Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (6) : 63504    https://doi.org/10.1007/s11467-021-1081-x
RESEARCH ARTICLE
Field theoretical approach to spin models
Feng Liu1,2, Zhenhao Fan1,2, Zhipeng Sun1,2, Xuzong Chen3, Dingping Li1,2()
1. School of Physics, Peking University, Beijing 100871, China
2. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
3. School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
 Download: PDF(520 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We developed a systematic non-perturbative method base on Dyson–Schwinger theory and the Φ-derivable theory for Ising model at broken phase. Based on these methods, we obtain critical temperature and spin spin correlation beyond mean field theory. The spectrum of Green function obtained from our methods become gapless at critical point, so the susceptibility become divergent at Tc. The critical temperature of Ising model obtained from this method is fairly good in comparison with other non-cluster methods. It is straightforward to extend this method to more complicate spin models for example with continue symmetry.

Keywords Ising model      mean field theory      Dyson–Schwinger equations     
Corresponding Author(s): Dingping Li   
Issue Date: 18 June 2021
 Cite this article:   
Feng Liu,Zhenhao Fan,Zhipeng Sun, et al. Field theoretical approach to spin models[J]. Front. Phys. , 2021, 16(6): 63504.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1081-x
https://academic.hep.com.cn/fop/EN/Y2021/V16/I6/63504
1 E. Ising, Beitrag zur theorie des ferromagnetismus, Z. Phys. 31(1), 253 (1925)
https://doi.org/10.1007/BF02980577
2 L. Onsager, Crystal statistics (i): A two-dimensional model with an order-disorder transition, Phys. Rev. 65(3–4), 117 (1944)
https://doi.org/10.1103/PhysRev.65.117
3 A. Kuzemsky, Statistical mechanics and the physics of many-particle model systems, Phys. Part. Nucl. 40(7), 949 (2009)
https://doi.org/10.1134/S1063779609070016
4 P. Weiss and E. Stoner, Magnetism and atomic structure, J. Phys. 6, 667 (1907)
5 G. Wysin and J. Kaplan, Correlated molecular-field theory for Ising models, Phys. Rev. E 61(6), 6399 (2000)
https://doi.org/10.1103/PhysRevE.61.6399
6 H. A. Bethe, Statistical theory of superlattices, Proc. R. Soc. Lond. A 150(871), 552 (1935)
https://doi.org/10.1098/rspa.1935.0122
7 R. Peierls, On Ising’s model of ferromagnetism, in: Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 32, Cambridge University Press, 1936, pp 477–481
https://doi.org/10.1017/S0305004100019174
8 P. R. Weiss, The application of the Bethe–Peierls method to ferromagnetism, Phys. Rev. 74(10), 1493 (1948)
https://doi.org/10.1103/PhysRev.74.1493
9 K. K. Zhuravlev, Molecular-field theory method for evaluating critical points of the ising model, Phys. Rev. E 72(5), 056104 (2005)
https://doi.org/10.1103/PhysRevE.72.056104
10 D. Yamamoto, Correlated cluster mean-field theory for spin systems, Phys. Rev. B 79(14), 144427 (2009)
https://doi.org/10.1103/PhysRevB.79.144427
11 J. R. Viana, O. R. Salmon, J. R. de Sousa, M. A. Neto, and I. T. Padilha, An effective correlated mean-field theory applied in the spin-1/2 Ising ferromagnetic model, J. Magn. Magn. Mater. 369, 101 (2014)
https://doi.org/10.1016/j.jmmm.2014.06.029
12 J. M. Luttinger and J. C. Ward, Ground-state energy of a many-fermion system (ii), Phys. Rev. 118(5), 1417 (1960)
https://doi.org/10.1103/PhysRev.118.1417
13 G. Baym and L. P. Kadanoff, Conservation laws and correlation functions, Phys. Rev. 124(2), 287 (1961)
https://doi.org/10.1103/PhysRev.124.287
14 J. M. Cornwall, R. Jackiw, and E. Tomboulis, Effective action for composite operators, Phys. Rev. D 10(8), 2428 (1974)
https://doi.org/10.1103/PhysRevD.10.2428
15 A. Kovner and B. Rosenstein, Covariant Gaussian approximation (i): Formalism, Phys. Rev. D 39(8), 2332 (1989)
https://doi.org/10.1103/PhysRevD.39.2332
16 H. Van Hees and J. Knoll, Renormalization in selfconsistent approximation schemes at finite temperature (iii): Global symmetries, Phys. Rev. D 66(2), 025028 (2002)
https://doi.org/10.1103/PhysRevD.66.025028
17 D. J. Amit and V. Martin-Mayor, Field Theory, the Renormalization Group, and Critical Phenomena: Graphs to Computers, World Scientific Publishing Company, 2005
18 J. Wang, D. Li, H. Kao, and B. Rosenstein, Covariant Gaussian approximation in Ginzburg–Landau model, Ann. Phys. 380, 228 (2017)
https://doi.org/10.1016/j.aop.2017.03.015
19 B. Rosenstein and A. Kovner, Covariant Gaussian approximation (ii): Scalar theories, Phys. Rev. D 40(2), 504 (1989)
https://doi.org/10.1103/PhysRevD.40.504
20 M. E. Fisher, The theory of equilibrium critical phenomena, Rep. Prog. Phys. 30(2), 615 (1967)
https://doi.org/10.1088/0034-4885/30/2/306
21 N. W. Ashcroft, N. D. Mermin, et al., Solid state physics, Vol. 2005, Holt, Rinehart And Winston, New York, London, 1976
22 H. Au-Yang and J. H. Perk, Correlation functions and susceptibility in the z-invariant Ising model, in: MathPhys Odyssey 2001, Springer, 2002, pp 23–48
https://doi.org/10.1007/978-1-4612-0087-1_2
23 W. Orrick, B. Nickel, A. Guttmann, and J. Perk, The susceptibility of the square lattice Ising model: New developments, J. Stat. Phys. 102(3/4), 795 (2001) (for the complete set of series coefficients see https://blogs.unimelb.edu.au/tony-guttmann/)
https://doi.org/10.1023/A:1004850919647
24 F. Ricci-Tersenghi, The Bethe approximation for solving the inverse Ising problem: A comparison with other inference methods, J. Stat. Mech. 2012(08), P08015 (2012)
https://doi.org/10.1088/1742-5468/2012/08/P08015
[1] XIA Kai, YAO Xiao-yan, LIU Jun-ming. The density of states for an antiferromagnetic Ising model on a triangular lattice[J]. Front. Phys. , 2007, 2(2): 191-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed