|
|
Remote preparation for single-photon state in two degrees of freedom with hyper-entangled states |
Mei-Yu Wang1,3, Fengli Yan1,3( ), Ting Gao2( ) |
1. College of Physics, Hebei Normal University, Shijiazhuang 050024, China 2. School of Mathematics Science, Hebei Normal University, Shijiazhuang 050024, China 3. Hebei Key Laboratory of Photophysics Research and Application, Shijiazhuang 050024, China |
|
|
Abstract Remote state preparation (RSP) provides a useful way of transferring quantum information between two distant nodes based on the previously shared entanglement. In this paper, we study RSP of an arbitrary single-photon state in two degrees of freedom (DoFs). Using hyper-entanglement as a shared resource, our first goal is to remotely prepare the single-photon state in polarization and frequency DoFs and the second one is to reconstruct the single-photon state in polarization and time-bin DoFs. In the RSP process, the sender will rotate the quantum state in each DoF of the photon according to the knowledge of the state to be communicated. By performing a projective measurement on the polarization of the sender’s photon, the original single-photon state in two DoFs can be remotely reconstructed at the receiver’s quantum systems. This work demonstrates a novel capability for longdistance quantum communication.
|
Keywords
remote state preparation
hyper-entanglement
|
Corresponding Author(s):
Fengli Yan,Ting Gao
|
Issue Date: 15 April 2021
|
|
1 |
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
https://doi.org/10.1103/PhysRevLett.70.1895
|
2 |
C. H. Bennett and S. J. Wiesner, Communication via oneand two-particle operators on Einstein–Podolsky–Rosen states, Phys. Rev. Lett. 69(20), 2881 (1992)
https://doi.org/10.1103/PhysRevLett.69.2881
|
3 |
A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
https://doi.org/10.1103/PhysRevLett.67.661
|
4 |
M. Hillery, V. Bužek, and A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59(3), 1829 (1999)
https://doi.org/10.1103/PhysRevA.59.1829
|
5 |
G. L. Long and X. S. Liu, Theoretically efficient highcapacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
https://doi.org/10.1103/PhysRevA.65.032302
|
6 |
F. G. Deng, G. L. Long, and X. S. Liu, Two-step quantum direct communication protocol using the Einstein– Podolsky–Rosen pair block, Phys. Rev. A 68(4), 042317 (2003)
https://doi.org/10.1103/PhysRevA.68.042317
|
7 |
H. K. Lo, Classical-communication cost in distributed quantum-information processing: A generalization of quantumcommunication complexity, Phys. Rev. A 62(1), 012313 (2000)
https://doi.org/10.1103/PhysRevA.62.012313
|
8 |
A. K. Pati, Minimum classical bit for remote preparation and measurement of a qubit, Phys. Rev. A 63(1), 014302 (2000)
https://doi.org/10.1103/PhysRevA.63.014302
|
9 |
C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal, and W. K. Wootters, Remote state preparation, Phys. Rev. Lett. 87(7), 077902 (2001)
https://doi.org/10.1103/PhysRevLett.87.077902
|
10 |
L. Qi, G. L. Wang, S. T. Liu, S. Zhang, and H. F. Wang, Dissipation-induced topological phase transition and periodicdriving-induced photonic topological state transfer in a small optomechanical lattice, Front. Phys. 16(1), 12503 (2021)
https://doi.org/10.1007/s11467-020-0983-3
|
11 |
I. Devetak and T. Berger, Low-entanglement remote state preparation, Phys. Rev. Lett. 87(19), 197901 (2001)
https://doi.org/10.1103/PhysRevLett.87.197901
|
12 |
B. Zeng and P. Zhang, Remote-state preparation in higher dimension and the parallelizable manifold Sn 1, Phys. Rev. A 65(2), 022316 (2002)
https://doi.org/10.1103/PhysRevA.65.022316
|
13 |
D. W. Berry and B. C. Sanders, Optimal remote state preparation, Phys. Rev. Lett. 90(5), 057901 (2003)
https://doi.org/10.1103/PhysRevLett.90.057901
|
14 |
D. W. Leung and P. W. Shor, Oblivious remote state preparation, Phys. Rev. Lett. 90(12), 127905 (2003)
https://doi.org/10.1103/PhysRevLett.90.127905
|
15 |
Y. X. Huang and M. S. Zhan, Remote preparation of multipartite pure state, Phys. Lett. A 327(5–6), 404 (2004)
https://doi.org/10.1016/j.physleta.2004.05.044
|
16 |
Z. Kurucz, P. Adam, Z. Kis, and J. Janszky, Continuous variable remote state preparation, Phys. Rev. A 72(5), 052315 (2005)
https://doi.org/10.1103/PhysRevA.72.052315
|
17 |
Z. Kurucz, P. Adam, and J. Janszky, General criterion for oblivious remote state preparation, Phys. Rev. A 73(6), 062301 (2006)
https://doi.org/10.1103/PhysRevA.73.062301
|
18 |
B. A. Nguyen and J. Kim, Joint remote state preparation, J. Phys. B 41(9), 095501 (2008)
https://doi.org/10.1088/0953-4075/41/9/095501
|
19 |
N. B. An, C. T. Bich, and N. V. Don, Deterministic joint remote state preparation, Phys. Lett. A 375(41), 3570 (2011)
https://doi.org/10.1016/j.physleta.2011.08.045
|
20 |
D. Zhang, X. W. Zha, Y. J. Duan, and Y. Q. Yang, Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state, Quantum Inform. Process. 15(5), 2169 (2016)
https://doi.org/10.1007/s11128-016-1265-4
|
21 |
X. B. Chen, Y. R. Sun, G. Xu, H. Y. Jia, Z. Qu, and Y.X. Yang, Controlled bidirectional remote preparation of three-qubit state, Quantum Inform. Process. 16(10), 244 (2017)
https://doi.org/10.1007/s11128-017-1690-z
|
22 |
C. Y. Zhang, M. Q. Bai, and S. Q. Zhou, Cyclic joint remote state preparation in noisy environment, Quantum Inform. Process. 17(6), 146 (2018)
https://doi.org/10.1007/s11128-018-1917-7
|
23 |
Y. J. Qian, S. B. Xue, and M. Jiang, Deterministic remote preparation of arbitrary single-qubit state via one intermediate node in noisy environment, Phys. Lett. A 384(10), 126204 (2020)
https://doi.org/10.1016/j.physleta.2019.126204
|
24 |
T. Dash, R. Sk, and P. K. Panigrahi, Deterministic joint remote state preparation of arbitrary two-qubit state through noisy cluster-GHZ channel, Opt. Commun. 464, 125518 (2020)
https://doi.org/10.1016/j.optcom.2020.125518
|
25 |
J. Laurat, T. Coudreau, N. Treps, A. Ma ıtre, and C. Fabre, Conditional preparation of a quantum state in the continuous variable regime: Generation of a subpoissonian state from twin beams, Phys. Rev. Lett. 91(21), 213601 (2003)
https://doi.org/10.1103/PhysRevLett.91.213601
|
26 |
S. A. Babichev, B. Brezger, and A. I. Lvovsky, Remote preparation of a single-mode photonic qubit by measuring field quadrature noise, Phys. Rev. Lett. 92(4), 047903 (2004)
https://doi.org/10.1103/PhysRevLett.92.047903
|
27 |
G. Y. Xiang, J. Li, B. Yu, and G. C. Guo, Remote preparation of mixed states via noisy entanglement, Phys. Rev. A 72(1), 012315 (2005)
https://doi.org/10.1103/PhysRevA.72.012315
|
28 |
N. A. Peters, J. T. Barreiro, M. E. Goggin, T. C. Wei, and P. G. Kwiat, Remote state preparation: Arbitrary remote control of photon polarization, Phys. Rev. Lett. 94(15), 150502 (2005)
https://doi.org/10.1103/PhysRevLett.94.150502
|
29 |
W. T. Liu, W. Wu, B. Q. Ou, P. X. Chen, C. Z. Li, and J. M. Yuan, Experimental remote preparation of arbitrary photon polarization states, Phys. Rev. A 76(2), 022308 (2007)
https://doi.org/10.1103/PhysRevA.76.022308
|
30 |
H. Mikami and T. Kobayashi, Remote preparation of qutrit states with biphotons, Phys. Rev. A 75(2), 022325 (2007)
https://doi.org/10.1103/PhysRevA.75.022325
|
31 |
W. Wu, W. T. Liu, P. X. Chen, and C. Z. Li, Deterministic remote preparation of pure and mixed polarization states, Phys. Rev. A 81(4), 042301 (2010)
https://doi.org/10.1103/PhysRevA.81.042301
|
32 |
N. Killoran, D. N. Biggerstaff, R. Kaltenbaek, K. J. Resch, and N. Lütkenhaus, Derivation and experimental test of fidelity benchmarks for remote preparation of arbitrary qubit states, Phys. Rev. A 81(1), 012334 (2010)
https://doi.org/10.1103/PhysRevA.81.012334
|
33 |
M. A. Solís-Prosser and L. Neves, Remote state preparation of spatial qubits, Phys. Rev. A 84(1), 012330 (2011)
https://doi.org/10.1103/PhysRevA.84.012330
|
34 |
M. Rådmark, M. Wiesniak, M. Zukowski, and M. Bourennane, Experimental multilocation remote state preparation, Phys. Rev. A 88(3), 032304 (2013)
https://doi.org/10.1103/PhysRevA.88.032304
|
35 |
Y. S. Ra, H. T. Lim, and Y. H. Kim, Remote preparation of three-photon entangled states via single-photon measurement, Phys. Rev. A 94(4), 042329 (2016)
https://doi.org/10.1103/PhysRevA.94.042329
|
36 |
M. C. Dheur, B. Vest, E. Devaux, A. Baron, J. P. Hugonin, J. J. Greffet, G. Messin, and F. Marquier, Remote preparation of single-plasmon states, Phys. Rev. B 96(4), 045432 (2017)
https://doi.org/10.1103/PhysRevB.96.045432
|
37 |
H. Le Jeannic, A. Cavaillès, J. Raskop, K. Huang, and J. Laurat, Remote preparation of continuous-variable qubits using loss-tolerant hybrid entanglement of light, Optica 5(8), 1012 (2018)
https://doi.org/10.1364/OPTICA.5.001012
|
38 |
P. G. Kwiat and H. Weinfurter, Embedded Bell-state analysis, Phys. Rev. A 58(4), R2623 (1998)
https://doi.org/10.1103/PhysRevA.58.R2623
|
39 |
S. P. Walborn, S. Pádua, and C. H. Monken, Hyperentanglement-assisted Bell-state analysis, Phys. Rev. A 68(4), 042313 (2003)
https://doi.org/10.1103/PhysRevA.68.042313
|
40 |
C. Schuck, G. Huber, C. Kurtsiefer, and H. Weinfurter, Complete deterministic linear optics Bell state analysis, Phys. Rev. Lett. 96(19), 190501 (2006)
https://doi.org/10.1103/PhysRevLett.96.190501
|
41 |
M. Barbieri, G. Vallone, P. Mataloni, and F. De Martini, Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement, Phys. Rev. A 75(4), 042317 (2007)
https://doi.org/10.1103/PhysRevA.75.042317
|
42 |
Y. B. Sheng, F. G. Deng, and G. L. Long, Complete hyperentangled-Bell-state analysis for quantum communication, Phys. Rev. A 82(3), 032318 (2010)
https://doi.org/10.1103/PhysRevA.82.032318
|
43 |
X. H. Li and S. Ghose, Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity, Phys. Rev. A 93(2), 022302 (2016)
https://doi.org/10.1103/PhysRevA.93.022302
|
44 |
G. Y. Wang, B. C. Ren, F. G. Deng, and G. L. Long, Complete analysis of hyperentangled Bell states assisted with auxiliary hyperentanglement, Opt. Express 27(6), 8994 (2019)
https://doi.org/10.1364/OE.27.008994
|
45 |
T. J. Wang, S. Y. Song, and G. L. Long, Quantum repeater based on spatial entanglement of photons and quantumdot spins in optical microcavities, Phys. Rev. A 85(6), 062311 (2012)
https://doi.org/10.1103/PhysRevA.85.062311
|
46 |
B. C. Ren, H. R. Wei, M. Hua, T. Li, and F. G. Deng, Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities, Opt. Express 20(22), 24664 (2012)
https://doi.org/10.1364/OE.20.024664
|
47 |
X. H. Li and S. Ghose, Complete hyperentangled Bell state analysis for polarization and time-bin hyperentanglement, Opt. Express 24(16), 18388 (2016)
https://doi.org/10.1364/OE.24.018388
|
48 |
H. Wang, B. C. Ren, A. H. Wang, A. Alsaedi, T. Hayat, and F. G. Deng, General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics, Front. Phys. 13(5), 130315 (2018)
https://doi.org/10.1007/s11467-018-0801-3
|
49 |
J. Liu, L. Zhou, W. Zhong, and Y. B. Sheng, Logic Bell state concentration with parity check measurement, Front. Phys. 14(2), 21601 (2019)
https://doi.org/10.1007/s11467-018-0866-z
|
50 |
C. Simon and J. W. Pan, Polarization entanglement purification using spatial entanglement, Phys. Rev. Lett. 89(25), 257901 (2002)
https://doi.org/10.1103/PhysRevLett.89.257901
|
51 |
A. Yabushita and T. Kobayashi, Spectroscopy by frequency-entangled photon pairs, Phys. Rev. A 69(1), 013806 (2004)
https://doi.org/10.1103/PhysRevA.69.013806
|
52 |
J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, Generation of hyperentangled photon pairs, Phys. Rev. Lett. 95(26), 260501 (2005)
https://doi.org/10.1103/PhysRevLett.95.260501
|
53 |
M. Barbieri, C. Cinelli, P. Mataloni, and F. De Martini, Polarization-momentum hyperentangled states: Realization and characterization, Phys. Rev. A 72(5), 052110 (2005)
https://doi.org/10.1103/PhysRevA.72.052110
|
54 |
A. Rossi, G. Vallone, A. Chiuri, F. De Martini, and P. Mataloni, Mulipath entanglement of two photons, Phys. Rev. Lett. 102(15), 153902 (2009)
https://doi.org/10.1103/PhysRevLett.102.153902
|
55 |
G. Vallone, R. Ceccarelli, F. De Martini, and P. Mataloni, Hyperentanglement of two photons in three degrees of freedom, Phys. Rev. A 79(3), 030301 (2009)
https://doi.org/10.1103/PhysRevA.79.030301
|
56 |
W. B. Gao, C. Y. Lu, X. C. Yao, P. Xu, O. Guhne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, and J. W. Pan, Experimental demonstration of a hyperentangled tenqubit Schrödinger cat state, Nat. Phys. 6(5), 331 (2010)
https://doi.org/10.1038/nphys1603
|
57 |
D. Bhatti, J. von Zanthier, and G. S. Agarwal, Entanglement of polarization and orbital angular momentum, Phys. Rev. A 91(6), 062303 (2015)
https://doi.org/10.1103/PhysRevA.91.062303
|
58 |
M. Prilmüller, T. Huber, M. Müller, P. Michler, G. Weihs, and A. Predojević, Hyperentanglement of photons emitted by a quantum dot, Phys. Rev. Lett. 121(11), 110503 (2018)
https://doi.org/10.1103/PhysRevLett.121.110503
|
59 |
X. L. Wang, X. D. Cai, Z. E. Su, M. C. Chen, D. Wu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan, Quantum teleportation of multiple degrees of freedom of a single photon, Nature 518(7540), 516 (2015)
https://doi.org/10.1038/nature14246
|
60 |
J. T. Barreiro, T. C. Wei, and P. G. Kwiat, Beating the channel capacity limit for linear photonic superdense coding, Nat. Phys. 4(4), 282 (2008)
https://doi.org/10.1038/nphys919
|
61 |
J. T. Barreiro, T. C. Wei, and P. G. Kwiat, Remote preparation of single-photon hybrid entangled and vectorpolarization states, Phys. Rev. Lett. 105(3), 030407 (2010)
https://doi.org/10.1103/PhysRevLett.105.030407
|
62 |
P. Zhou, X. F. Jiao, and S. X. Lv, Parallel remote state preparation of arbitrary single-qubit states via linear optical elements by using hyperentangled Bell states as the quantum channel, Quantum Inform. Process. 17(11), 298 (2018)
https://doi.org/10.1007/s11128-018-2067-7
|
63 |
X. F. Jiao, P. Zhou, S. X. Lv, and Z. Y. Wang, Remote preparation for single-photon two-qubit hybrid state with hyperentanglement via linear optical elements, Sci. Rep. 9(1), 4663 (2019)
https://doi.org/10.1038/s41598-018-37159-5
|
64 |
A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength, New J. Phys. 12(10), 103005 (2010)
https://doi.org/10.1088/1367-2630/12/10/103005
|
65 |
C. Chen, E. Y. Zhu, A. Riazi, A. V. Gladyshev, C. Corbari, M. Ibsen, P. G. Kazansky, and L. Qian, Compensation-free broadband entangled photon pair sources, Opt. Express 25(19), 22667 (2017)
https://doi.org/10.1364/OE.25.022667
|
66 |
M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Experimental realization of any discrete unitary operator, Phys. Rev. Lett. 73(1), 58 (1994)
https://doi.org/10.1103/PhysRevLett.73.58
|
67 |
R. T. Thew, S. Tanzilli, W. Tittel, H. Zbinden, and N. Gisin, Experimental investigation of the robustness of partially entangled qubits over 11 km, Phys. Rev. A 66(6), 062304 (2002)
https://doi.org/10.1103/PhysRevA.66.062304
|
68 |
I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, M. Legré, and N. Gisin, Distribution of time-bin entangled qubits over 50 km of optical fiber, Phys. Rev. Lett. 93(18), 180502 (2004)
https://doi.org/10.1103/PhysRevLett.93.180502
|
69 |
T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H. Takesue, Entanglement distribution over 300 km of fiber, Opt. Express 21(20), 23241 (2013)
https://doi.org/10.1364/OE.21.023241
|
70 |
R. Valivarthi, M. G. Puigibert, Q. Zhou, G. H. Aguilar, V. B. Verma, F. Marsili, M. D. Shaw, S. W. Nam, D. Oblak, and W. Tittel, Quantum teleportation across a metropolitan fibre network, Nat. Photon. 10(10), 676 (2016)
https://doi.org/10.1038/nphoton.2016.180
|
71 |
Q. C. Sun, Y. L. Mao, S. J. Chen, W. Zhang, Y. F. Jiang, Y. B. Zhang, W. J. Zhang, S. Miki, T. Yamashita, H. Terai, X. Jiang, T. Y. Chen, L. X. You, X. F. Chen, Z. Wang, J. Y. Fan, Q. Zhang, and J. W. Pan, Quantum teleportation with independent sources and prior entanglement distribution over a network, Nat. Photon. 10(10), 671 (2016)
https://doi.org/10.1038/nphoton.2016.179
|
72 |
J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, Pulsed energy-time entangled twin-photon source for quantum communication, Phys. Rev. Lett. 82(12), 2594 (1999)
https://doi.org/10.1103/PhysRevLett.82.2594
|
73 |
C. Simon and J. P. Poizat, Creating single time-binentangled photon pairs, Phys. Rev. Lett. 94(3), 030502 (2005)
https://doi.org/10.1103/PhysRevLett.94.030502
|
74 |
A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Approaching unit visibility for control of a superconducting qubit with dispersive readout, Phys. Rev. Lett. 95(6), 060501 (2005)
https://doi.org/10.1103/PhysRevLett.95.060501
|
75 |
A. Zavatta, M. D′ Angelo, V. Parigi, and M. Bellini, Remote preparation of arbitrary time-encoded single-photon ebits, Phys. Rev. Lett. 96(2), 020502 (2006)
https://doi.org/10.1103/PhysRevLett.96.020502
|
76 |
J. T. Barreiro, N. K. Langford, N. A. Peters, and P. G. Kwiat, Generation of hyperentangled photon pairs, Phys. Rev. Lett. 95(26), 260501 (2005)
https://doi.org/10.1103/PhysRevLett.95.260501
|
77 |
D. Kalamidas, Single-photon quantum error rejection and correction with linear optics, Phys. Lett. A 343(5), 331 (2005)
https://doi.org/10.1016/j.physleta.2005.06.034
|
78 |
M. Jiang and D. Dong, A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states, J. Phys. B 45(20), 205506 (2012)
https://doi.org/10.1088/0953-4075/45/20/205506
|
79 |
F. G. Deng, B. C. Ren, and X. H. Li, Quantum hyperentanglement and its applications in quantum information processing, Sci. Bull. (Beijing) 62(1), 46 (2017)
https://doi.org/10.1016/j.scib.2016.11.007
|
80 |
X. J. Zhang, D. S. Wu, J. Zhang, H. W. Yu, J. G. Zheng, D. X. Cao, and M. Z. Li, One-pulse driven plasma Pockels cell with DKDP crystal for repetition-rate application, Opt. Express 17(19), 17164 (2009)
https://doi.org/10.1364/OE.17.017164
|
81 |
E. H. Huntington and T. C. Ralph, Separating the quantum sidebands of an optical field, J. Opt. B 4(2), 123 (2002)
https://doi.org/10.1088/1464-4266/4/2/307
|
82 |
J. Zhang, Einstein–Podolsky–Rosen sideband entanglement in broadband squeezed light, Phys. Rev. A 67(5), 054302 (2003)
https://doi.org/10.1103/PhysRevA.67.054302
|
83 |
E. H. Huntington and T. C. Ralph, Components for optical qubits encoded in sideband modes, Phys. Rev. A 69(4), 042318 (2004)
https://doi.org/10.1103/PhysRevA.69.042318
|
84 |
E. H. Huntington, G. N. Milford, C. Robilliard, and T. C. Ralph, Coherent analysis of quantum optical sideband modes, Opt. Lett. 30(18), 2481 (2005)
https://doi.org/10.1364/OL.30.002481
|
85 |
M. Bloch, S. W. McLaughlin, J. M. Merolla, and F. Patois, Frequency-coded quantum key distribution, Opt. Lett. 32(3), 301 (2007)
https://doi.org/10.1364/OL.32.000301
|
86 |
T. Zhang, Z. Q. Yin, Z. F. Han, and G. C. Guo, A frequency-coded quantum key distribution scheme, Opt. Commun. 281(18), 4800 (2008)
https://doi.org/10.1016/j.optcom.2008.06.009
|
87 |
H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, Differential phase shift quantum key distribution experiment over 105 km fibre, New J. Phys. 7, 232 (2005)
https://doi.org/10.1088/1367-2630/7/1/232
|
88 |
H. Takesue, Erasing distinguishability using quantum frequency up-conversion, Phys. Rev. Lett. 101(17), 173901 (2008)
https://doi.org/10.1103/PhysRevLett.101.173901
|
89 |
R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, and N. Imoto, Wide-band quantum interface for visible-to-telecommunication wavelength conversion, Nat. Commun. 2(1), 537 (2011)
https://doi.org/10.1038/ncomms1544
|
90 |
Z. Y. Zhou, S. L. Liu, Y. Li, D. S. Ding, W. Zhang, S. Shi, M. X. Dong, B. S. Shi, and G. C. Guo, Orbital angular momentum-entanglement frequency transducer, Phys. Rev. Lett. 117(10), 103601 (2016)
https://doi.org/10.1103/PhysRevLett.117.103601
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|