|
|
Rotation-translation coupling of a double-headed Brownian motor in a traveling-wave potential |
Wei-Xia Wu1, Chen-Pu Li2, Yan-Li Song3, Ying-Rong Han4, Zhi-Gang Zheng5( ) |
1. Science Education Department, Beijing Institute of Graphic Communication, Beijing 102600, China 2. College of Science, Hebei University of Architecture, Zhangjiakou 075000, China 3. School of Science, Tianjin University, Tianjin 300072, China 4. School of Science, Hebei University of Technology, Tianjin 300401, China 5. Institute of Systems Science and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China |
|
|
Abstract Considering a double-headed Brownian motor moving with both translational and rotational degrees of freedom, we investigate the directed transport properties of the system in a traveling-wave potential. It is found that the traveling wave provides the essential condition of the directed transport for the system, and at an appropriate angular frequency, the positive current can be optimized. A general current reversal appears by modulating the angular frequency of the traveling wave, noise intensity, external driving force and the rod length. By transforming the dynamical equation in traveling-wave potential into that in a tilted potential, the mechanism of current reversal is analyzed. For both cases of Gaussian and Lévy noises, the currents show similar dependence on the parameters. Moreover, the current in the tilted potential shows a typical stochastic resonance effect. The external driving force has also a resonance-like effect on the current in the tilted potential. But the current in the traveling-wave potential exhibits the reverse behaviors of that in the tilted potential. Besides, the currents obviously depend on the stability index of the Lévy noise under certain conditions.
|
Keywords
Brownian motor
rotation-translation coupling
traveling-wave potential
current reversal
|
Corresponding Author(s):
Zhi-Gang Zheng
|
Issue Date: 15 April 2021
|
|
1 |
P. Reimann, Brownian motors: Noisy transport far from equilibrium, Phys. Rep. 361(2–4), 57 (2002)
https://doi.org/10.1016/S0370-1573(01)00081-3
|
2 |
P. Hänggi and F. Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Mod. Phys. 81(1), 387 (2009)
https://doi.org/10.1103/RevModPhys.81.387
|
3 |
C. S. Peskin, G. M. Odell, and G. F. Oster, Cellular motions and thermal fluctuations: The Brownian ratchet, Biophys. J. 65(1), 316 (1993)
https://doi.org/10.1016/S0006-3495(93)81035-X
|
4 |
R. D. Astumian, Thermodynamics and kinetics of a Brownian motor, Science 276(5314), 917 (1997)
https://doi.org/10.1126/science.276.5314.917
|
5 |
P. Reimann and P. Hänggi, Introduction to the physics of Brownian motors, Appli. Phys. A 75(2), 169 (2002)
https://doi.org/10.1007/s003390201331
|
6 |
S. von Gehlen, M. Evstigneev, and P. Reimann, Ratchet effect of a dimer with broken friction symmetry in a symmetric potential, Phys. Rev. E 79(3), 031114 (2009)
https://doi.org/10.1103/PhysRevE.79.031114
|
7 |
M. Khoury, A. M. Lacasta, J. M. Sancho, and K. Lindenberg, Weak disorder: anomalous transport and diffusion are normal yet again, Phys. Rev. Lett. 106(9), 090602 (2011)
https://doi.org/10.1103/PhysRevLett.106.090602
|
8 |
D. Cubero and F. Renzoni, Brownian Ratchets: From Statistical Physics to Bio- and Nano-motors, Cambridge University Press, Cambridge, 2016
https://doi.org/10.1017/CBO9781107478206
|
9 |
C. Hyeon and W. Hwang, Physical insight into the thermodynamic uncertainty relation using Brownian motion in tilted periodic potentials, Phys. Rev. E 96(1), 012156 (2017)
https://doi.org/10.1103/PhysRevE.96.012156
|
10 |
T. Siebert, F. Dittrich, F. Schmid, K. Binder, T. Speck, and P. Virnau, Critical behavior of active Brownian particles, Phys. Rev. E 98(3), 030601 (2018)
https://doi.org/10.1103/PhysRevE.98.030601
|
11 |
M. J. Skaug, C. Schwemmer, S. Fringes, C. D. Rawlings, and A. W. Knoll, Nanofluidic rocking Brownian motors, Science 359(6383), 1505 (2018)
https://doi.org/10.1126/science.aal3271
|
12 |
R. Salgado-García, Noise-induced rectification in out-ofequilibrium structures, Phys. Rev. E 99(1), 012128 (2019)
https://doi.org/10.1103/PhysRevE.99.012128
|
13 |
S. Pattanayak, R. Das, M. Kumar, and S. Mishra, Enhanced dynamics of active Brownian particles in periodic obstacle arrays and corrugated channels, Eur. Phys. J. E 42(5), 62 (2019)
https://doi.org/10.1140/epje/i2019-11826-7
|
14 |
P. Hänggi, J. Tuczka, and J. Spiechowicz, Many faces of nonequilibrium: Anomalous transport phenomena in driven periodic systems, Acta Phys. Pol. 51(5), 1131 (2020)
https://doi.org/10.5506/APhysPolB.51.1131
|
15 |
A. Nakamura, K. I. Okazaki, T. Furuta, M. Sakurai, J. Ando, and R. Iino, Crystalline chitin hydrolase is a burntbridge Brownian motor, Biophys. 17, 51 (2020)
https://doi.org/10.2142/biophysico.BSJ-2020004
|
16 |
H. Qian, A simple theory of motor protein Kinesin and energetics, Biophys. Chem. 67(1–3), 263 (1997)
https://doi.org/10.1016/S0301-4622(97)00051-3
|
17 |
W. R. Schief and J. Howard, Conformational changes during Kinesin motility, Curr. Opin. Cell Biol. 13(1), 19 (2001)
https://doi.org/10.1016/S0955-0674(00)00169-1
|
18 |
A. B. Kolomeisky and M. E. Fisher, A simple kinetic model describes the processivity of myosin-V, Biophys. J. 84(3), 1642 (2003)
https://doi.org/10.1016/S0006-3495(03)74973-X
|
19 |
L. C. Kapitein, B. H. Kwok, J. S. Weinger, C. F. Schmidt, T. M. Kapoor, and E. J. G. Peterman, Microtubule crosslinking triggers the directional motility of kinesin-5, J. Cell Biol. 182(3), 421 (2008)
https://doi.org/10.1083/jcb.200801145
|
20 |
M. Takanoa, T. P. Teradab, and M. Sasai, Unidirectional Brownian motion observed in an in silico single molecule experiment of an actomyosin motor, Proc. Natl. Acad. Sci. USA 107(17), 7769 (2010)
https://doi.org/10.1073/pnas.0911830107
|
21 |
F. J. Kull and S. A. Endow, Force generation by kinesin and myosin cytoskeletal motor proteins, J. Cell Sci. 126(Pt 1), 9 (2013)
https://doi.org/10.1242/jcs.103911
|
22 |
J. E. Komianos and G. A. Papoian, Stochastic ratcheting on a funneled energy landscape is necessary for highly efficient contractility of actomyosin force dipoles, Phys. Rev. X 8(2), 021006 (2018)
https://doi.org/10.1103/PhysRevX.8.021006
|
23 |
G. Knoops and C. Vanderzande, Motion of kinesin in a viscoelastic medium, Phys. Rev. E 97(5), 052408 (2018)
https://doi.org/10.1103/PhysRevE.97.052408
|
24 |
R. D. Astumian and M. Bier, Fluctuation driven ratchets: Molecular motors, Phys. Rev. Lett. 72(11), 1766 (1994)
https://doi.org/10.1103/PhysRevLett.72.1766
|
25 |
A. Sarmiento and H. Larralde, Deterministic transport in ratchets, Phys. Rev. E 59(5), 4878 (1999)
https://doi.org/10.1103/PhysRevE.59.4878
|
26 |
A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, Myosin V walks hand-overhand: Single fluorophore imaging with 1.5-nm localization, Science 300(5628), 2061 (2003)
https://doi.org/10.1126/science.1084398
|
27 |
C. L. Asbury, A. N. Fehr, and S. M. Block, Kinesin moves by an asymmetric hand-over-hand mechanism, Science 302(5653), 2130 (2003)
https://doi.org/10.1126/science.1092985
|
28 |
A. Yildiz, M. Tomishige, R. D. Vale, and P. R. Selvin, Kinesin walks hand-over-hand, Science 303(5658), 676 (2004)
https://doi.org/10.1126/science.1093753
|
29 |
A. Mehta, Myosin learns to walk, J. Cell Sci. 114(11), 1981 (2001)
|
30 |
Z. Ökten, L. S. Churchman, R. S. Rock, and J. A. Spudich, Myosin VI walks hand-over-hand along actin, Nat. Struct. Mol. Biol. 11(9), 884 (2004)
https://doi.org/10.1038/nsmb815
|
31 |
Y. X. Li, X. Z. Wu, and Y. Z. Zhuo, Directed motion of two-headed Brownian motors, Mod. Phys. Lett. B 14(13), 479 (2000)
https://doi.org/10.1142/S0217984900000604
|
32 |
A. K. Zhao, H. W. Zhang, and Y. X. Li, Feedback control of two-headed Brownian motors in flashing ratchet potential, Chin. Phys. B 19(11), 110506 (2010)
https://doi.org/10.1088/1674-1056/19/11/110506
|
33 |
C. P. Li, H. B. Chen, and Z. G. Zheng, Double-temperature ratchet model and current reversal of coupled Brownian motors, Front. Phys. 12(6), 120507 (2017)
https://doi.org/10.1007/s11467-017-0659-9
|
34 |
L. F. Lin, H. Q. Wang, and H. Ma, Directed transport properties of double-headed molecular motors with balanced cargo, Physica A 517, 270 (2019)
https://doi.org/10.1016/j.physa.2018.11.001
|
35 |
J. Howard, The movement of kinesin along microtubules, Annu. Rev. Physiol. 58(1), 703 (1996)
https://doi.org/10.1146/annurev.ph.58.030196.003415
|
36 |
E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, and P. R. Selvin, Defocused orientation and position imaging (DOPI) of myosin V, Proc. Natl. Acad. Sci. USA 103(17), 6495 (2006)
https://doi.org/10.1073/pnas.0507134103
|
37 |
A. R. Dunn and J. A. Spudich, Dynamics of the unbound head during myosin V processive translocation, Nat. Struct. Mol. Biol. 14(3), 246 (2007)
https://doi.org/10.1038/nsmb1206
|
38 |
B. Geislinger and R. Kawai, Brownian molecular motors driven by rotation-translation coupling, Phys. Rev. E 74(1), 011912 (2006)
https://doi.org/10.1103/PhysRevE.74.011912
|
39 |
L. Y. Qiao, Y. Y. Li, and Z. G. Zheng, Rotational effect in two-dimensional cooperative directed transport, Front. Phys. 10(1), 108701 (2015)
https://doi.org/10.1007/s11467-014-0423-3
|
40 |
R. N. Mantegna and B. Spagnolo, Stochastic resonance in a tunnel diode in the presence of white or coloured noise, Nuovo Cimento D 17(7–8), 873 (1995)
https://doi.org/10.1007/BF02451845
|
41 |
R. N. Mantegna and B. Spagnolo, Noise enhanced stability in an unstable system, Phys. Rev. Lett. 76(4), 563 (1996)
https://doi.org/10.1103/PhysRevLett.76.563
|
42 |
L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Stochastic resonance, Rev. Mod. Phys. 70(1), 223 (1998)
https://doi.org/10.1103/RevModPhys.70.223
|
43 |
R. N. Mantegna, B. Spagnolo, and M. Trapanese, Linear and nonlinear experimental regimes of stochastic resonance, Phys. Rev. E 63(1), 011101 (2001)
https://doi.org/10.1103/PhysRevE.63.011101
|
44 |
B. Spagnolo, D. Valenti, C. Guarcello, A. Carollo, D. Persano Adorno, S. Spezia, N. Pizzolato, and B. Di Paola, Noise-induced effects in nonlinear relaxation of condensed matter systems, Chaos Solitons Fractals 81(8), 412 (2015)
https://doi.org/10.1016/j.chaos.2015.07.023
|
45 |
C. Guarcello, D. Valenti, A. Carollo, and B. Spagnolo, Effects of Lévy noise on the dynamics of sine-Gordon solitons in long Josephson junctions, J. Stat. Mech.: Theory Exp. 2016(5), 054012 (2016)
https://doi.org/10.1088/1742-5468/2016/05/054012
|
46 |
B. Spagnolo, C. Guarcello, L. Magazzù, A. Carollo, D. P. Adorno, and D. Valenti, Nonlinear relaxation phenomena in metastable condensed matter systems, Entropy (Basel) 19(1), 20 (2017)
https://doi.org/10.3390/e19010020
|
47 |
M. S. Simon, J. M. Sancho, and K. Lindenberg, Transport and diffusion of overdamped Brownian particles in random potentials, Phys. Rev. E 88(6), 062105 (2013)
https://doi.org/10.1103/PhysRevE.88.062105
|
48 |
C. P. Li, H. B. Chen, and Z. G. Zheng, Ratchet motion and current reversal of coupled Brownian motors in pulsating symmetric potentials, Front. Phys. 12(4), 120502 (2017)
https://doi.org/10.1007/s11467-016-0622-1
|
49 |
S. N. Ethier and J. Lee, The tilted flashing Brownian ratchet, Fluct. Noise Lett. 18(1), 1950005 (2019)
https://doi.org/10.1142/S0219477519500056
|
50 |
X. Zhang, J. H. Cao, B. Q. Ai, T. F. Gao, and Z. G. Zheng, Investigation on the directional transportation of coupled Brownian motors with asymmetric friction, Acta Physica Sinica 69(10), 100503 (2020) (in Chinese)
https://doi.org/10.7498/aps.69.20191961
|
51 |
D. del-Castillo-Negrete, V. Yu. Gonchar, and A. V. Chechkin, Fluctuation-driven directed transport in the presence of Lévy flights, Physica A 387(27), 6693 (2008)
https://doi.org/10.1016/j.physa.2008.08.034
|
52 |
Y. G. Li, Y. Xu, J. Kurths, and X. L. Yue, Lévy-noiseinduced transport in a rough triple-well potential, Phys. Rev. E 94(4), 042222 (2016)
https://doi.org/10.1103/PhysRevE.94.042222
|
53 |
D. Dan, M. C. Mahato, and A. M. Jayannavar, Stochastic resonance in washboard potentials, Phys. Lett. A 258(4–6), 217 (1999)
https://doi.org/10.1016/S0375-9601(99)00380-1
|
54 |
C. P. Li, H. B. Chen, H. Fan, G. Y. Xie, and Z. G. Zheng, Cooperation and competition between two symmetry breakings in a coupled ratchet, Physica A 494(6), 175 (2018)
https://doi.org/10.1016/j.physa.2017.11.161
|
55 |
B. Lisowski, D. Valenti, B. Spagnolo, M. Bier, and E. Gudowska-Nowak, Stepping molecular motor amid Lévy white noise, Phys. Rev. E 91(4), 042713 (2015)
https://doi.org/10.1103/PhysRevE.91.042713
|
56 |
Y. Xie and R. N. Liu, Stochastic resonance in overdamped washboard potential system, Acta Physica Sinica 66(12), 120501 (2017) (in Chinese)
https://doi.org/10.7498/aps.66.120501
|
57 |
R. N. Liu and R. M. Kang, Stochastic resonance in underdamped periodic potential systems with alpha stable Lévy noise, Phys. Lett. A 382(25), 1656 (2018)
https://doi.org/10.1016/j.physleta.2018.03.054
|
58 |
M. Borromeo and F. Marchesoni, Brownian surfers, Phys. Lett. A 249(3), 199 (1998)
https://doi.org/10.1016/S0375-9601(98)00733-6
|
59 |
A. Fiasconaro and B. Spagnolo, Resonant activation in piecewise linear asymmetric potentials, Phys. Rev. E 83(4), 041122 (2011)
https://doi.org/10.1103/PhysRevE.83.041122
|
60 |
J. M. Chambers, C. L. Mallows, and B. W. Stuck, A method for simulating stable random variables, J. Am. Stat. Assoc. 71(354), 340 (1976)
https://doi.org/10.1080/01621459.1976.10480344
|
61 |
D. Fulger, E. Scalas, and G. Germano, Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation, Phys. Rev. E 77(2), 021122 (2008)
https://doi.org/10.1103/PhysRevE.77.021122
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|