|
|
Recent advances on π-conjugated polymers as active elements in high performance organic field-effect transistors |
Lixing Luo1, Wanning Huang1, Canglei Yang1, Jing Zhang1( ), Qichun Zhang2( ) |
1. Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China 2. Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China |
|
|
Abstract As high-performance organic semiconductors, π-conjugated polymers have attracted much attention due to their charming advantages including low-cost, solution processability, mechanical flexibility, and tunable optoelectronic properties. During the past several decades, the great advances have been made in polymers-based OFETs with p-type, n-type or even ambipolar characterics. Through chemical modification and alignment optimization, lots of conjugated polymers exhibited superior mobilities, and some mobilities are even larger than 10 cm2·V−1·s−1 in OFETs, which makes them very promising for the applications in organic electronic devices. This review describes the recent progress of the high performance polymers used in OFETs from the aspects of molecular design and assembly strategy. Furthermore, the current challenges and outlook in the design and development of conjugated polymers are also mentioned.
|
Keywords
conjugated polymers
p-type polymer
n-type polymer
ambipolar transport
high-ordered alignment
|
Corresponding Author(s):
Jing Zhang,Qichun Zhang
|
Just Accepted Date: 31 December 2020
Issue Date: 26 April 2021
|
|
1 |
J. Yang, Z. Zhao, S. Wang, Y. Guo, and Y. Liu, Insight into high-performance conjugated polymers for organic field-effect transistors, Chem 4(12), 2748 (2018)
https://doi.org/10.1016/j.chempr.2018.08.005
|
2 |
L. Shi, Y. Guo, W. Hu, and Y. Liu, Design and effective synthesis methods for high-performance polymer semiconductors in organic field-effect transistors, Mater. Chem. Front. 1(12), 2423 (2017)
https://doi.org/10.1039/C7QM00169J
|
3 |
Q. Zhang, Shooting flexible electronics, Front. Phys. 16(1), 13602 (2021)
https://doi.org/10.1007/s11467-020-1009-x
|
4 |
J. Y. Oh, S. Rondeau-Gagne, Y. C. Chiu, A. Chortos, F. Lissel, G. N. Wang, B. C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. Zhu, X. Gu, W. G. Bae, Y. Kim, L. Jin, J. W. Chung, J. B. Tok, and Z. Bao, Intrinsically stretchable and healable semiconducting polymer for organic transistors, Nature 539(7629), 411 (2016)
https://doi.org/10.1038/nature20102
|
5 |
S. Wang, J. Xu, W. Wang, G. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S. K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. Tok, and Z. Bao, Skin electronics from scalable fabrication of an intrinsically stretchable transistor array, Nature 555(7694), 83 (2018)
https://doi.org/10.1038/nature25494
|
6 |
L. Hou, X. Zhang, G. F. Cotella, G. Carnicella, M. Herder, B. M. Schmidt, M. Patzel, S. Hecht, F. Cacialli, and P. Samori, Optically switchable organic lightemitting transistors, Nat. Nanotechnol. 14(4), 347 (2019)
https://doi.org/10.1038/s41565-019-0370-9
|
7 |
A. A. Argun, A. Cirpan, and J. R. Reynolds, The first truly all-polymer electrochromic devices, Adv. Mater. 15(16), 1338 (2003)
https://doi.org/10.1002/adma.200305038
|
8 |
G. Sonmez, H. Meng, Q. Zhang, and F. Wudl, A highly stable, new electrochromic polymers: Poly(1,bis(2-(3′,4′-ethylenedioxy)thienyl)-2-methoxy- 5-2′′-ethylhexyloxybenzene), Adv. Funct. Mater. 13(9), 726 (2003)
https://doi.org/10.1002/adfm.200304317
|
9 |
F. Yu, W. Liu, S. W. Ke, M. Kurmoo, J. L. Zuo, and Q. Zhang, Electrochromic two-dimensional covalent organic framework with a revisable dark-to-transparent switch, Nat. Commun. 11(1), 5534 (2020)
https://doi.org/10.1038/s41467-020-19315-6
|
10 |
F. Yu, W. Liu, B. Li, D. Tian, J. L. Zuo, and Q. Zhang, Photo-stimulus-responsive large-area twodimensional covalent-organic framework films, Angew. Chem. Int. Ed. 58(45), 16101 (2019)
https://doi.org/10.1002/anie.201909613
|
11 |
H. Wang, C. J. Yao, H. J. Nie, L. Yang, S. Mei, and Q. Zhang, Recent progress in integrated functional electrochromic energy storage devices, J. Mater. Chem. C 8(44), 15507 (2020)
https://doi.org/10.1039/D0TC03934A
|
12 |
Y. Kim, C. Park, S. Im, and J. H. Kim, Design of intrinsically stretchable and highly conductive polymers for fully stretchable electrochromic devices, Sci. Rep. 10(1), 16488 (2020)
https://doi.org/10.1038/s41598-020-73259-x
|
13 |
S. Roy and C. Chakraborty, Nanostructured metallosupramolecular polymer-based gel-type electrochromic devices with ultrafast switching time and high colouration efficiency, J. Mater. Chem. C 7(10), 2871 (2019)
https://doi.org/10.1039/C8TC06138F
|
14 |
L. Li, Q. D. Ling, S. L. Lim, Y. P. Tan, C. Zhu, D. S. H. Chan, E. T. Kang, and K. G. Neoh, A flexible polymer memory device, Org. Electron. 8(4), 401 (2007)
https://doi.org/10.1016/j.orgel.2007.02.002
|
15 |
M. Walter, F. Friess, M. Krus, S. M. H. Zolanvari, G. Grun, H. Krober, and T. Pretsch, Shape memory polymer foam with programmable apertures, Polymers (Basel) 12(9), 1914 (2020)
https://doi.org/10.3390/polym12091914
|
16 |
S. Li, L. Zhan, C. Sun, H. Zhu, G. Zhou, W. Yang, M. Shi, C. Z. Li, J. Hou, Y. Li, and H. Chen, Highly efficient fullerene-free organic solar cells operate at near zero highest occupied molecular orbital offsets, J. Am. Chem. Soc. 141(7), 3073 (2019)
https://doi.org/10.1021/jacs.8b12126
|
17 |
W. Chen, X. Yang, G. Long, X. Wan, Y. Chen, and Q. Zhang, Perylene diimide (PDI)-based small molecule with tetrahedral configuration as non-fullerene acceptor for organic solar cells, J. Mater. Chem. C 3(18), 4698 (2015)
https://doi.org/10.1039/C5TC00865D
|
18 |
W. Chen and Q. Zhang, Recent progress on non-fullerene small molecule acceptors in Organic Solar Cells (OSCs), J. Mater. Chem. C 5(6), 1275 (2017)
https://doi.org/10.1039/C6TC05066B
|
19 |
X. Xu, Z. Li, Z. Bi, T. Yu, W. Ma, K. Feng, Y. Li, and Q. Peng, Highly efficient nonfullerene polymer solar cells enabled by a copper(I) coordination strategy employing a 1,3,4-oxadiazole-containing wide-bandgap copolymer donor, Adv. Mater. 30(28), 1800737 (2018)
https://doi.org/10.1002/adma.201800737
|
20 |
J. Hou, O. Inganas, R. H. Friend, and F. Gao, Organic solar cells based on non-fullerene acceptors, Nat. Mater. 17(2), 119 (2018)
https://doi.org/10.1038/nmat5063
|
21 |
J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H. L. Yip, T. K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, Singlejunction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core, Joule 3(4), 1140 (2019)
https://doi.org/10.1016/j.joule.2019.01.004
|
22 |
L. Lu, M. A. Kelly, W. You, and L. Yu, Status and prospects for ternary organic photovoltaics, Nat. Photonics 9(8), 491 (2015)
https://doi.org/10.1038/nphoton.2015.128
|
23 |
H. Wu, L. Ying, W. Yang, and Y. Cao, Progress and perspective of polymer white light-emitting devices and materials, Chem. Soc. Rev. 38(12), 3391 (2009)
https://doi.org/10.1039/b816352a
|
24 |
T. Yu, L. Liu, Z. Xie, and Y. Ma, Progress in smallmolecule luminescent materials for organic light-emitting diodes, Sci. China Chem. 58(6), 907 (2015)
https://doi.org/10.1007/s11426-015-5409-7
|
25 |
A. Salleo, R. J. Kline, D. M. DeLongchamp, and M. L. Chabinyc, Microstructural characterization and charge transport in thin films of conjugated polymers, Adv. Mater. 22(34), 3812 (2010)
https://doi.org/10.1002/adma.200903712
|
26 |
Y. Xu, H. Sun, W. Li, Y. F. Lin, F. Balestra, G. Ghibaudo, and Y. Y. Noh, Exploring the charge transport in conjugated polymers, Adv. Mater. 29(41), 1702729 (2017)
https://doi.org/10.1002/adma.201702729
|
27 |
K. S. Park, J. J. Kwok, R. Dilmurat, G. Qu, P. Kafle, X. Luo, S.H. Jung, Y. Olivier, J. K. Lee, J. Mei, D. Beljonne, and Y. Diao, Tuning conformation, assembly, and charge transport properties of conjugated polymers by printing flow, Sci. Adv. 5(8), eaaw7757 (2019)
https://doi.org/10.1126/sciadv.aaw7757
|
28 |
R. Noriega, J. Rivnay, K. Vandewal, F. P. Koch, N. Stingelin, P. Smith, M. F. Toney, and A. Salleo, A general relationship between disorder, aggregation and charge transport in conjugated polymers, Nat. Mater. 12(11), 1038 (2013)
https://doi.org/10.1038/nmat3722
|
29 |
Y. Zhao, X. Zhao, M. Roders, G. Qu, Y. Diao, A. L. Ayzner, and J. Mei, Complementary semiconducting polymer blends for efficient charge transport, Chem. Mater. 27(20), 7164 (2015)
https://doi.org/10.1021/acs.chemmater.5b03349
|
30 |
Y. Yang, Z. Liu, G. Zhang, X. Zhang, and D. Zhang, The effects of side chains on the charge mobilities and functionalities of semiconducting conjugated polymers beyond solubilities, Adv. Mater. 31(46), 1903104 (2019)
https://doi.org/10.1002/adma.201903104
|
31 |
M. Kim, S. U. Ryu, S. A. Park, K. Choi, T. Kim, D. Chung, and T. Park, Donor-acceptor-conjugated polymer for high‐performance organic field‐effect transistors: A progress report, Adv. Funct. Mater. 30(20), 1904545 (2020)
https://doi.org/10.1002/adfm.201904545
|
32 |
H. Zhang, K. Yang, K. Zhang, Z. Zhang, Q. Sun, and W. Yang, Thionating iso-diketopyrrolopyrrole-based polymers: From p-type to ambipolar field effect transistors with enhanced charge mobility, Polym. Chem. 9(14), 1807 (2018)
https://doi.org/10.1039/C8PY00292D
|
33 |
L. Chen, S. Chi, K. Zhao, J. Liu, X. Yu, and Y. Han, Aligned films of the DPP-Based conjugated polymer by solvent vapor enhanced drop casting, Polymer (Guildf.) 104, 123 (2016)
https://doi.org/10.1016/j.polymer.2016.10.005
|
34 |
J. Park, S. Lee, and H. H. Lee, High-mobility polymer thin-film transistors fabricated by solvent-assisted dropcasting, Org. Electron. 7(5), 256 (2006)
https://doi.org/10.1016/j.orgel.2006.03.008
|
35 |
E. Mohammadi, C. Zhao, Y. Meng, G. Qu, F. Zhang, X. Zhao, J. Mei, J. M. Zuo, D. Shukla, and Y. Diao, Dynamic-template-directed multiscale assembly for largearea coating of highly-aligned conjugated polymer thin films, Nat. Commun. 8(1), 16070 (2017)
https://doi.org/10.1038/ncomms16070
|
36 |
Q. Y. Li, Z. F. Yao, Y. Lu, S. Zhang, Z. Ahmad, J. Y. Wang, X. Gu, and J. Pei, Achieving high alignment of conjugated polymers by controlled dip‐coating, Adv. Electron. Mater. 6(6), 2000080 (2020)
https://doi.org/10.1002/aelm.202000080
|
37 |
J. Xu, H. C. Wu, C. Zhu, A. Ehrlich, L. Shaw, M. Nikolka, S. Wang, F. Molina-Lopez, X. Gu, S. Luo, D. Zhou, Y. H. Kim, G. N. Wang, K. Gu, V. R. Feig, S. Chen, Y. Kim, T. Katsumata, Y. Q. Zheng, H. Yan, J. W. Chung, J. Lopez, B. Murmann, and Z. Bao, Multi-scale ordering in highly stretchable polymer semiconducting films, Nat. Mater. 18(6), 594 (2019)
https://doi.org/10.1038/s41563-019-0340-5
|
38 |
X. Cao, Z. Du, L. Chen, K. Zhao, H. Li, J. Liu, and Y. Han, Long diketopyrrolopyrrole-based polymer nanowires prepared by decreasing the aggregate speed of the polymer in solution, Polymer (Guildf.) 118, 135 (2017)
https://doi.org/10.1016/j.polymer.2017.04.076
|
39 |
G. G. Jeon, M. Lee, J. Nam, W. Park, M. Yang, J. H. Choi, D. K. Yoon, E. Lee, B. Kim, and J. H. Kim, Simple solvent engineering for high-mobility and thermally robust conjugated polymer nanowire field-effect transistors, ACS Appl. Mater. Interfaces 10(35), 29824 (2018)
https://doi.org/10.1021/acsami.8b07643
|
40 |
K. J. Ihn, J. Moulton, and P. Smith, Whiskers of poly (3-alkylthiophene)s, J. Polym. Sci. B 31(6), 735 (1993)
https://doi.org/10.1002/polb.1993.090310614
|
41 |
X. Cao, L. Chen, K. Zhao, J. Liu, and Y. Han, Diketopyrrolopyrrole-based polymer nanowires: Control of chain conformation and nucleation, J. Polym. Sci. B 56(11), 833 (2018)
https://doi.org/10.1002/polb.24598
|
42 |
J. Qian, G. Guerin, Y. Lu, G. Cambridge, I. Manners, and M. A. Winnik, Self-seeding in one dimension: An approach to control the length of fiberlike polyisoprenepolyferrocenylsilane block copolymer micelles, Angew. Chem. Int. Ed. 50(7), 1622 (2011)
https://doi.org/10.1002/anie.201006223
|
43 |
J. Y. Oh, M. Shin, T. I. Lee, W. S. Jang, Y. Min, J. M. Myoung, H. K. Baik, and U. Jeong, Self-seeded growth of poly(3-hexylthiophene) (P3HT) nanofibrils by a cycle of cooling and heating in solutions, Macromolecules 45(18), 7504 (2012)
https://doi.org/10.1021/ma300958n
|
44 |
D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A. J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, and H. Sirringhaus, Approaching disorder-free transport in high-mobility conjugated polymers, Nature 515(7527), 384 (2014)
https://doi.org/10.1038/nature13854
|
45 |
P. H. Chu, N. Kleinhenz, N. Persson, M. McBride, J. L. Hernandez, B. Fu, G. Zhang, and E. Reichmanis, Toward precision control of nanofiber orientation in conjugated polymer thin films: impact on charge transport, Chem. Mater. 28(24), 9099 (2016)
https://doi.org/10.1021/acs.chemmater.6b04202
|
46 |
I. Botiz and N. Stingelin, Influence of molecular conformations and microstructure on the optoelectronic properties of conjugated polymers, Materials (Basel) 7(3), 2273 (2014)
https://doi.org/10.3390/ma7032273
|
47 |
P. Prins, F. C. Grozema, J. M. Schins, S. Patil, U. Scherf, and L. D. Siebbeles, High intrachain hole mobility on molecular wires of ladder-type poly(p-phenylenes), Phys. Rev. Lett. 96(14), 146601 (2006)
https://doi.org/10.1103/PhysRevLett.96.146601
|
48 |
L. Bürgi, T. J. Richards, R. H. Friend, and H. Sirringhaus, Close look at charge carrier injection in polymer field-effect transistors, J. Appl. Phys. 94(9), 6129 (2003)
https://doi.org/10.1063/1.1613369
|
49 |
V. Chaudhary, R. K. Pandey, R. Prakash, N. Kumar, and A. K. Singh, Highly aligned and crystalline poly(3- hexylthiophene) thin films by off-center spin coating for high performance organic field-effect transistors, Synth. Met. 258, 116221 (2019)
https://doi.org/10.1016/j.synthmet.2019.116221
|
50 |
D. Alberga, A. Perrier, I. Ciofini, G. F. Mangiatordi, G. Lattanzi, and C. Adamo, Morphological and charge transport properties of amorphous and crystalline P3HT and PBTTT: Insights from theory, Phys. Chem. Chem. Phys. 17(28), 18742 (2015)
https://doi.org/10.1039/C5CP02769A
|
51 |
Y. Lei, P. Deng, Q. Zhang, Z. Xiong, Q. Li, J. Mai, X. Lu, X. Zhu, and B. S. Ong, Hydrocarbons-driven crystallization of polymer semiconductors for low-temperature fabrication of high-performance organic field-effect transistors, Adv. Funct. Mater. 28(15), 1706372 (2018)
https://doi.org/10.1002/adfm.201706372
|
52 |
S. Wang, S. Fabiano, S. Himmelberger, S. Puzinas, X. Crispin, A. Salleo, and M. Berggren, Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers, Proc. Natl. Acad. Sci. USA 112(34), 10599 (2015)
https://doi.org/10.1073/pnas.1501381112
|
53 |
X. Guo, A. Facchetti, and T. J. Marks, Imide- and amide-functionalized polymer semiconductors, Chem. Rev. 114(18), 8943 (2014)
https://doi.org/10.1021/cr500225d
|
54 |
Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A. J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T. M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.-L. Brédas, S. R. Marder, A. Kahn, and B. Kippelen, A universal method to produce low–work function electrodes for organic electronics, Science 336(6079), 327 (2012)
https://doi.org/10.1126/science.1218829
|
55 |
M. Tantiwiwat, A. Tamayo, N. Luu, X. D. Dang, and T. Q. Nguyen, Oligothiophene derivatives functionalized with a diketopyrrolopyrrolo core for solution-processed field effect transistors: Effect of alkyl substituents and thermal annealing, J. Phys. Chem. C 112(44), 17402 (2008)
https://doi.org/10.1021/jp8068305
|
56 |
M. Gruber, S. H. Jung, S. Schott, D. Venkateshvaran, A. J. Kronemeijer, J. W. Andreasen, C. R. McNeill, W. W. H. Wong, M. Shahid, M. Heeney, J. K. Lee, and H. Sirringhaus, Enabling high-mobility, ambipolar charge-transport in a DPP-benzotriazole copolymer by side-chain engineering, Chem. Sci. (Camb.) 6(12), 6949 (2015)
https://doi.org/10.1039/C5SC01326G
|
57 |
W. Hong, S. Chen, B. Sun, M. A. Arnould, Y. Meng, and Y. Li, Is a polymer semiconductor having a “perfect” regular structure desirable for organic thin film transistors? Chem. Sci. (Camb.) 6(5), 3225 (2015)
https://doi.org/10.1039/C5SC00843C
|
58 |
Y. Yu, Y. Wu, A. Zhang, C. Li, Z. Tang, W. Ma, Y. Wu, and W. Li, Diketopyrrolopyrrole polymers with Thienyl and Thiazolyl linkers for application in field-effect transistors and polymer solar cells, ACS Appl. Mater. Interfaces 8(44), 30328 (2016)
https://doi.org/10.1021/acsami.6b06967
|
59 |
A. Zhang, C. Xiao, Y. Wu, C. Li, Y. Ji, L. Li, W. Hu, Z. Wang, W. Ma, and W. Li, Effect of fluorination on molecular orientation of conjugated polymers in high performance field-effect transistors, Macromolecules 49(17), 6431 (2016)
https://doi.org/10.1021/acs.macromol.6b01446
|
60 |
Y. Yang, Z. Liu, L. Chen, J. Yao, G. Lin, X. Zhang, G. Zhang, and D. Zhang, Conjugated semiconducting polymer with thymine groups in the side chains: Charge mobility enhancement and application for selective fieldeffect transistor sensors toward CO and H2S, Chem. Mater. 31(5), 1800 (2019)
https://doi.org/10.1021/acs.chemmater.9b00106
|
61 |
A. R. Han, G. K. Dutta, J. Lee, H. R. Lee, S. M. Lee, H. Ahn, T. J. Shin, J. H. Oh, and C. Yang, ε-branched flexible side chain substituted diketopyrrolopyrrolecontaining polymers designed for high hole and electron mobilities, Adv. Funct. Mater. 25(2), 247 (2015)
https://doi.org/10.1002/adfm.201403020
|
62 |
Z. Wang, Z. Liu, L. Ning, M. Xiao, Y. Yi, Z. Cai, A. Sadhanala, G. Zhang, W. Chen, H. Sirringhaus, and D. Zhang, Charge mobility enhancement for conjugated dpp-selenophene polymer by simply replacing one bulky branching alkyl chain with linear one at each DPP unit, Chem. Mater. 30(9), 3090 (2018)
https://doi.org/10.1021/acs.chemmater.8b01007
|
63 |
J. Li, Y. Zhao, H. S. Tan, Y. Guo, C. A. Di, G. Yu, Y. Liu, M. Lin, S. H. Lim, Y. Zhou, H. Su, and B. S. Ong, A stable solution-processed polymer semiconductor with record high-mobility for printed transistors, Sci. Rep. 2(1), 754 (2012)
https://doi.org/10.1038/srep00754
|
64 |
Y. Lei, P. Deng, J. Li, M. Lin, F. Zhu, T. W. Ng, C. S. Lee, and B. S. Ong, Solution-processed donoracceptor polymer nanowire network semiconductors for high-performance field-effect transistors, Sci. Rep. 6(1), 24476 (2016)
https://doi.org/10.1038/srep24476
|
65 |
B. C. Schroeder, T. Kurosawa, T. Fu, Y. Chiu, J. Mun, G. N. Wang, X. Gu, L. Shaw, J. W. E. Kneller, T. Kreouzis, M. F. Toney, and Z. Bao, Taming charge transport in semiconducting polymers with branched alkyl side chains, Adv. Funct. Mater. 27(34), 1701973 (2017)
https://doi.org/10.1002/adfm.201701973
|
66 |
C. Xiao, G. Zhao, A. Zhang, W. Jiang, R. A. Janssen, W. Li, W. Hu, and Z. Wang, High performance polymer nanowire field-effect transistors with distinct molecular orientations, Adv. Mater. 27(34), 4963 (2015)
https://doi.org/10.1002/adma.201502617
|
67 |
J. Xu, S. Wang, G. N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen, V. Feig, J. W. F. To, S. R. Gagné, J. Park, B. C. Schroeder, C. Lu, J. Oh, Y. Wang, Y. H. Kim, H. Yan, R. Sinclair, D. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J. B. H. Tok, J. W. Chung, and Z. Bao, Highly stretchable polymer semiconductor films through the nanoconfinement effect, Science 355(6320), 59 (2017)
https://doi.org/10.1126/science.aah4496
|
68 |
H. Chen, Y. Guo, G. Yu, Y. Zhao, J. Zhang, D. Gao, H. Liu, and Y. Liu, Highly Pi-extended copolymers with diketopyrrolopyrrole moieties for high-performance fieldeffect transistors, Adv. Mater. 24(34), 4618 (2012)
https://doi.org/10.1002/adma.201201318
|
69 |
H. Yu, K. H. Park, I. Song, M. J. Kim, Y. H. Kim, and J. H. Oh, Effect of the alkyl spacer length on the electrical performance of diketopyrrolopyrrole-thiophene vinylene thiophene polymer semiconductors, J. Mater. Chem. C 3(44), 11697 (2015)
https://doi.org/10.1039/C5TC02565F
|
70 |
J. Y. Back, H. Yu, I. Song, I. Kang, H. Ahn, T. J. Shin, S. K. Kwon, J. H. Oh, and Y. H. Kim, Investigation of structure–property relationships in diketopyrrolopyrrolebased polymer semiconductors via side-chain engineering, Chem. Mater. 27(5), 1732 (2015)
https://doi.org/10.1021/cm504545e
|
71 |
I. Kang, H. J. Yun, D. S. Chung, S. K. Kwon, and Y. H. Kim, Record high hole mobility in polymer semiconductors via side-chain engineering, J. Am. Chem. Soc. 135(40), 14896 (2013)
https://doi.org/10.1021/ja405112s
|
72 |
H. H. Choi, J. Y. Baek, E. Song, B. Kang, K. Cho, S. K. Kwon, and Y. H. Kim, A pseudo-regular alternating conjugated copolymer using an asymmetric monomer: a high-mobility organic transistor in nonchlorinated solvents, Adv. Mater. 27(24), 3626 (2015)
https://doi.org/10.1002/adma.201500335
|
73 |
X. Zhang, H. Bronstein, A. J. Kronemeijer, J. Smith, Y. Kim, R. J. Kline, L. J. Richter, T. D. Anthopoulos, H. Sirringhaus, K. Song, M. Heeney, W. Zhang, I. McCulloch, and D. M. DeLongchamp, Molecular origin of high field-effect mobility in an indacenodithiophenebenzothiadiazole copolymer, Nat. Commun. 4(1), 2238 (2013)
https://doi.org/10.1038/ncomms3238
|
74 |
A. Wadsworth, H. Chen, K. J. Thorley, C. Cendra, M. Nikolka, H. Bristow, M. Moser, A. Salleo, T. D. Anthopoulos, H. Sirringhaus, and I. McCulloch, Modification of indacenodithiophene-based polymers and its impact on charge carrier mobility in organic thin-film transistors, J. Am. Chem. Soc. 142(2), 652 (2020)
https://doi.org/10.1021/jacs.9b09374
|
75 |
H. Bronstein, D. S. Leem, R. Hamilton, P. Woebkenberg, S. King, W. Zhang, R. S. Ashraf, M. Heeney, T. D. Anthopoulos, J. Mello, and I. McCulloch, Indacenodithiophene-Co-benzothiadiazole copolymers for high performance solar cells or transistors via alkyl chain optimization, Macromolecules 44(17), 6649 (2011)
https://doi.org/10.1021/ma201158d
|
76 |
J. H. Kim, M. W. Choi, W. S. Yoon, S. Oh, S. H. Hong, and S. Y. Park, Structural and electronic origin of bislactam- based high-performance organic thin-film transistors, ACS Appl. Mater. Interfaces 11(8), 8301 (2019)
https://doi.org/10.1021/acsami.8b20168
|
77 |
Z. Fei, Y. Han, E. Gann, T. Hodsden, A. S. R. Chesman, C. R. McNeill, T. D. Anthopoulos, and M. Heeney, Alkylated selenophene-based ladder-type monomers via a facile route for high-performance thin-film transistor applications, J. Am. Chem. Soc. 139(25), 8552 (2017)
https://doi.org/10.1021/jacs.7b03099
|
78 |
H. Chen, A. Wadsworth, C. Ma, A. Nanni, W. Zhang, M. Nikolka, A. M. T. Luci, L. M. A. Perdigao, K. J. Thorley, C. Cendra, B. Larson, G. Rumbles, T. D. Anthopoulos, A. Salleo, G. Costantini, H. Sirringhaus, and I. McCulloch, The effect of ring expansion in thienobenzo[b]indacenodithiophene polymers for organic field-effect transistors, J. Am. Chem. Soc. 141(47), 18806 (2019)
https://doi.org/10.1021/jacs.9b09367
|
79 |
W. Zhang, Y. Han, X. Zhu, Z. Fei, Y. Feng, N. D. Treat, H. Faber, N. Stingelin, I. McCulloch, T. D. Anthopoulos, and M. Heeney, A novel alkylated indacenodithieno[3,2- b]thiophene-based polymer for high-performance fieldeffect transistors, Adv. Mater. 28(20), 3922 (2016)
https://doi.org/10.1002/adma.201504092
|
80 |
H. Chen, M. Hurhangee, M. Nikolka, W. Zhang, M. Kirkus, M. Neophytou, S. J. Cryer, D. Harkin, P. Hayoz, M. Abdi-Jalebi, C. R. McNeill, H. Sirringhaus, and I. Mc-Culloch, Dithiopheneindenofluorene (tif) semiconducting polymers with very high mobility in field-effect transistors, Adv. Mater. 29(36), 1702523 (2017)
https://doi.org/10.1002/adma.201702523
|
81 |
M. Zhang, H. N. Tsao, W. Pisula, C. Yang, A. K. Mishra, and K. Müllen, Field-effect transistors based on a benzothiadiazole cyclopentadithiophene copolymer, J. Am. Chem. Soc. 129(12), 3472 (2007)
https://doi.org/10.1021/ja0683537
|
82 |
H. N. Tsao, D. M. Cho, I. Park, M. R. Hansen, A. Mavrinskiy, D. Y. Yoon, R. Graf, W. Pisula, H. W. Spiess, and K. Mullen, Ultrahigh mobility in polymer field-effect transistors by design, J. Am. Chem. Soc. 133(8), 2605 (2011)
https://doi.org/10.1021/ja108861q
|
83 |
S. Wang, M. Kappl, I. Liebewirth, M. Muller, K. Kirchhoff, W. Pisula, and K. Mullen, Organic field-effect transistors based on highly ordered single polymer fibers, Adv. Mater. 24(3), 417 (2012)
https://doi.org/10.1002/adma.201103057
|
84 |
Y. Yamashita, F. Hinkel, T. Marszalek, W. Zajaczkowski, W. Pisula, M. Baumgarten, H. Matsui, K. Müllen, and J. Takeya, Mobility exceeding 10 cm2/(V·s) in donoracceptor polymer transistors with band-like charge transport, Chem. Mater. 28(2), 420 (2016)
https://doi.org/10.1021/acs.chemmater.5b04567
|
85 |
C. Luo, A. K. Kyaw, L. A. Perez, S. Patel, M. Wang, B. Grimm, G. C. Bazan, E. J. Kramer, and A. J. Heeger, General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility, Nano Lett. 14(5), 2764 (2014)
https://doi.org/10.1021/nl500758w
|
86 |
Y. Park, J. W. Jung, H. Kang, J. Seth, Y. Kang, and M. M. Sung, Single-crystal poly[4-(4,4- dihexadecyl-4H-cyclopenta[1,2-b:5,4-b′]dithiophen-2- yl)-alt-[1,2,5]thiadiazolo[3,4-c]pyridine] nanowires with ultrahigh mobility, Nano Lett. 19(2), 1028 (2019)
https://doi.org/10.1021/acs.nanolett.8b04302
|
87 |
M. Wang, M. J. Ford, C. Zhou, M. Seifrid, T. Q. Nguyen, and G. C. Bazan, Linear conjugated polymer backbones improve alignment in nanogroove-assisted organic fieldeffect transistors, J. Am. Chem. Soc. 139(48), 17624 (2017)
https://doi.org/10.1021/jacs.7b10332
|
88 |
J. Lee, S. H. Kang, S. M. Lee, K. C. Lee, H. Yang, Y. Cho, D. Han, Y. Li, B. H. Lee, and C. Yang, An ultrahigh mobility in isomorphic fluorobenzo[c][1,2,5]thiadiazole-based polymers, Angew. Chem. Int. Ed. 57(41), 13629 (2018)
https://doi.org/10.1002/anie.201808098
|
89 |
B. Nketia-Yawson, H. S. Lee, D. Seo, Y. Yoon, W. T. Park, K. Kwak, H. J. Son, B. Kim, and Y. Y. Noh, A highly planar fluorinated benzothiadiazole-based conjugated polymer for high-performance organic thin-film transistors, Adv. Mater. 27(19), 3045 (2015)
https://doi.org/10.1002/adma.201500233
|
90 |
B. Nketia-Yawson, A. R. Jung, H. D. Nguyen, K. K. Lee, B. Kim, and Y. Y. Noh, Difluorobenzothiadiazole and selenophene-based conjugated polymer demonstrating an effective hole mobility exceeding 5 cm2·V−1·s−1 with solid-state electrolyte dielectric, ACS Appl. Mater. Interfaces 10(38), 32492 (2018)
https://doi.org/10.1021/acsami.8b14176
|
91 |
T. Lei, J. Y. Wang, and J. Pei, Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers, Acc. Chem. Res. 47(4), 1117 (2014)
https://doi.org/10.1021/ar400254j
|
92 |
T. Lei, Y. Cao, Y. Fan, C. J. Liu, S. C. Yuan, and J. Pei, High-performance air-stable organic field-effect transistors: Isoindigo-based conjugated polymers, J. Am. Chem. Soc. 133(16), 6099 (2011)
https://doi.org/10.1021/ja111066r
|
93 |
T. Lei, J. H. Dou, and J. Pei, Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors, Adv. Mater. 24(48), 6457 (2012)
https://doi.org/10.1002/adma.201202689
|
94 |
J. Mei, D. H. Kim, A. L. Ayzner, M. F. Toney, and Z. Bao, Siloxane-terminated solubilizing side chains: Bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors, J. Am. Chem. Soc. 133(50), 20130 (2011)
https://doi.org/10.1021/ja209328m
|
95 |
H. C. Wu, C. C. Hung, C. W. Hong, H. S. Sun, J. T. Wang, G. Yamashita, T. Higashihara, and W. C. Chen, Isoindigo-based semiconducting polymers using carbosilane side chains for high performance stretchable fieldeffect transistors, Macromolecules 49(22), 8540 (2016)
https://doi.org/10.1021/acs.macromol.6b02145
|
96 |
G. Xue, X. Zhao, G. Qu, T. Xu, A. Gumyusenge, Z. Zhang, Y. Zhao, Y. Diao, H. Li, and J. Mei, Symmetry breaking in side chains leading to mixed orientations and improved charge transport in isoindigo-alt-bithiophene based polymer thin films, ACS Appl. Mater. Interfaces 9(30), 25426 (2017)
https://doi.org/10.1021/acsami.7b07624
|
97 |
J. Mei, H. Wu, Y. Diao, A. Appleton, H. Wang, Y. Zhou, W. Y. Lee, T. Kurosawa, W. C. Chen, and Z. Bao, Effect of spacer length of siloxane-terminated side chains on charge transport in isoindigo-based polymer semiconductor thin films, Adv. Funct. Mater. 25(23), 3455 (2015)
https://doi.org/10.1002/adfm.201500684
|
98 |
H. T. Nicolai, M. Kuik, G. A. Wetzelaer, B. de Boer, C. Campbell, C. Risko, J. L. Bredas, and P. W. Blom, Unification of trap-limited electron transport in semiconducting polymers, Nat. Mater. 11(10), 882 (2012)
https://doi.org/10.1038/nmat3384
|
99 |
R. Zhao, Y. Min, C. Dou, B. Lin, W. Ma, J. Liu, and L. Wang, A conjugated polymer containing a B ← N unit for unipolar n-type organic field-effect transistors, ACS Appl. Polym. Mater. 2(1), 19 (2020)
https://doi.org/10.1021/acsapm.9b00860
|
100 |
H. Yan, Z. Chen, Y. Zheng, C. Newman, J. R. Quinn, F. Dotz, M. Kastler, and A. Facchetti, A high-mobility electron-transporting polymer for printed transistors, Nature 457(7230), 679 (2009)
https://doi.org/10.1038/nature07727
|
101 |
Y. J. Kim, N. K. Kim, W. T. Park, C. Liu, Y. Y. Noh, and D. Y. Kim, Kinetically controlled crystallization in conjugated polymer films for high‐performance organic field‐effect transistors, Adv. Funct. Mater. 29(23), 1807786 (2019)
https://doi.org/10.1002/adfm.201807786
|
102 |
D. H. Lee, M. Kang, D. H. Lim, Y. Kim, J. Lee, D. Y. Kim, and K. J. Baeg, Simultaneous enhancement of charge density and molecular stacking order of polymer semiconductors by viologen dopants for high performance organic field-effect transistors, J. Mater. Chem. C 6(20), 5497 (2018)
https://doi.org/10.1039/C8TC01076E
|
103 |
T. Kurosawa, Y. C. Chiu, Y. Zhou, X. Gu, W. C. Chen, and Z. Bao, Impact of polystyrene oligomer side chains on naphthalene diimide-bithiophene polymers as n-type semiconductors for organic field-effect transistors, Adv. Funct. Mater. 26(8), 1261 (2016)
https://doi.org/10.1002/adfm.201504255
|
104 |
J. Panidi, J. Kainth, A. F. Paterson, S. Wang, L. Tsetseris, A. H. Emwas, M. A. McLachlan, M. Heeney, and T. D. Anthopoulos, Introducing a nonvolatile N‐type dopant drastically improves electron transport in polymer and small‐molecule organic transistors, Adv. Funct. Mater. 29(34), 1902784 (2019)
https://doi.org/10.1002/adfm.201902784
|
105 |
W. Wang, R. Chen, Y. Hu, H. Lu, L. Qiu, Y. Ding, D. Sun, and G. Zhang, High-efficiency synthesis of a naphthalene-diimide-based conjugated polymer using continuous flow technology for organic field-effect transistors, J. Mater. Chem. C 7(27), 8450 (2019)
https://doi.org/10.1039/C9TC01785B
|
106 |
B. Kang, R. Kim, S. B. Lee, S. K. Kwon, Y. H. Kim, and K. Cho, Side-chain-induced rigid backbone organization of polymer semiconductors through semifluoroalkyl side chains, J. Am. Chem. Soc. 138(11), 3679 (2016)
https://doi.org/10.1021/jacs.5b10445
|
107 |
R. Kim, P. S. K. Amegadze, I. Kang, H. J. Yun, Y. Y. Noh, S. K. Kwon, and Y. H. Kim, High-mobility airstable naphthalene diimide-based copolymer containing extended π-conjugation for n-channel organic field effect transistors, Adv. Funct. Mater. 23(46), 5719 (2013)
https://doi.org/10.1002/adfm.201301197
|
108 |
R. Kim, B. Kang, D. H. Sin, H. H. Choi, S. K. Kwon, Y. H. Kim, and K. Cho, Oligo(ethylene glycol)-incorporated hybrid linear alkyl side chains for n-channel polymer semiconductors and their effect on the thin-film crystalline structure, Chem. Commun. (Camb.) 51(8), 1524 (2015)
https://doi.org/10.1039/C4CC08381D
|
109 |
J. Ma, Z. Zhao, Y. Guo, H. Geng, Y. Sun, J. Tian, Q. He, Z. Cai, X. Zhang, G. Zhang, Z. Liu, D. Zhang, and Y. Liu, Improving the electronic transporting property for flexible field-effect transistors with naphthalene diimidebased conjugated polymer through branching/linear sidechain engineering strategy, ACS Appl. Mater. Interfaces 11(17), 15837 (2019)
https://doi.org/10.1021/acsami.9b00531
|
110 |
Y. Wang, T. Hasegawa, H. Matsumoto, T. Mori, and T. Michinobu, High-performance n-channel organic transistors using high-molecular-weight electron-deficient copolymers and amine-tailed self-assembled monolayers, Adv. Mater. 30(13), 1707164 (2018)
https://doi.org/10.1002/adma.201707164
|
111 |
Y. Wang, T. Hasegawa, H. Matsumoto, and T. Michinobu, Significant improvement of unipolar n-type transistor performances by manipulating the coplanar backbone conformation of electron-deficient polymers via hydrogen bonding, J. Am. Chem. Soc. 141(8), 3566 (2019)
https://doi.org/10.1021/jacs.8b12499
|
112 |
Y. Wang, S. W. Kim, J. Lee, H. Matsumoto, B. J. Kim, and T. Michinobu, Dual imide-functionalized unit-based regioregular D-A1-D-A2 polymers for efficient unipolar n-channel organic transistors and all-polymer solar cells, ACS Appl. Mater. Interfaces 11(25), 22583 (2019)
https://doi.org/10.1021/acsami.9b05537
|
113 |
Z. Zhao, Z. Yin, H. Chen, L. Zheng, C. Zhu, L. Zhang, S. Tan, H. Wang, Y. Guo, Q. Tang, and Y. Liu, High-performance, air-stable field-effect transistors based on heteroatom-substituted naphthalenediimidebenzothiadiazole copolymers exhibiting ultrahigh electron mobility up to 8.5 cm2·V−1·s−1, Adv. Mater. 29(4), 1602410 (2017)
https://doi.org/10.1002/adma.201602410
|
114 |
L. Zhang, Z. Wang, C. Duan, Z. Wang, Y. Deng, J. Xu, F. Huang, and Y. Cao, Conjugated polymers based on thiazole flanked naphthalene diimide for unipolar n-type organic field-effect transistors, Chem. Mater. 30(22), 8343 (2018)
https://doi.org/10.1021/acs.chemmater.8b03902
|
115 |
J. T. E. Quinn, J. Zhu, X. Li, J. Wang, and Y. Li, Recent progress in the development of n-type organic semiconductors for organic field effect transistors, J. Mater. Chem. C 5(34), 8654 (2017)
https://doi.org/10.1039/C7TC01680H
|
116 |
C. Kanimozhi, N. Yaacobi-Gross, K. W. Chou, A. Amassian, T. D. Anthopoulos, and S. Patil, Diketopyrrolopyrrole-diketopyrrolopyrrole-based conjugated copolymer for high-mobility organic field-effect transistors, J. Am. Chem. Soc. 134(40), 16532 (2012)
https://doi.org/10.1021/ja308211n
|
117 |
J. H. Park, E. H. Jung, J. W. Jung, and W. H. Jo, A fluorinated phenylene unit as a building block for high-performance n-type semiconducting polymer, Adv. Mater. 25(18), 2583 (2013)
https://doi.org/10.1002/adma.201205320
|
118 |
H. J. Yun, S. J. Kang, Y. Xu, S. O. Kim, Y. H. Kim, Y. Y. Noh, and S. K. Kwon, Dramatic inversion of charge polarity in diketopyrrolopyrrole-based organic field-effect transistors via a simple nitrile group substitution, Adv. Mater. 26(43), 7300 (2014)
https://doi.org/10.1002/adma.201403262
|
119 |
H. Yu, H. N. Kim, I. Song, Y. H. Ha, H. Ahn, J. H. Oh, and Y. H. Kim, Effect of alkyl chain spacer on charge transport in n-type dominant polymer semiconductors with a diketopyrrolopyrrole-thiophene-bithiazole acceptor-donor-acceptor unit, J. Mater. Chem. C 5(14), 3616 (2017)
https://doi.org/10.1039/C7TC00044H
|
120 |
Z. Ni, H. Dong, H. Wang, S. Ding, Y. Zou, Q. Zhao, Y. Zhen, F. Liu, L. Jiang, and W. Hu, Quinoline-flanked diketopyrrolopyrrole copolymers breaking through electron mobility over 6 cm2·V−1·s−1 in flexible thin film devices, Adv. Mater. 30(10), 1704843 (2018)
https://doi.org/10.1002/adma.201704843
|
121 |
X. Yan, M. Xiong, J. T. Li, S. Zhang, Z. Ahmad, Y. Lu, Z. Y. Wang, Z. F. Yao, J. Y. Wang, X. Gu, and T. Lei, Pyrazine-flanked diketopyrrolopyrrole (DPP): A new polymer building block for high-performance n-type organic thermoelectrics, J. Am. Chem. Soc. 141(51), 20215 (2019)
https://doi.org/10.1021/jacs.9b10107
|
122 |
C. J. Yao, H. L. Zhang, and Q. Zhang, Recent progress in thermoelectric materials based on conjugated polymers, Polymers (Basel) 11(1), 107 (2019)
https://doi.org/10.3390/polym11010107
|
123 |
J. Xie, C. E. Zhao, Z. Lin, P. Gu, and Q. Zhang, Nanostructured conjugated polymers for energy-related applications beyond solar cells, Chem. Asian J. 11(10), 1489 (2016)
https://doi.org/10.1002/asia.201600293
|
124 |
P. Deng and Q. Zhang, Recent developments on isoindigobased conjugated polymers, Polym. Chem. 5(10), 3298 (2014)
https://doi.org/10.1039/C3PY01598J
|
125 |
Y. Olivier, D. Niedzialek, V. Lemaur, W. Pisula, K. Mullen, U. Koldemir, J. R. Reynolds, R. Lazzaroni, J. Cornil, and D. Beljonne, High-mobility hole and electron transport conjugated polymers: How structure defines function, Adv. Mater. 26(14), 2119 (2014)
https://doi.org/10.1002/adma.201305809
|
126 |
G. Kim, A. R. Han, H. R. Lee, J. Lee, J. H. Oh, and C. Yang, Acceptor-acceptor type isoindigo-based copolymers for high-performance n-channel field-effect transistors, Chem. Commun. (Camb.) 50(17), 2180 (2014)
https://doi.org/10.1039/c3cc48013e
|
127 |
W. Yue, M. Nikolka, M. Xiao, A. Sadhanala, C. B. Nielsen, A. J. P. White, H. Y. Chen, A. Onwubiko, H. Sirringhaus, and I. McCulloch, Azaisoindigo conjugated polymers for high performance n-type and ambipolar thin film transistor applications, J. Mater. Chem. C 4(41), 9704 (2016)
https://doi.org/10.1039/C6TC03000A
|
128 |
Y. Gao, Y. Deng, H. Tian, J. Zhang, D. Yan, Y. Geng, and F. Wang, Multifluorination toward high-mobility ambipolar and unipolar n-type donor-acceptor conjugated polymers based on isoindigo, Adv. Mater. 29(13), 1606217 (2017)
https://doi.org/10.1002/adma.201606217
|
129 |
F. Chen, Y. Jiang, Y. Sui, J. Zhang, H. Tian, Y. Han, Y. Deng, W. Hu, and Y. Geng, Donor-acceptor conjugated polymers based on bisisoindigo: Energy level modulation toward unipolar n-type semiconductors, Macromolecules 51(21), 8652 (2018)
https://doi.org/10.1021/acs.macromol.8b01885
|
130 |
T. Lei, J. H. Dou, X. Y. Cao, J. Y. Wang, and J. Pei, Electron-deficient poly(p-phenylene vinylene) provides electron mobility over 1 cm2·V−1·s−1 under ambient conditions, J. Am. Chem. Soc. 135(33), 12168 (2013)
https://doi.org/10.1021/ja403624a
|
131 |
T. Lei, X. Xia, J. Y. Wang, C. J. Liu, and J. Pei, “Conformation locked” strong electron-deficient poly(pphenylene vinylene) derivatives for ambient-stable n-type field-effect transistors: Synthesis, properties, and effects of fluorine substitution position, J. Am. Chem. Soc. 136(5), 2135 (2014)
https://doi.org/10.1021/ja412533d
|
132 |
Y. Q. Zheng, T. Lei, J. H. Dou, X. Xia, J. Y. Wang, C. J. Liu, and J. Pei, Strong electron-deficient polymers lead to high electron mobility in air and their morphologydependent transport behaviors, Adv. Mater. 28(33), 7213 (2016)
https://doi.org/10.1002/adma.201600541
|
133 |
Y. Z. Dai, N. Ai, Y. Lu, Y. Q. Zheng, J. H. Dou, K. Shi, T. Lei, J. Y. Wang, and J. Pei, Embedding electrondeficient nitrogen atoms in polymer backbone towards high performance n-type polymer field-effect transistors, Chem. Sci. (Camb.) 7(9), 5753 (2016)
https://doi.org/10.1039/C6SC01380E
|
134 |
Y. Q. Zheng, Z. F. Yao, T. Lei, J. H. Dou, C. Y. Yang, L. Zou, X. Meng, W. Ma, J. Y. Wang, and J. Pei, Unraveling the solution-state supramolecular structures of donor-acceptor polymers and their influence on solidstate morphology and charge-transport properties, Adv. Mater. 29(42), 1701072 (2017)
https://doi.org/10.1002/adma.201701072
|
135 |
Z. Yi, S. Wang, and Y. Liu, Design of high-mobility diketopyrrolopyrrole-based pi-conjugated copolymers for organic thin-film transistors, Adv. Mater. 27(24), 3589 (2015)
https://doi.org/10.1002/adma.201500401
|
136 |
B. Sun, W. Hong, Z. Yan, H. Aziz, and Y. Li, Record high electron mobility of 6.3 cm2·V−1·s−1 achieved for polymer semiconductors using a new building block, Adv. Mater. 26(17), 2636 (2014)
https://doi.org/10.1002/adma.201305981
|
137 |
Y. Gao, X. Zhang, H. Tian, J. Zhang, D. Yan, Y. Geng, and F. Wang, High mobility ambipolar diketopyrrolopyrrole-based conjugated polymer synthesized via direct arylation polycondensation, Adv. Mater. 27(42), 6753 (2015)
https://doi.org/10.1002/adma.201502896
|
138 |
K. Guo, J. Bai, Y. Jiang, Z. Wang, Y. Sui, Y. Deng, Y. Han, H. Tian, and Y. Geng, Diketopyrrolopyrrolebased conjugated polymers synthesized via direct arylation polycondensation for high mobility pure n-channel organic field-effect transistors, Adv. Funct. Mater. 28(31), 1801097 (2018)
https://doi.org/10.1002/adfm.201801097
|
139 |
D. Khim, Y. R. Cheon, Y. Xu, W. T. Park, S. K. Kwon, Y. Y. Noh, and Y. H. Kim, Facile route to control the ambipolar transport in semiconducting polymers, Chem. Mater. 28(7), 2287 (2016)
https://doi.org/10.1021/acs.chemmater.6b00298
|
140 |
J. Yang, H. Wang, J. Chen, J. Huang, Y. Jiang, J. Zhang, L. Shi, Y. Sun, Z. Wei, G. Yu, Y. Guo, S. Wang, and Y. Liu, Bis-diketopyrrolopyrrole moiety as a promising building block to enable balanced ambipolar polymers for flexible transistors, Adv. Mater. 29(22), 1606162 (2017)
https://doi.org/10.1002/adma.201606162
|
141 |
Z. Ni, H. Wang, Q. Zhao, J. Zhang, Z. Wei, H. Dong, and W. Hu, Ambipolar conjugated polymers with ultrahigh balanced hole and electron mobility for printed organic complementary logic via a two-step ch activation strategy, Adv. Mater. 31(10), 1806010 (2019)
https://doi.org/10.1002/adma.201806010
|
142 |
Z. Ni, H. Wang, H. Dong, Y. Dang, Q. Zhao, X. Zhang, and W. Hu, Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems, Nat. Chem. 11(3), 271 (2019)
https://doi.org/10.1038/s41557-018-0200-y
|
143 |
D. Shi, Z. Liu, J. Ma, Z. Zhao, L. Tan, G. Lin, J. Tian, X. Zhang, G. Zhang, and D. Zhang, Half-fused diketopyrrolopyrrole-based conjugated donoracceptor polymer for ambipolar field-effect transistors, Adv. Funct. Mater. 30(21), 1910235 (2020)
https://doi.org/10.1002/adfm.201910235
|
144 |
J. Yang, Z. Zhao, H. Geng, C. Cheng, J. Chen, Y. Sun, L. Shi, Y. Yi, Z. Shuai, Y. Guo, S. Wang, and Y. Liu, Isoindigo-based polymers with small effective masses for high-mobility ambipolar field-effect transistors, Adv. Mater. 29(36), 1702115 (2017)
https://doi.org/10.1002/adma.201702115
|
145 |
T. Takaya, M. D. Mamo, M. Karakawa, and Y. Y. Noh, Isoindigo benzodifurandione based conjugated polymers for high performance organic field-effect transistors, J. Mater. Chem. C 6(29), 7822 (2018)
https://doi.org/10.1039/C8TC02348D
|
146 |
K. Huang, X. Zhao, Y. Du, S. Kim, X. Wang, H. Lu, K. Cho, G. Zhang, and L. Qiu, Modulating charge transport characteristics of bis-azaisoindigo-based D–A conjugated polymers through energy level regulation and side chain optimization, J. Mater. Chem. C 7(25), 7618 (2019)
https://doi.org/10.1039/C9TC02021G
|
147 |
Y. Jiang, J. Chen, Y. Sun, Q. Li, Z. Cai, J. Li, Y. Guo, W. Hu, and Y. Liu, Fast deposition of aligning edge-on polymers for high-mobility ambipolar transistors, Adv. Mater. 31(2), 1805761 (2019)
https://doi.org/10.1002/adma.201805761
|
148 |
X. Zhou, N. Ai, Z. H. Guo, F. D. Zhuang, Y. S. Jiang, J. Y. Wang, and J. Pei, Balanced ambipolar organic thinfilm transistors operated under ambient conditions: Role of the donor moiety in BDOPV-based conjugated copolymers, Chem. Mater. 27(5), 1815 (2015)
https://doi.org/10.1021/acs.chemmater.5b00018
|
149 |
Y. Deng, B. Sun, Y. He, J. Quinn, C. Guo, and Y. Li, (3E,8E)-3,8-Bis(2-oxoindolin-3-ylidene)naphtho-[1,2- b:5,6-b′]difuran-2,7(3H,8H)-dione (INDF) based polymers for organic thin-film transistors with highly balanced ambipolar charge transport characteristics, Chem. Commun. (Camb.) 51(70), 13515 (2015)
https://doi.org/10.1039/C5CC03917G
|
150 |
H. Luo, C. Yu, Z. Liu, G. Zhang, H. Geng, Y. Yi, K. Broch, Y. Hu, A. Sadhanala, L. Jiang, P. Qi, Z. Cai, H. Sirringhaus, and D. Zhang, Remarkable enhancement of charge carrier mobility of conjugated polymer field-effect transistors upon incorporating an ionic additive, Sci. Adv. 2(5), e1600076 (2016)
https://doi.org/10.1126/sciadv.1600076
|
151 |
M. Kang, J. Yeo, W. Park, N. Kim, D. Lim, H. Hwang, K. Baeg, Y. Noh, and D. Kim, Favorable molecular orientation enhancement in semiconducting polymer assisted by conjugated organic small molecules, Adv. Funct. Mater. 26(46), 8527 (2016)
https://doi.org/10.1002/adfm.201603617
|
152 |
K. Wasapinyokul, T. Panjasamanwong, W. Ponkasemsuk, C. Sriprachuabwong, and T. Lomas, Mathematical model for thickness of off‐center spin‐coated polymer films, J. Appl. Polym. Sci. 137(6), 48356 (2020)
https://doi.org/10.1002/app.48356
|
153 |
H. Wang, L. Chen, R. Xing, J. Liu, and Y. Han, Simultaneous control over both molecular order and long-range alignment in films of the donor-acceptor copolymer, Langmuir 31(1), 469 (2015)
https://doi.org/10.1021/la5037772
|
154 |
A. Li, D. Bilby, B. X. Dong, J. Amonoo, J. Kim, and P. F. Green, Macroscopic alignment of poly(3-hexylthiophene) for enhanced long-range collection of photogenerated carriers, J. Polym. Sci. B 54(2), 180 (2016)
https://doi.org/10.1002/polb.23888
|
155 |
S. Wang, A. Kiersnowski, W. Pisula, and K. Mullen, Microstructure evolution and device performance in solution-processed polymeric field-effect transistors: The key role of the first monolayer, J. Am. Chem. Soc. 134(9), 4015 (2012)
https://doi.org/10.1021/ja211630w
|
156 |
S. Wang, W. Pisula, and K. Müllen, Nanofiber growth and alignment in solution processed n-type naphthalenediimide- based polymeric field-effect transistors, J. Mater. Chem. 22(47), 24827 (2012)
https://doi.org/10.1039/c2jm35351b
|
157 |
X. Gu, L. Shaw, K. Gu, M. F. Toney, and Z. Bao, The meniscus-guided deposition of semiconducting polymers, Nat. Commun. 9(1), 534 (2018)
https://doi.org/10.1038/s41467-018-02833-9
|
158 |
G. Qu, J. J. Kwok, and Y. Diao, Flow-directed crystallization for printed electronics, Acc. Chem. Res. 49(12), 2756 (2016)
https://doi.org/10.1021/acs.accounts.6b00445
|
159 |
Z. Zhao, H. Liu, Y. Zhao, C. Cheng, J. Zhao, Q. Tang, G. Zhang, and Y. Liu, Anisotropic charge-carrier transport in high-mobility donor-acceptor conjugated polymer semiconductor films,Chem. Asian J. 11(19), 2725 (2016)
https://doi.org/10.1002/asia.201600082
|
160 |
G. Wang, W. Huang, N. D. Eastham, S. Fabiano, E. F. Manley, L. Zeng, B. Wang, X. Zhang, Z. Chen, R. Li, R. P. H. Chang, L. X. Chen, M. J. Bedzyk, F. S. Melkonyan, A. Facchetti, and T. J. Marks, Aggregation control in natural brush-printed conjugated polymer films and implications for enhancing charge transport, Proc. Natl. Acad. Sci. USA 114(47), E10066 (2017)
https://doi.org/10.1073/pnas.1713634114
|
161 |
F. Ge, Z. Liu, S. B. Lee, X. Wang, G. Zhang, H. Lu, K. Cho, and L. Qiu, Bar-coated ultrathin semiconductors from polymer blend for one-step organic field-effect transistors, ACS Appl. Mater. Interfaces 10(25), 21510 (2018)
https://doi.org/10.1021/acsami.8b07118
|
162 |
B. J. Worfolk, S. C. Andrews, S. Park, J. Reinspach, N. Liu, M. F. Toney, S. C. Mannsfeld, and Z. Bao, Ultrahigh electrical conductivity in solution-sheared polymeric transparent films, Proc. Natl. Acad. Sci. USA 112(46), 14138 (2015)
https://doi.org/10.1073/pnas.1509958112
|
163 |
J. Liu, M. Arif, J. Zou, S. I. Khondaker, and L. Zhai, Controlling poly(3-hexylthiophene) crystal dimension: nanowhiskers and nanoribbons, Macromolecules 42(24), 9390 (2009)
https://doi.org/10.1021/ma901955c
|
164 |
D. H. Kim, J. T. Han, Y. D. Park, Y. Jang, J. H. Cho, M. Hwang, and K. Cho, Single-crystal polythiophene microwires grown by self-assembly, Adv. Mater. 18(6), 719 (2006)
https://doi.org/10.1002/adma.200502442
|
165 |
H. A. Um, D. H. Lee, D. U. Heo, D. S. Yang, J. Shin, H. Baik, M. J. Cho, and D. H. Choi, High aspect ratio conjugated polymer nanowires for high performance fieldeffect transistors and phototransistors, ACS Nano 9(5), 5264 (2015)
https://doi.org/10.1021/acsnano.5b01982
|
166 |
X. Xiao, Z. Hu, Z. Wang, and T. He, Study on the single crystals of poly(3-octylthiophene) induced by solventvapor annealing, J. Phys. Chem. B 113(44), 14604 (2009)
https://doi.org/10.1021/jp9064505
|
167 |
X. Xiao, Z. Wang, Z. Hu, and T. He, Single crystals of polythiophene with different molecular conformations obtained by tetrahydrofuran vapor annealing and controlling solvent evaporation, J. Phys. Chem. B 114(22), 7452 (2010)
https://doi.org/10.1021/jp911525d
|
168 |
H. Wang, J. Liu, Y. Xu, and Y. Han, Fibrillar morphology of derivatives of poly(3-alkylthiophene)s by solvent vapor annealing: Effects of conformational transition and conjugate length, J. Phys. Chem. B 117(19), 5996 (2013)
https://doi.org/10.1021/jp402039g
|
169 |
X. Li, P. J. Wolanin, L. R. MacFarlane, R. L. Harniman, J. Qian, O. E. C. Gould, T. G. Dane, J. Rudin, M. J. Cryan, T. Schmaltz, H. Frauenrath, M. A. Winnik, C. F. J. Faul, and I. Manners, Uniform electroactive fibre-like micelle nanowires for organic electronics, Nat. Commun. 8(1), 1 (2017)
https://doi.org/10.1038/ncomms16142
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|