Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (1) : 12502    https://doi.org/10.1007/s11467-021-1091-8
RESEARCH ARTICLE
Asymmetric conductivity of the Kondo effect in cold atomic systems
Yanting Cheng1, Xin Chen1, Ren Zhang2()
1. Institute for Advanced Study, Tsinghua University, Beijing 100084, China
2. School of Science, Xi’an Jiaotong University, Xi’an 710049, China
 Download: PDF(655 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Motivated by recent theoretical and experimental advances in quantum simulations using alkaline earth (AE) atoms, we put forward a proposal to detect the Kondo physics in a cold atomic system. It has been demonstrated that the intrinsic spin-exchange interaction in AE atoms can be significantly enhanced near a confinement-induced resonance (CIR), which facilitates the simulation of Kondo physics. Since the Kondo effect appears only for antiferromagnetic coupling, we find that the conductivity of such system exhibits an asymmetry across a resonance of spin-exchange interaction. The asymmetric conductivity can serve as the smoking gun evidence for Kondo physics in the cold atom context. When an extra magnetic field ramps up, the spin-exchange process near Fermi surface is suppressed by Zeeman energy and the conductivity becomes more and more symmetric. Our results can be verified in the current experimental setup.

Keywords Kondo effect      alkaline earth atom      confinement induced resonance     
Corresponding Author(s): Ren Zhang   
Issue Date: 03 August 2021
 Cite this article:   
Yanting Cheng,Xin Chen,Ren Zhang. Asymmetric conductivity of the Kondo effect in cold atomic systems[J]. Front. Phys. , 2022, 17(1): 12502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1091-8
https://academic.hep.com.cn/fop/EN/Y2022/V17/I1/12502
1 I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)
https://doi.org/10.1103/RevModPhys.80.885
2 N. Goldman, J. C. Budich, and P. Zoller, Topological quantum matter with ultracold gases in optical lattices, Nat. Phys. 12, 639 (2016)
https://doi.org/10.1038/nphys3803
3 C. Gross and I. Bloch, Quantum simulations with ultracold atoms in optical lattices, Science 357(6355), 995 (2017)
https://doi.org/10.1126/science.aal3837
4 B. Paredes, C. Tejedor, and J. I. Cirac, Fermionic atoms in optical superlattices, Phys. Rev. A 71(6), 063608 (2005)
https://doi.org/10.1103/PhysRevA.71.063608
5 J. Silva-Valencia and A. M. C. Souza, Superfluid-to-Mott insulator transition of bosons with local three-body inter-actions, Eur. Phys. J. B 85(5), 161 (2012)
https://doi.org/10.1140/epjb/e2012-20966-8
6 D. Yu, J. S. Pan, X. J. Liu, W. Zhang, and W. Yi, Topological superradiant state in Fermi gases with cavity induced spin–orbit coupling, Front. Phys. 13(1), 136701 (2018)
https://doi.org/10.1007/s11467-017-0695-5
7 C. A. Regal, M. Greiner, and D. S. Jin, Observation of resonance condensation of fermionic atom pairs, Phys. Rev. Lett. 92(4), 040403 (2004)
https://doi.org/10.1103/PhysRevLett.92.040403
8 M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman, and W. Ketterle, Condensation of pairs of fermionic atoms near a Feshbach resonance, Phys. Rev. Lett. 92(12), 120403 (2004)
https://doi.org/10.1103/PhysRevLett.92.120403
9 J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, and J. E. Thomas, Evidence for superfluidity in a resonantly interacting Fermi gas, Phys. Rev. Lett. 92(15), 150402 (2004)
https://doi.org/10.1103/PhysRevLett.92.150402
10 T. Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M. F. Kokkel-mans, and C. Salomon, Experimental study of the BECBCS crossover region in 6Li, Phys. Rev. Lett. 93(5), 050401 (2004)
https://doi.org/10.1103/PhysRevLett.93.050401
11 C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, J. H. Denschlag, and R. Grimm, Observation of the pairing gap in a strongly interacting Fermi gas, Science 305(5687), 1128 (2004)
https://doi.org/10.1126/science.1100818
12 G. B. Partridge, K. E. Strecker, R. I. Kamar, M. W. Jack, and R. G. Hulet, Molecular probe of pairing in the BECBCS crossover, Phys. Rev. Lett. 95(2), 020404 (2005)
https://doi.org/10.1103/PhysRevLett.95.020404
13 M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle, Vortices and superfluidity in a strongly interacting Fermi gas, Nature 435, 1047 (2005)
https://doi.org/10.1038/nature03858
14 G. M. Falco, R. A. Duine, and H. T. C. Stoof, Molecular Kondo resonance in atomic Fermi gases, Phys. Rev. Lett. 92(14), 140402 (2004)
https://doi.org/10.1103/PhysRevLett.92.140402
15 A. V. Gorshkov, M. Hermele, V. Gurarie, C. Xu, P. S. Julienne, J. Ye, P. Zoller, E. Demler, M. D. Lukin, and A. M. Rey, Two-orbital SU(N)magnetism with ultracold alkaline-earth atoms, Nat. Phys. 6(4), 289 (2010)
https://doi.org/10.1038/nphys1535
16 M. Foss-Feig, M. Hermele, and A. M. Rey, Probing the Kondo lattice model with alkaline-earth-metal atoms, Phys. Rev. A 81(5), 051603 (2010)
https://doi.org/10.1103/PhysRevA.81.051603
17 J. Bauer, C. Salomon, and E. Demler, Realizing a Kondocorrelated state with ultracold atoms, Phys. Rev. Lett. 111(21), 215304 (2013)
https://doi.org/10.1103/PhysRevLett.111.215304
18 Y. Nishida, SU(3) orbital Kondo effect with ultracold atoms, Phys. Rev. Lett. 111(13), 135301 (2013)
https://doi.org/10.1103/PhysRevLett.111.135301
19 L. Isaev and A. M. Rey, Heavy-fermion valence-bond liquids in ultracold atoms: Cooperation of the Kondo effect and geometric frustration, Phys. Rev. Lett. 115(16), 165302 (2015)
https://doi.org/10.1103/PhysRevLett.115.165302
20 I. Kuzmenko, T. Kuzmenko, Y. Avishai, and K. Kikoin, Model for overscreened Kondo effect in ultracold Fermi gas, Phys. Rev. B 91(16), 165131 (2015)
https://doi.org/10.1103/PhysRevB.91.165131
21 Y. Nishida, Transport measurement of the orbital Kondo effect with ultracold atoms, Phys. Rev. A 93(1), 011606 (2016)
https://doi.org/10.1103/PhysRevA.93.011606
22 R. Zhang, D. Zhang, Y. Cheng, W. Chen, P. Zhang, and H. Zhai, Kondo effect in alkaline-earth-metal atomic gases with confinement-induced resonances, Phys. Rev. A 93(4), 043601 (2016)
https://doi.org/10.1103/PhysRevA.93.043601
23 I. Kuzmenko, T. Kuzmenko, Y. Avishai, and G. B. Jo, Multipolar Kondo effect in a 1S0−3P2 mixture of 173Yb atoms, Phys. Rev. B 97(7), 075124 (2018)
https://doi.org/10.1103/PhysRevB.97.075124
24 Y. Cheng, R. Zhang, P. Zhang, and H. Zhai, Enhancing Kondo coupling in alkaline-earth-metal atomic gases with confinement-induced resonances in mixed dimensions, Phys. Rev. A 96(6), 063605 (2017)
https://doi.org/10.1103/PhysRevA.96.063605
25 J. Yao, H. Zhai, and R. Zhang, Efimov-enhanced Kondo effect in alkali-metal and alkaline-earth-metal atomic gas mixtures, Phys. Rev. A 99(1), 010701 (2019)
https://doi.org/10.1103/PhysRevA.99.010701
26 M. Nakagawa and N. Kawakami, Laser-induced Kondo effect in ultracold alkaline-earth fermions, Phys. Rev. Lett. 115(16), 165303 (2015)
https://doi.org/10.1103/PhysRevLett.115.165303
27 M. Nakagawa, N. Kawakami, and M. Ueda, NonHermitian Kondo effect in ultracold alkaline-earth atoms, Phys. Rev. Lett. 121(20), 203001 (2018)
https://doi.org/10.1103/PhysRevLett.121.203001
28 M. Kanász-Nagy, Y. Ashida, T. Shi, C. P. Moca, T. N. Ikeda, S. Fölling, J. I. Cirac, G. Zaránd, and E. A. Dem-ler, Exploring the anisotropic Kondo model in and out of equilibrium with alkaline-earth atoms, Phys. Rev. B 97, 155156 (2018)
https://doi.org/10.1103/PhysRevB.97.155156
29 Y. Zhong, Y. Liu, and H. G. Luo, Simulating heavy fermion physics in optical lattice: Periodic Anderson model with harmonic trapping potential, Front. Phys. 12(5), 127502 (2017)
https://doi.org/10.1007/s11467-017-0690-x
30 P. W. Anderson, A poor man’s derivation of scaling laws for the Kondo problem, J. Phys. C 3(12), 2436 (1970)
https://doi.org/10.1088/0022-3719/3/12/008
31 J. Kondo, Resistance minimum in dilute magnetic alloys, Prog. Theor. Phys. 32(1), 37 (1964)
https://doi.org/10.1143/PTP.32.37
32 Z. W. Barber, J. E. Stalnaker, N. D. Lemke, N. Poli, C. W. Oates, T. M. Fortier, S. A. Diddams, L. Hollberg, C. W. Hoyt, A. V. Taichenachev, and V. I. Yudin, Optical lattice induced light shifts in an Yb atomic clock, Phys. Rev. Lett. 100(10), 103002 (2008)
https://doi.org/10.1103/PhysRevLett.100.103002
33 V. A. Dzuba and A. Derevianko, Dynamic polarizabilities and related properties of clock states of the ytterbium atom, J. Phys. At. Mol. Opt. Phys. 43(7), 074011 (2010)
https://doi.org/10.1088/0953-4075/43/7/074011
34 G. Cappellini, M. Mancini, G. Pagano, P. Lombardi, L. Livi, M. Siciliani de Cumis, P. Cancio, M. Pizzocaro, D. Calonico, F. Levi, C. Sias, J. Catani, M. Inguscio, and L. Fallani, Direct observation of coherent interorbital spin-exchange dynamics, Phys. Rev. Lett. 113(12), 120402 (2014)
https://doi.org/10.1103/PhysRevLett.113.120402
35 F. Scazza, C. Hofrichter, M. Höfer, P. C. De Groot, I. Bloch, and S. Fölling, Observation of two-orbital spinexchange interactions with ultracold SU(N)-symmetric fermions, Nat. Phys. 10(10), 779 (2014)
https://doi.org/10.1038/nphys3061
36 K. Ono, Y. Amano, T. Higomoto, Y. Saito, and Y. Taka-hashi, Observation of spin-exchange dynamics between itinerant and localized 171Yb atoms, Phys. Rev. A 103(4), L041303 (2021)
https://doi.org/10.1103/PhysRevA.103.L041303
37 K. Ono, J. Kobayashi, Y. Amano, K. Sato, and Y. Taka-hashi, Antiferromagnetic interorbital spin-exchange interaction of 171Yb, Phys. Rev. A 99(3), 032707 (2019)
https://doi.org/10.1103/PhysRevA.99.032707
38 L. Riegger, N. Darkwah Oppong,M. Höfer, D. R. Fernan-des, I. Bloch, and S. Fölling, Localized magnetic moments with tunable spin exchange in a gas of ultracold fermions, Phys. Rev. Lett. 120(14), 143601 (2018)
https://doi.org/10.1103/PhysRevLett.120.143601
39 R. Zhang and P. Zhang, Control of spin-exchange interaction between alkali-earth-metal atoms via confinementinduced resonances in a quasi-(1+0)-dimensional system, Phys. Rev. A 98(4), 043627 (2018)
https://doi.org/10.1103/PhysRevA.98.043627
40 R. Zhang, Y. Cheng, P. Zhang, and H. Zhai, Controlling the interaction of ultracold alkaline-earth atoms, Nat. Rev. Phys. 2(4), 213 (2020)
https://doi.org/10.1038/s42254-020-0157-9
41 S. Goto and I. Danshita, Quasiexact Kondo dynamics of fermionic alkaline-earth-like atoms at finite temperatures, Phys. Rev. Lett. 123(14), 143002 (2019)
https://doi.org/10.1103/PhysRevLett.123.143002
42 A. C. Hewson, The Kondo Problem to Heavy Fermions, Cambridge Studies in Magnetism, Cambridge University Press, 1993
https://doi.org/10.1017/CBO9780511470752
43 M. V. Sadovskii, Diagrammatics: Lectures on Selected Problems in Condensed Matter Theory, edited by Michael V. Sadovskii, World Scientific, 2006
https://doi.org/10.1142/6011
44 A. Furusaki and N. Nagaosa, Kondo effect in a TomonagaLuttinger liquid, Phys. Rev. Lett. 72(6), 892 (1994)
https://doi.org/10.1103/PhysRevLett.72.892
45 Y. Ashida, T. Shi, M. C. Bañuls, J. I. Cirac, and E. Dem-ler, Solving quantum impurity problems in and out of equilibrium with the variational approach, Phys. Rev. Lett. 121(2), 026805 (2018)
https://doi.org/10.1103/PhysRevLett.121.026805
46 Y. Ashida, T. Shi, M. C. Bañuls, J. I. Cirac, and E. Dem-ler, Variational principle for quantum impurity systems in and out of equilibrium: Application to Kondo problems, Phys. Rev. B 98(2), 024103 (2018)
https://doi.org/10.1103/PhysRevB.98.024103
[1] LI Huan, LI Huan, GUO Wei, GUO Wei. Influence of local spin polarization to the Kondo effect[J]. Front. Phys. , 2007, 2(1): 41-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed