for cold-collision experiments with slow polar molecules, Science 358(6363), 645 (2017)
https://doi.org/10.1126/science.aan3029
183 M. Cavagnero and C. Newell, Inelastic semiclassical collisions in cold dipolar gases, New J. Phys. 11(5), 055040 (2009)
https://doi.org/10.1088/1367-2630/11/5/055040
184 D. R. Willey, R. L. Crownover, D. Bittner, and F. C. De Lucia, Very low temperature spectroscopy: The pressure broadening coefficients for CH3F between 4.2 and 1.9 K, J. Chem. Phys. 89(10), 6147 (1988)
https://doi.org/10.1063/1.455430
185 C. D. Ball and F. C. De Lucia, Direct measurement of rotationally inelastic cross sections at astrophysical and quantum collisional temperatures, Phys. Rev. Lett. 81(2), 305 (1998)
https://doi.org/10.1103/PhysRevLett.81.305
186 C. D. Ball and F. C. De Lucia, Direct observation of Λ- doublet and hyperfine branching ratios for rotationally inelastic collisions of NO–He at 4.2 K, Chem. Phys. Lett. 300(1–2), 227 (1999)
https://doi.org/10.1016/S0009-2614(98)01328-1
187 G. K. Drayna, C. Hallas, K. Wang, S. R. Domingos, S. Eibenberger, J. M. Doyle, and D. Patterson, Direct timedomain observation of conformational relaxation in gasphase cold collisions, Angew. Chem. Int. Ed. 55(16), 4957 (2016)
https://doi.org/10.1002/anie.201600030
188 B. C. Sawyer, B. L. Lev, E. R. Hudson, B. K. Stuhl, M. Lara, J. L. Bohn, and J. Ye, Magnetoelectrostatic trapping of ground state OH molecules, Phys. Rev. Lett. 98(25), 253002 (2007)
https://doi.org/10.1103/PhysRevLett.98.253002
189 Y. Liu, M. Vashishta, P. Djuricanin, S. Zhou, W. Zhong, T. Mittertreiner, D. Carty, and T. Momose, Magnetic trapping of cold methyl radicals, Phys. Rev. Lett. 118(9), 093201 (2017)
https://doi.org/10.1103/PhysRevLett.118.093201
190 B. C. Sawyer, B. K. Stuhl, M. Yeo, T. V. Tscherbul, M. T. Hummon, Y. Xia, J. Kłos, D. Patterson, J. M. Doyle, and J. Ye, Cold heteromolecular dipolar collisions, Phys. Chem. Chem. Phys. 13(42), 19059 (2011)
https://doi.org/10.1039/c1cp21203f
191 B. C. Sawyer, B. K. Stuhl, D. Wang, M. Yeo, and J. Ye, Molecular beam collisions with a magnetically trapped target, Phys. Rev. Lett. 101(20), 203203 (2008)
https://doi.org/10.1103/PhysRevLett.101.203203
192 M. Strebel, T. O. Müller, B. Ruff, F. Stienkemeier, and M. Mudrich, Quantum rainbow scattering at tunable velocities, Phys. Rev. A 86(6), 062711 (2012)
https://doi.org/10.1103/PhysRevA.86.062711
193 M. Gupta and D. Herschbach, Slowing and speeding molecular beams by means of a rapidly rotating source, J. Phys. Chem. A 105(9), 1626 (2001)
https://doi.org/10.1021/jp002640u
194 M. Strebel, F. Stienkemeier, and M. Mudrich, Improved setup for producing slow beams of cold molecules using a rotating nozzle, Phys. Rev. A 81(3), 033409 (2010)
https://doi.org/10.1103/PhysRevA.81.033409
195 N. R. Thomas, N. Kjærgaard, P. S. Julienne, and A. C. Wilson, Imaging of s and d partial-wave interference in quantum scattering of identical bosonic atoms, Phys. Rev. Lett. 93(17), 173201 (2004)
https://doi.org/10.1103/PhysRevLett.93.173201
196 J. D. Weinstein, R. DeCarvalho, T. Guillet, B. Friedrich, and J. M. Doyle, Magnetic trapping of calcium monohydride molecules at millikelvin temperatures, Nature 395(6698), 148 (1998)
https://doi.org/10.1038/25949
197 K. Maussang, D. Egorov, J. S. Helton, S. V. Nguyen, and J. M. Doyle, Zeeman relaxation of CaF in lowtemperature collisions with helium, Phys. Rev. Lett. 94(12), 123002 (2005)
https://doi.org/10.1103/PhysRevLett.94.123002
198 W. C. Campbell, E. Tsikata, H. I. Lu, L. D. van Buuren, and J. M. Doyle, Magnetic trapping and Zeeman relaxation of NH(X3Σ −), Phys. Rev. Lett. 98(21), 213001 (2007)
https://doi.org/10.1103/PhysRevLett.98.213001
199 E. Tsikata, W. Campbell, M. Hummon, H. I. Lu, and J. M. Doyle, Magnetic trapping of NH molecules with 20 s lifetimes, New J. Phys. 12(6), 065028 (2010)
https://doi.org/10.1088/1367-2630/12/6/065028
200 D. Egorov, W. Campbell, B. Friedrich, S. Maxwell, E. Tsikata, L. Van Buuren, and J. Doyle, Buffer-gas cooling of NH via the beam loaded buffer-gas method, Europ. Phys. J. D 31, 307 (2004)
https://doi.org/10.1140/epjd/e2004-00140-1
201 M. T. Hummon, T. V. Tscherbul, J. Kłos, H. I. Lu, E. Tsikata, W. C. Campbell, A. Dalgarno, and J. M. Doyle, Cold N+ NH collisions in a magnetic trap, Phys. Rev. Lett. 106(5), 053201 (2011)
https://doi.org/10.1103/PhysRevLett.106.053201
202 N. Brahms, T. V. Tscherbul, P. Zhang, J. Kłos, R. C. Forrey, Y. S. Au, H. R. Sadeghpour, A. Dalgarno, J. M. Doyle, and T. G. Walker, Formation and dynamics of van der Waals molecules in buffer-gas traps, Phys. Chem. Chem. Phys. 13(42), 19125 (2011)
https://doi.org/10.1039/c1cp21317b
203 N. Brahms, T. V. Tscherbul, P. Zhang, J. Kłos, H. R. Sadeghpour, A. Dalgarno, J. M. Doyle, and T. G. Walker, Formation of van der Waals molecules in buffer-gascooled magnetic traps, Phys. Rev. Lett. 105(3), 033001 (2010)
https://doi.org/10.1103/PhysRevLett.105.033001
204 N. Tariq, N. A. Taisan, V. Singh, and J. D. Weinstein, Spectroscopic detection of the LiHe molecule, Phys. Rev. Lett. 110(15), 153201 (2013)
https://doi.org/10.1103/PhysRevLett.110.153201
205 N. Quiros, N. Tariq, T. V. Tscherbul, J. Kłos, and J. D. Weinstein, Cold anisotropically interacting van der Waals molecule: TiHe, Phys. Rev. Lett. 118(21), 213401 (2017)
https://doi.org/10.1103/PhysRevLett.118.213401
206 M. I. Fabrikant, T. Li, N. J. Fitch, N. Farrow, J. D. Weinstein, and H. J. Lewandowski, Method for travelingwave deceleration of buffer-gas beams of CH, Phys. Rev. A 90(3), 033418 (2014)
https://doi.org/10.1103/PhysRevA.90.033418
207 M. Petzold, P. Kaebert, P. Gersema, M. Siercke, and S. Ospelkaus, A Zeeman slower for diatomic molecules, New J. Phys. 20(4), 042001 (2018)
https://doi.org/10.1088/1367-2630/aab9f5
208 E. Shuman, J. Barry, D. Glenn, and D. DeMille, Radiative force from optical cycling on a diatomic molecule, Phys. Rev. Lett. 103(22), 223001 (2009)
https://doi.org/10.1103/PhysRevLett.103.223001
209 E. S. Shuman, J. F. Barry, and D. DeMille, Laser cooling of a diatomic molecule, Nature 467(7317), 820 (2010)
https://doi.org/10.1038/nature09443
210 M. Zeppenfeld, B. G. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, and G. Rempe, Sisyphus cooling of electrically trapped polyatomic molecules, Nature 491(7425), 570 (2012)
https://doi.org/10.1038/nature11595
211 A. Prehn, M. Ibrügger, R. Glöckner, G. Rempe, and M. Zeppenfeld, Optoelectrical cooling of polar molecules to submillikelvin temperatures, Phys. Rev. Lett. 116(6), 063005 (2016)
https://doi.org/10.1103/PhysRevLett.116.063005
212 D. Patterson, M. Schnell, and J. M. Doyle, Enantiomerspecific detection of chiral molecules via microwave spectroscopy, Nature 497(7450), 475 (2013)
https://doi.org/10.1038/nature12150
213 S. Eibenberger, J. Doyle, and D. Patterson, Enantiomerspecific state transfer of chiral molecules, Phys. Rev. Lett. 118(12), 123002 (2017)
https://doi.org/10.1103/PhysRevLett.118.123002
214 B. Spaun, P. B. Changala, D. Patterson, B. J. Bjork, O. H. Heckl, J. M. Doyle, and J. Ye, Continuous probing of cold complex molecules with infrared frequency comb spectroscopy, Nature 533(7604), 517 (2016)
https://doi.org/10.1038/nature17440
215 P. B. Changala, M. L. Weichman, K. F. Lee, M. E. Fermann, and J. Ye, Rovibrational quantum state resolution of the C60 fullerene, Science 363(6422), 49 (2019)
https://doi.org/10.1126/science.aav2616
216 J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev, B. R. O’Leary, C. D. Panda, M. F. Parsons, E. S. Petrik, B. Spaun, A. C. Vutha, and A. D. West, Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343(6168), 269 (2014)
https://doi.org/10.1126/science.1248213
217 ACME Collaboration, V. Andreev, et al., Improved limit on the electric dipole moment of the electron, Nature 562, 355 (2018)
https://doi.org/10.1038/s41586-018-0599-8
218 G. Chen, A New Tool for Col Ion–Molecule Chemistry, Ph.D. Thesis, UCLA, 2019
219 J. Greenberg, Cold, Controlled, Ion–molecule Reactions, Ph.D. Thesis, University of Colorado at Boulder, 2020
220 Q. Wei, I. Lyuksyutov, and D. Herschbach, Mergedbeams for slow molecular collision experiments, J. Chem. Phys. 137(5), 054202 (2012)
https://doi.org/10.1063/1.4739315
221 E. Lavert-Ofir, Y. Shagam, A. B. Henson, S. Gersten, J. Kłos, P. S. Żuchowski, J. Narevicius, and E. Narevicius, Observation of the isotope effect in sub-Kelvin reactions, Nat. Chem. 6(4), 332 (2014)
https://doi.org/10.1038/nchem.1857
222 Y. Shagam, A. Klein, W. Skomorowski, R. Yun, V. Averbukh, C. P. Koch, and E. Narevicius, Molecular hydrogen interacts more strongly when rotationally excited at low temperatures leading to faster reactions, Nat. Chem. 7(11), 921 (2015)
https://doi.org/10.1038/nchem.2359
223 N. Bibelnik, S. Gersten, A. B. Henson, E. Lavert-Ofir, Y. Shagam, W. Skomorowski, C. P. Koch, and E. Narevicius, Cold temperatures invert product ratios in Penning ionisation reactions with argon, Mol. Phys. 117(15–16), 2128 (2019)
https://doi.org/10.1080/00268976.2019.1594421
224 B. Bertsche, J. Jankunas, and A. Osterwalder, Lowtemperature collisions between neutral molecules in merged molecular beams, Chimia 68(4), 256 (2014)
https://doi.org/10.2533/chimia.2014.256
225 S. Y. van de Meerakker and G. Meijer, Collision experiments with Stark-decelerated beams, Faraday Discuss. 142, 113 (2009)
https://doi.org/10.1039/b819721k
226 A. P. P. van der Poel and H. L. Bethlem, A detailed account of the measurements of cold collisions in a molecular synchrotron, EPJ Tech. Instrum. 5(1), 6 (2018)
https://doi.org/10.1140/epjti/s40485-018-0048-y
227 A. P. van Der Poel, P. C. Zieger, S. Y. Van De Meerakker, J. Loreau, A. Van Der Avoird, and H. L. Bethlem, Cold collisions in a molecular synchrotron, Phys. Rev. Lett. 120(3), 033402 (2018)
https://doi.org/10.1103/PhysRevLett.120.033402
228 C. E. Heiner, D. Carty, G. Meijer, and H. L. Bethlem, A molecular synchrotron, Nat. Phys. 3(2), 115 (2007)
https://doi.org/10.1038/nphys513
229 C. E. Heiner, H. L. Bethlem, and G. Meijer, A synchrotron for neutral molecules, Chem. Phys. Lett. 473(1– 3), 1 (2009)
https://doi.org/10.1016/j.cplett.2009.02.069
230 F. M. Crompvoets, H. L. Bethlem, R. T. Jongma, and G. Meijer, A prototype storage ring for neutral molecules, Nature 411(6834), 174 (2001)
https://doi.org/10.1038/35075537
231 F. M. Crompvoets, H. L. Bethlem, J. Küpper, A. J. van Roij, and G. Meijer, Dynamics of neutral molecules stored in a ring, Phys. Rev. A 69(6), 063406 (2004)
https://doi.org/10.1103/PhysRevA.69.063406
232 P. C. Zieger, S. Y. van de Meerakker, C. E. Heiner, H. L. Bethlem, A. J. van Roij, and G. Meijer, Multiple packets of neutral molecules revolving for over a mile, Phys. Rev. Lett. 105(17), 173001 (2010)
https://doi.org/10.1103/PhysRevLett.105.173001
233 J. Loreau and A. Van der Avoird, Scattering of NH3 and ND3 with rare gas atoms at low collision energy, J. Chem. Phys. 143(18), 184303 (2015)
https://doi.org/10.1063/1.4935259
234 H. Thorsheim, J. Weiner, and P. S. Julienne, Laserinduced photoassociation of ultracold sodium atoms, Phys. Rev. Lett. 58(23), 2420 (1987)
https://doi.org/10.1103/PhysRevLett.58.2420
235 J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, and M. Weidemüller, Formation of ultracold polar molecules in the rovibrational ground state, Phys. Rev. Lett. 101(13), 133004 (2008)
https://doi.org/10.1103/PhysRevLett.101.133004
236 F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. H. Denschlag, Ultracold triplet molecules in the rovibrational ground state, Phys. Rev. Lett. 101(13), 133005 (2008)
https://doi.org/10.1103/PhysRevLett.101.133005
237 K.-K. Ni, S. Ospelkaus, M. De Miranda, A. Pe’Er, B. Neyenhuis, J. Zirbel, S. Kotochigova, P. Julienne, D. Jin, and J. Ye, A high phase-space-density gas of polar molecules, Science 322(5899), 231 (2008)
https://doi.org/10.1126/science.1163861
238 J. M. Hutson and P. Soldan, Molecule formation in ultracold atomic gases, Int. Rev. Phys. Chem. 25(4), 497 (2006)
https://doi.org/10.1080/01442350600921772
239 T. Köhler, K. Góral, and P. S. Julienne, Production of cold molecules via magnetically tunable Feshbach resonances, Rev. Mod. Phys. 78(4), 1311 (2006)
https://doi.org/10.1103/RevModPhys.78.1311
240 E. A. Donley, N. R. Claussen, S. T. Thompson, and C. E. Wieman, Atom–molecule coherence in a Bose–Einstein condensate, Nature 417(6888), 529 (2002)
https://doi.org/10.1038/417529a
241 C. Chin, A. J. Kerman, V. Vuletić, and S. Chu, Sensitive detection of cold cesium molecules formed on Feshbach resonances, Phys. Rev. Lett. 90(3), 033201 (2003)
https://doi.org/10.1103/PhysRevLett.90.033201
242 J. Herbig, T. Kraemer, M. Mark, T. Weber, C. Chin, H. C. Nägerl, and R. Grimm, Preparation of a pure molecular quantum gas, Science 301(5639), 1510 (2003)
https://doi.org/10.1126/science.1088876
243 S. Dürr, T. Volz, A. Marte, and G. Rempe, Observation of molecules produced from a Bose–Einstein condensate, Phys. Rev. Lett. 92(2), 020406 (2004)
https://doi.org/10.1103/PhysRevLett.92.020406
244 C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Creation of ultracold molecules from a Fermi gas of atoms, Nature 424(6944), 47 (2003)
https://doi.org/10.1038/nature01738
245 K. E. Strecker, G. B. Partridge, and R. G. Hulet, Conversion of an atomic Fermi gas to a long-lived molecular Bose gas, Phys. Rev. Lett. 91(8), 080406 (2003)
https://doi.org/10.1103/PhysRevLett.91.080406
246 J. Cubizolles, T. Bourdel, S. Kokkelmans, G. Shlyapnikov, and C. Salomon, Production of long-lived ultracold Li2 molecules from a Fermi gas, Phys. Rev. Lett. 91(24), 240401 (2003)
https://doi.org/10.1103/PhysRevLett.91.240401
247 C. Regal, M. Greiner, and D. Jin, Lifetime of moleculeatom mixtures near a Feshbach resonance in 40K, Phys. Rev. Lett. 92(8), 083201 (2004)
https://doi.org/10.1103/PhysRevLett.92.083201
248 S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, C. Chin, J. H. Denschlag, and R. Grimm, Pure gas of optically trapped molecules created from fermionic atoms, Phys. Rev. Lett. 91(24), 240402 (2003)
https://doi.org/10.1103/PhysRevLett.91.240402
249 D. Petrov, C. Salomon, and G. V. Shlyapnikov, Weakly bound dimers of fermionic atoms, Phys. Rev. Lett. 93(9), 090404 (2004)
https://doi.org/10.1103/PhysRevLett.93.090404
250 M. Greiner, C. A. Regal, and D. S. Jin, Emergence of a molecular Bose–Einstein condensate from a Fermi gas, Nature 426(6966), 537 (2003)
https://doi.org/10.1038/nature02199
251 S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. H. Denschlag, and R. Grimm, Bose–Einstein condensation of molecules, Science 302(5653), 2101 (2003)
https://doi.org/10.1126/science.1093280
252 M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. Raupach, S. Gupta, Z. Hadzibabic, and W. Ketterle, Observation of Bose–Einstein Condensation of Molecules, Phys. Rev. Lett. 91(25), 250401 (2003)
https://doi.org/10.1103/PhysRevLett.91.250401
253 T. T. Wang, M. S. Heo, T. M. Rvachov, D. A. Cotta, and W. Ketterle, Deviation from universality in collisions of ultracold 26Li molecules, Phys. Rev. Lett. 110(17), 173203 (2013)
https://doi.org/10.1103/PhysRevLett.110.173203
254 K. Xu, T. Mukaiyama, J. Abo-Shaeer, J. K. Chin, D. Miller, and W. Ketterle, Formation of quantumdegenerate sodium molecules, Phys. Rev. Lett. 91(21), 210402 (2003)
https://doi.org/10.1103/PhysRevLett.91.210402
255 R. Wynar, R. Freeland, D. Han, C. Ryu, and D. Heinzen, Molecules in a Bose–Einstein condensate, Science 287(5455), 1016 (2000)
https://doi.org/10.1126/science.287.5455.1016
256 S. Knoop, F. Ferlaino, M. Mark, M. Berninger, H. Schübel, H. C. Nägerl, and R. Grimm, Observation of an Efimov-like trimer resonance in ultracold atom–dimer scattering, Nat. Phys. 5(3), 227 (2009)
https://doi.org/10.1038/nphys1203
257 T. Mukaiyama, J. Abo-Shaeer, K. Xu, J. K. Chin, and W. Ketterle, Dissociation and decay of ultracold sodium molecules, Phys. Rev. Lett. 92(18), 180402 (2004)
https://doi.org/10.1103/PhysRevLett.92.180402
258 N. Zahzam, T. Vogt, M. Mudrich, D. Comparat, and P. Pillet, Atom–molecule collisions in an optically trapped gas, Phys. Rev. Lett. 96(2), 023202 (2006)
https://doi.org/10.1103/PhysRevLett.96.023202
259 P. Staanum, S. D. Kraft, J. Lange, R. Wester, and M. Weidemüller, Experimental investigation of ultracold atom–molecule collisions, Phys. Rev. Lett. 96(2), 023201 (2006)
https://doi.org/10.1103/PhysRevLett.96.023201
260 S. Knoop, F. Ferlaino, M. Berninger, M. Mark, H. C. Nägerl, R. Grimm, J. D’incao, and B. Esry, Magnetically controlled exchange process in an ultracold atom–dimer mixture, Phys. Rev. Lett. 104(5), 053201 (2010)
https://doi.org/10.1103/PhysRevLett.104.053201
261 A. Zenesini, B. Huang, M. Berninger, H. C. Nägerl, F. Ferlaino, and R. Grimm, Resonant atom–dimer collisions in cesium: Testing universality at positive scattering lengths, Phys. Rev. A 90(2), 022704 (2014)
https://doi.org/10.1103/PhysRevA.90.022704
262 E. R. Hudson, N. B. Gilfoy, S. Kotochigova, J. M. Sage, and D. DeMille, Inelastic collisions of ultracold heteronuclear molecules in an optical trap, Phys. Rev. Lett. 100(20), 203201 (2008)
https://doi.org/10.1103/PhysRevLett.100.203201
263 J. Zirbel, K. K. Ni, S. Ospelkaus, J. D’Incao, C. Wieman, J. Ye, and D. Jin, Collisional stability of fermionic Feshbach molecules, Phys. Rev. Lett. 100(14), 143201 (2008)
https://doi.org/10.1103/PhysRevLett.100.143201
264 J. Deiglmayr, M. Repp, R. Wester, O. Dulieu, and M. Weidemüller, Inelastic collisions of ultracold polar LiCs molecules with caesium atoms in an optical dipole trap, Phys. Chem. Chem. Phys. 13(42), 19101 (2011)
https://doi.org/10.1039/c1cp21396b
265 J. Rui, H. Yang, L. Liu, D. C. Zhang, Y. X. Liu, J. Nan, Y. A. Chen, B. Zhao, and J. W. Pan, Controlled state-tostate atom-exchange reaction in an ultracold atom–dimer mixture, Nat. Phys. 13(7), 699 (2017)
https://doi.org/10.1038/nphys4095
266 C. Chin, T. Kraemer, M. Mark, J. Herbig, P. Waldburger, H. C. Nägerl, and R. Grimm, Observation of Feshbachlike resonances in collisions between ultracold molecules, Phys. Rev. Lett. 94(12), 123201 (2005)
https://doi.org/10.1103/PhysRevLett.94.123201
267 F. Ferlaino, S. Knoop, M. Mark, M. Berninger, H. Schöbel, H. C. Nägerl, and R. Grimm, Collisions between tunable halo dimers: Exploring an elementary four-body process with identical bosons, Phys. Rev. Lett. 101(2), 023201 (2008)
https://doi.org/10.1103/PhysRevLett.101.023201
268 F. Wang, X. Ye, M. Guo, D. Blume, and D. Wang, Observation of resonant scattering between ultracold heteronuclear Feshbach molecules, Phys. Rev. A 100(4), 042706 (2019)
https://doi.org/10.1103/PhysRevA.100.042706
269 D. K. Hoffmann, T. Paintner, W. Limmer, D. S. Petrov, and J. H. Denschlag, Reaction kinetics of ultracold molecule-molecule collisions, Nat. Commun. 9(1), 5244 (2018)
https://doi.org/10.1038/s41467-018-07576-1
270 T. Takekoshi, L. Reichsöllner, A. Schindewolf, J. M. Hutson, C. R. Le Sueur, O. Dulieu, F. Ferlaino, R. Grimm, and H. C. Nägerl, Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state, Phys. Rev. Lett. 113(20), 205301 (2014)
https://doi.org/10.1103/PhysRevLett.113.205301
271 M. Guo, X. Ye, J. He, M. L. González-Martínez, R. Vexiau, G. Quéméner, and D. Wang, Dipolar collisions of ultracold ground-state bosonic molecules, Phys. Rev. X 8(4), 041044 (2018)
https://doi.org/10.1103/PhysRevX.8.041044
272 H. Yang, D. C. Zhang, L. Liu, Y. X. Liu, J. Nan, B. Zhao, and J. W. Pan, Observation of magnetically tunable Feshbach resonances in ultracold 23Na40K+ 40K collisions, Science 363(6424), 261 (2019)
https://doi.org/10.1126/science.aau5322
273 M. de Miranda, A. Chotia, B. Neyenhuis, D. Wang, G. Quéméner, S. Ospelkaus, J. Bohn, J. Ye, and D. Jin, Controlling the quantum stereodynamics of ultracold bimolecular reactions, Nat. Phys. 7(6), 502 (2011)
https://doi.org/10.1038/nphys1939
274 J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart, J. Aldegunde, J. M. Hutson, and H. C. Nägerl, An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice, Nat. Phys. 6(4), 265 (2010)
https://doi.org/10.1038/nphys1533
275 A. Chotia, B. Neyenhuis, S. A. Moses, B. Yan, J. P. Covey, M. Foss-Feig, A. M. Rey, D. S. Jin, and J. Ye, Long-lived dipolar molecules and feshbach molecules in a 3D optical lattice, Phys. Rev. Lett. 108(8), 080405 (2012)
https://doi.org/10.1103/PhysRevLett.108.080405
276 B. Zhu, B. Gadway, M. Foss-Feig, J. Schachenmayer, M. Wall, K. R. Hazzard, B. Yan, S. A. Moses, J. P. Covey, D. S. Jin, J. Ye, M. Holland, and A. M. Rey, Suppressing the loss of ultracold molecules via the continuous quantum zeno effect, Phys. Rev. Lett. 112(7), 070404 (2014)
https://doi.org/10.1103/PhysRevLett.112.070404
277 M. Deiß, B. Drews, J. H. Denschlag, N. Bouloufa-Maafa, R. Vexiau, and O. Dulieu, Polarizability of ultracold Rb2 molecules in the rovibrational ground state of a3Σ+u , New J. Phys. 17(6), 065019 (2015)
https://doi.org/10.1088/1367-2630/17/6/065019
278 J. Barry, D. McCarron, E. Norrgard, M. Steinecker, and D. DeMille, Magneto–optical trapping of a diatomic molecule, Nature 512(7514), 286 (2014)
https://doi.org/10.1038/nature13634
279 E. Norrgard, D. McCarron, M. Steinecker, M. Tarbutt, and D. DeMille, Submillikelvin dipolar molecules in a radio-frequency magneto–optical trap, Phys. Rev. Lett. 116(6), 063004 (2016)
https://doi.org/10.1103/PhysRevLett.116.063004
280 D. McCarron, M. Steinecker, Y. Zhu, and D. DeMille, Magnetic trapping of an ultracold gas of polar molecules, Phys. Rev. Lett. 121(1), 013202 (2018)
https://doi.org/10.1103/PhysRevLett.121.013202
281 M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, 2D magneto–optical trapping of diatomic molecules, Phys. Rev. Lett. 110(14), 143001 (2013)
282 M. Yeo, M. T. Hummon, A. L. Collopy, B. Yan, B. Hemmerling, E. Chae, J. M. Doyle, and J. Ye, Rotational state microwave mixing for laser cooling of complex diatomic molecules, Phys. Rev. Lett. 114(22), 223003 (2015)
https://doi.org/10.1103/PhysRevLett.114.223003
283 A. L. Collopy, S. Ding, Y. Wu, I. A. Finneran, L. Anderegg, B. L. Augenbraun, J. M. Doyle, and J. Ye, 3D magneto–optical trap of yttrium monoxide, Phys. Rev. Lett. 121(21), 213201 (2018)
https://doi.org/10.1103/PhysRevLett.121.213201
284 V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. Hinds, M. Tarbutt, and B. Sauer, Laser cooling and slowing of CaF molecules, Phys. Rev. A 89(5), 053416 (2014)
https://doi.org/10.1103/PhysRevA.89.053416
285 H. Williams, L. Caldwell, N. Fitch, S. Truppe, J. Rodewald, E. Hinds, B. Sauer, and M. Tarbutt, Magnetic trapping and coherent control of laser-cooled molecules, Phys. Rev. Lett. 120(16), 163201 (2018)
https://doi.org/10.1103/PhysRevLett.120.163201
286 L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, L. W. Cheuk, W. Ketterle, and J. M. Doyle, Laser cooling of optically trapped molecules, Nat. Phys. 14(9), 890 (2018)
https://doi.org/10.1038/s41567-018-0191-z
287 L. Caldwell, J. Devlin, H. Williams, N. Fitch, E. Hinds, B. Sauer, and M. Tarbutt, Deep laser cooling and efficient magnetic compression of molecules, Phys. Rev. Lett. 123(3), 033202 (2019)
https://doi.org/10.1103/PhysRevLett.123.033202
288 J. Lim, J. Almond, M. Trigatzis, J. Devlin, N. Fitch, B. Sauer, M. Tarbutt, and E. Hinds, Laser cooled YbF molecules for measuring the electron’s electric dipole moment, Phys. Rev. Lett. 120(12), 123201 (2018)
https://doi.org/10.1103/PhysRevLett.120.123201
289 T. Chen, W. Bu, and B. Yan, Radiative deflection of a BaF molecular beam via optical cycling, Phys. Rev. A 96(5), 053401 (2017)
https://doi.org/10.1103/PhysRevA.96.053401
290 S. Xu, M. Xia, Y. Yin, R. Gu, Y. Xia, and J. Yin, Determination of the normal A 2Π state in MgF with application to direct laser cooling of molecules, J. Chem. Phys. 150(8), 084302 (2019)
https://doi.org/10.1063/1.5083898
291 W. Ketterle and N. Van Druten, in: Advances in Atomic, Molecular, and Optical Physics, Vol. 37, Elsevier, 1996, pp 181–236
https://doi.org/10.1016/S1049-250X(08)60101-9
292 L. M. Janssen, P. S. Żuchowski, A. van der Avoird, J. M. Hutson, and G. C. Groenenboom, Cold and ultracold NH–NH collisions: The field-free case, J. Chem. Phys. 134(12), 124309 (2011)
https://doi.org/10.1063/1.3570596
293 Y. V. Suleimanov, T. Tscherbul, and R. Krems, Efficient method for quantum calculations of molecule–molecule scattering properties in a magnetic field, J. Chem. Phys. 137(2), 024103 (2012)
https://doi.org/10.1063/1.4733288
294 L. M. Janssen, A. van der Avoird, and G. C. Groenenboom, Quantum reactive scattering of ultracold NH(X3Σ−) radicals in a magnetic trap, Phys. Rev. Lett. 110(6), 063201 (2013)
https://doi.org/10.1103/PhysRevLett.110.063201
295 L. P. Parazzoli, N. J. Fitch, P. S. Żuchowski, J. M. Hutson, and H. J. Lewandowski, Large effects of electric fields on atom–molecule collisions at millikelvin temperatures, Phys. Rev. Lett. 106(19), 193201 (2011)
https://doi.org/10.1103/PhysRevLett.106.193201
296 B. K. Stuhl, M. T. Hummon, M. Yeo, G. Quéméner, J. L. Bohn, and J. Ye, Evaporative cooling of the dipolar hydroxyl radical, Nature 492(7429), 396 (2012)
https://doi.org/10.1038/nature11718
297 D. J. Larson, J. C. Bergquist, J. J. Bollinger, W. M. Itano, and D. J. Wineland, Sympathetic cooling of trapped ions: A laser-cooled two-species nonneutral ion plasma, Phys. Rev. Lett. 57(1), 70 (1986)
https://doi.org/10.1103/PhysRevLett.57.70
298 C. Myatt, E. Burt, R. Ghrist, E. A. Cornell, and C. Wieman, Production of two overlapping Bose–Einstein condensates by sympathetic cooling, Phys. Rev. Lett. 78(4), 586 (1997)
https://doi.org/10.1103/PhysRevLett.78.586
299 F. Schreck, G. Ferrari, K. Corwin, J. Cubizolles, L. Khaykovich, M. O. Mewes, and C. Salomon, Sympathetic cooling of bosonic and fermionic lithium gases towards quantum degeneracy, Phys. Rev. A 64(1), 011402 (2001)
https://doi.org/10.1103/PhysRevA.64.011402
300 P. S. Żuchowski and J. M. Hutson, Prospects for producing ultracold NH3 molecules by sympathetic cooling: A survey of interaction potentials,Phys. Rev. A 78(2), 022701 (2008)
https://doi.org/10.1103/PhysRevA.78.022701
301 P. S. Żuchowski and J. M. Hutson, Low-energy collisions of NH3 and ND3 with ultracold Rb atoms, Phys. Rev. A 79(6), 062708 (2009)
https://doi.org/10.1103/PhysRevA.79.062708
302 P. Barletta, J. Tennyson, and P. Barker, Creating ultracold molecules by collisions with ultracold rare-gas atoms in an optical trap, Phys. Rev. A 78(5), 052707 (2008)
https://doi.org/10.1103/PhysRevA.78.052707
303 P. Barker, S. Purcell, P. Douglas, P. Barletta, N. Coppendale, C. Maher-McWilliams, and J. Tennyson, Sympathetic cooling by collisions with ultracold rare gas atoms, and recent progress in optical Stark deceleration, Faraday Discuss. 142, 175 (2009)
https://doi.org/10.1039/b819079h
304 P. Barletta, J. Tennyson, and P. Barker, Direct Monte Carlo simulation of the sympathetic cooling of trapped molecules by ultracold argon atoms, New J. Phys. 12(11), 113002 (2010)
https://doi.org/10.1088/1367-2630/12/11/113002
305 M. Lara, J. L. Bohn, D. Potter, P. Soldán, and J. M. Hutson, Ultracold Rb–OH collisions and prospects for sympathetic cooling, Phys. Rev. Lett. 97(18), 183201 (2006)
https://doi.org/10.1103/PhysRevLett.97.183201
306 M. Lara, J. L. Bohn, D. E. Potter, P. Soldán, and J. M. Hutson, Cold collisions between OH and Rb: The fieldfree case, Phys. Rev. A 75(1), 012704 (2007)
https://doi.org/10.1103/PhysRevA.75.012704
307 M. Tacconi, L. Gonzalez-Sanchez, E. Bodo, and F. Gianturco, Collisions of NH(3Σ −) with Rb and Cs at ultralow energies: A quantum study of rotational cooling efficiency, Phys. Rev. A 76(3), 032702 (2007)
https://doi.org/10.1103/PhysRevA.76.032702
308 P. Soldán, P. S. Żuchowski, and J. M. Hutson, Prospects for sympathetic cooling of polar molecules: NH with alkali-metal and alkaline-earth atoms — a new hope, Faraday Discuss. 142, 191 (2009)
https://doi.org/10.1039/b822769c
309 A. O. Wallis and J. M. Hutson, Production of ultracold NH molecules by sympathetic cooling with Mg, Phys. Rev. Lett. 103(18), 183201 (2009)
https://doi.org/10.1103/PhysRevLett.103.183201
310 M. L. González-Martínez, and J. M. Hutson, Effect of hyperfine interactions on ultracold molecular collisions: NH(3Σ−) with Mg(1S) in magnetic fields, Phys. Rev. A 84(5), 052706 (2011)
https://doi.org/10.1103/PhysRevA.84.052706
311 A. O. Wallis, E. J. Longdon, P. S. Żuchowski, and J. M. Hutson, The prospects of sympathetic cooling of NH molecules with Li atoms, Eur. Phys. J. D 65(1–2), 151 (2011)
https://doi.org/10.1140/epjd/e2011-20025-4
312 P. S. Żuchowski and J. M. Hutson, Cold collisions of N(4S) atoms and NH(3Σ) molecules in magnetic fields, Phys. Chem. Chem. Phys. 13(9), 3669 (2011)
https://doi.org/10.1039/C0CP01447H
313 M. L. González-Martínez and J. M. Hutson, Ultracold hydrogen atoms: A versatile coolant to produce ultracold molecules, Phys. Rev. Lett. 111(20), 203004 (2013)
https://doi.org/10.1103/PhysRevLett.111.203004
314 S. K. Tokunaga, W. Skomorowski, P. S. Żuchowski, R. Moszynski, J. M. Hutson, E. Hinds, and M. Tarbutt, Prospects for sympathetic cooling of molecules in electrostatic, ac and microwave traps, Eur. Phys. J. D 65(1–2), 141 (2011)
https://doi.org/10.1140/epjd/e2011-10719-x
315 T. Tscherbul, J. Kłos, and A. Buchachenko, Ultracold spin-polarized mixtures of 2Σ molecules with S-state atoms: Collisional stability and implications for sympathetic cooling, Phys. Rev. A 84(4), 040701 (2011)
https://doi.org/10.1103/PhysRevA.84.040701
316 T. Tscherbul, J. Kłos, L. Rajchel, and R. Krems, Fine and hyperfine interactions in cold YbF–He collisions in electromagnetic fields, Phys. Rev. A 75(3), 033416 (2007)
https://doi.org/10.1103/PhysRevA.75.033416
317 J. Lim, M. D. Frye, J. M. Hutson, and M. Tarbutt, Modeling sympathetic cooling of molecules by ultracold atoms, Phys. Rev. A 92(5), 053419 (2015)
https://doi.org/10.1103/PhysRevA.92.053419
318 M. Morita, M. B. Kosicki, P. S. Żuchowski, and T. V. Tscherbul, Atom–molecule collisions, spin relaxation, and sympathetic cooling in an ultracold spin-polarized Rb(2S)–SrF(2Σ+) mixture, Phys. Rev. A 98(4), 042702 (2018)
https://doi.org/10.1103/PhysRevA.98.042702
319 M. Morita, R. V. Krems, and T. V. Tscherbul, Universal probability distributions of scattering observables in ultracold molecular collisions, Phys. Rev. Lett. 123(1), 013401 (2019)
https://doi.org/10.1103/PhysRevLett.123.013401
320 M. Morita, J. Kłos, A. A. Buchachenko, and T. V. Tscherbul, Cold collisions of heavy 2Σ molecules with alkali-metal atoms in a magnetic field: Ab initioanalysis and prospects for sympathetic cooling of SrOH(2Σ+) by Li(2S), Phys. Rev. A 95(6), 063421 (2017)
https://doi.org/10.1103/PhysRevA.95.063421
321 E. Lavert-Ofir, S. Gersten, A. B. Henson, I. Shani, L. David, J. Narevicius, and E. Narevicius, A moving magnetic trap decelerator: A new source of cold atoms and molecules, New J. Phys. 13(10), 103030 (2011)
https://doi.org/10.1088/1367-2630/13/10/103030
322 E. Lavert-Ofir, L. David, A. B. Henson, S. Gersten, J. Narevicius, and E. Narevicius, Stopping paramagnetic supersonic beams: The advantage of a co-moving magnetic trap decelerator, Phys. Chem. Chem. Phys. 13(42), 18948 (2011)
https://doi.org/10.1039/c1cp21225g
323 A. Trimeche, M. N. Bera, J. P. Cromières, J. Robert, and N. Vanhaecke, Trapping of a supersonic beam in a traveling magnetic wave, Eur. Phys. J. D 65(1–2), 263 (2011)
https://doi.org/10.1140/epjd/e2011-20096-1
324 S. A. Meek, H. L. Bethlem, H. Conrad, and G. Meijer, Trapping molecules on a chip in traveling potential wells, Phys. Rev. Lett. 100(15), 153003 (2008)
https://doi.org/10.1103/PhysRevLett.100.153003
325 S. A. Meek, H. Conrad, and G. Meijer, Trapping molecules on a chip, Science 324(5935), 1699 (2009)
https://doi.org/10.1126/science.1175975
326 S. A Meek, H. Conrad, and G. Meijer, A Stark decelerator on a chip, New J. Phys. 11(5), 055024 (2009)
https://doi.org/10.1088/1367-2630/11/5/055024
327 A. Osterwalder, S. A. Meek, G. Hammer, H. Haak, and G. Meijer, Deceleration of neutral molecules in macroscopic traveling traps, Phys. Rev. A 81(5), 051401 (2010)
https://doi.org/10.1103/PhysRevA.81.051401
328 S. A. Meek, M. F. Parsons, G. Heyne, V. Platschkowski, H. Haak, G. Meijer, and A. Osterwalder, A traveling wave decelerator for neutral polar molecules, Rev. Sci. Instrum. 82(9), 093108 (2011)
https://doi.org/10.1063/1.3640413
329 N. Akerman, M. Karpov, Y. Segev, N. Bibelnik, J. Narevicius, and E. Narevicius, Trapping of molecular oxygen together with lithium atoms, Phys. Rev. Lett. 119(7), 073204 (2017)
https://doi.org/10.1103/PhysRevLett.119.073204
330 Y. Segev, M. Pitzer, M. Karpov, N. Akerman, J. Narevicius, and E. Narevicius, Collisions between cold molecules in a superconducting magnetic trap, Nature 572(7768), 189 (2019)
https://doi.org/10.1038/s41586-019-1446-2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed