Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (1) : 13502    https://doi.org/10.1007/s11467-021-1093-6
RESEARCH ARTICLE
Enhanced photogalvanic effect in the two-dimensional MgCl2/ZnBr2 vertical heterojunction by inhomogenous tensile stress
Liyu Qian, Juan Zhao, Yiqun Xie()
Department of Physics, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China
 Download: PDF(1583 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The photogalvanic effect (PGE) occurring in noncentrosymmetric materials enables the generation of a dc photocurrent at zero bias with a high polarization sensitivity, which makes it very attractive in photodetection. However, the magnitude of the PGE photocurrent is usually small, leading to a low photoresponsivity, and therefore hampers its practical application in photodetection. Here, we propose an approach to largely enhancing the PGE photocurrent by applying an inhomogenous me-chanical stretch, based on quantum transport simulations. We model a two-dimensional photodetector consisting of the wide-bandgap MgCl2/ZnBr2 vertical van der Waals heterojunction with the noncen-trosymmetric C3v symmetry. Polarization-sensitive PGE photocurrent is generated under the vertical illumination of linearly polarized light. By applying inhomogenous mechanical stretch on the lattice, the photocurrent can be largely increased by up to 3 orders of magnitude due to the significantly in-creased device asymmetry. Our results propose an effective way to enhance the PGE by inhomogenous mechanical strain, showing the potential of the MgCl2/ZnBr2 vertical heterojunction in the low-power UV photodetection.

Keywords photogalvanic effect      mechanical stretch      polarization-sensitive      vertical heterojunction      ultraviolet photodetection     
Corresponding Author(s): Yiqun Xie   
Issue Date: 03 August 2021
 Cite this article:   
Liyu Qian,Juan Zhao,Yiqun Xie. Enhanced photogalvanic effect in the two-dimensional MgCl2/ZnBr2 vertical heterojunction by inhomogenous tensile stress[J]. Front. Phys. , 2022, 17(1): 13502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1093-6
https://academic.hep.com.cn/fop/EN/Y2022/V17/I1/13502
1 H. Chen, H. Liu, Z. Zhang, K. Hu, and X. Fang, Nanos-tructured photodetectors: From ultraviolet to terahertz, Adv. Mater. 28(3), 403 (2016)
https://doi.org/10.1002/adma.201503534
2 Q. Zhang, X. Li, Z. He, M. Xu, C. Jin, and X. Zhou, 2D semiconductors towards high-performance ultraviolet photodetection, J. Phys. D 52(30), 303002 (2019)
https://doi.org/10.1088/1361-6463/ab1e89
3 D. Guo, Y. Su, H. Shi, P. Li, N. Zhao, J. Ye, S. Wang, A. Liu, Z. Chen, C. Li, and W. Tang, Self-powered ul-traviolet photodetector with superhigh photoresponsivity (3.05 A/W) based on the GaN/Sn:Ga2O3 pn Junction, ACS Nano 12(12), 12827 (2018)
https://doi.org/10.1021/acsnano.8b07997
4 W. Zheng, R. Lin, Y. Zhu, Z. Zhang, X. Ji, and F. Huang, Vacuum ultraviolet photodetection in two-dimensional ox-ides, ACS Appl. Mater. Interfaces 10(24), 20696 (2018)
https://doi.org/10.1021/acsami.8b04866
5 W. Zheng, R. Lin, Z. Zhang, and F. Huang, Vacuumultraviolet photodetection in few-layered h-BN, ACS Appl. Mater. Interfaces 10(32), 27116 (2018)
https://doi.org/10.1021/acsami.8b07189
6 Y. Gao, S. Lei, T. Kang, L. Fei, C. L. Mak, J. Yuan, M. Zhang, S. Li, Q. Bao, Z. Zeng, Z. Wang, H. Gu, and K. Zhang, Bias-switchable negative and positive photo-conductivity in 2D FePS3 ultraviolet photodetectors, Nan-otechnology 29(24), 244001 (2018)
https://doi.org/10.1088/1361-6528/aab9d2
7 H. Kan, W. Zheng, R. C. Lin, M. Li, C. Fu, H. B. Sun, M. Dong, C. H. Xu, J. T. Luo, Y. Q. Fu, and F. Huang, Ul-trafast photovoltaic-type deep ultraviolet photodetectors using hybrid zero-/two-dimensional heterojunctions, ACS Appl. Mater. Interfaces 11(8), 8412 (2019)
https://doi.org/10.1021/acsami.8b20357
8 Y. Gao, Y. Zhang, and D. Xiao, Tunable layer circular photogalvanic effect in twisted bilayers, Phys. Rev. Lett. 124(7), 077401 (2020)
https://doi.org/10.1103/PhysRevLett.124.077401
9 R. von Baltz and W. Kraut, Theory of the bulk photo-voltaic effect in pure crystals, Phys. Rev. B 23(10), 5590 (1981)
https://doi.org/10.1103/PhysRevB.23.5590
10 V. I. Belinicher, Space-oscillating photocurrent in crystals without symmetry center, Phys. Lett. A 66(3), 213 (1978)
https://doi.org/10.1016/0375-9601(78)90660-6
11 S. D. Ganichev and W. Prettl, Spin photocurrents in quan-tum wells, J. Phys.: Condens. Matter 15(20), R935 (2003)
https://doi.org/10.1088/0953-8984/15/20/204
12 X. Tao, P. Jiang, H. Hao, X. Zheng, L. Zhang, and Z. Zeng, Pure spin current generation via photogalvanic effect with spatial inversion symmetry, Phys. Rev. B 102(8), 081402 (2020)
https://doi.org/10.1103/PhysRevB.102.081402
13 M. M. Ramin Moayed, F. Li, P. Beck, J. C. Schober, and C. Klinke, Anisotropic circular photogalvanic effect in col-loidal tin sulfide nanosheets, Nanoscale 12(11), 6256 (2020)
https://doi.org/10.1039/D0NR01189D
14 M. Chen, K. Lee, J. Li, L. Cheng, Q. Wang, K. Cai, E. E. M. Chia, H. Chang, and H. Yang, Anisotropic picosecond spin-photocurrent from Weyl semimetal WTe2, ACS Nano 14(3), 3539 (2020)
https://doi.org/10.1021/acsnano.9b09828
15 C. Guo, Y. Hu, G. Chen, D. Wei, L. Zhang, Z. Chen, W. Guo, H. Xu, C. N. Kuo, C. S. Lue, X. Bo, X. Wan, L. Wang, A. Politano, X. Chen, and W. Lu, Anisotropic ultrasensitive PdTe2-based phototransistor for room-temperature long-wavelength detection, Sci. Adv. 6(36), eabb6500 (2020)
https://doi.org/10.1126/sciadv.abb6500
16 Y. Luo, Y. Hu, and Y. Xie, Highly polarization-sensitive, visible-blind and self-powered ultraviolet photodetection based on two-dimensional wide bandgap semiconductors: A theoretical prediction, J. Mater. Chem. A 7(48), 27503 (2019)
https://doi.org/10.1039/C9TA10473A
17 Y. Peng, X. T. Liu, Z. H. Sun, C. M. Ji, L. N. Li, Z. Y. Wu, S. S. Wang, Y. P. Yao, M. C. Hong, and J. H. Luo, Exploiting the bulk photovoltaic effect in a 2D trilayered hybrid ferroelectric for highly sensitive polarized light de-tection, Angew. Chem. Int. Ed. 59(10), 3933 (2020)
https://doi.org/10.1002/anie.201915094
18 Y. J. Zhang, T. Ideue, M. Onga, F. Qin, R. Suzuki, A. Zak, R. Tenne, J. H. Smet, and Y. Iwasa, Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes, Nature 570(7761), 349 (2019)
https://doi.org/10.1038/s41586-019-1303-3
19 J. E. Spanier, V. M. Fridkin, A. M. Rappe, A. R. Akba-shev, A. Polemi, Y. Qi, Z. Gu, S. M. Young, C. J. Haw-ley, D. Imbrenda, G. Xiao, A. L. Bennett-Jackson, and C. L. Johnson, Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator, Nat. Photonics 10(9), 611 (2016)
https://doi.org/10.1038/nphoton.2016.143
20 J. Li and P. M. Haney, Circular photogalvanic effect in organometal halide perovskite CH3NH3PbI3, Appl. Phys. Lett. 109(19), 193903 (2016)
https://doi.org/10.1063/1.4967176
21 M. M. Yang, D. J. Kim, and M. Alexe, Flexo-photovoltaic effect, Science360(6391), 904 (2018)
https://doi.org/10.1126/science.aan3256
22 H. Zou, C. Zhang, H. Xue, Z. Wu, and Z. L. Wang, Boost-ing the solar cell efficiency by flexo-photovoltaic effect? ACS Nano 13(11), 12259 (2019)
https://doi.org/10.1021/acsnano.9b07222
23 S. Nadupalli, J. Kreisel, and T. Granzow, Increasing bulk photovoltaic current by strain tuning, Sci. Adv. 5(3), eaau9199 (2019)
https://doi.org/10.1126/sciadv.aau9199
24 J. Zhao, Y. Hu, Y. Xie, L. Zhang, and Y. Wang, Largely enhanced photogalvanic effects in a phosphorene photode-tector by strain-increased device asymmetry, Phys. Rev. Appl. 14(6), 064003 (2020)
https://doi.org/10.1103/PhysRevApplied.14.064003
25 N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I. E. Castelli, A. Cepel-lotti, G. Pizzi, and N. Marzari, Two-dimensional materials from high-throughput computational exfoliation of experi-mentally known compounds, Nat. Nanotechnol. 13(3), 246 (2018)
https://doi.org/10.1038/s41565-017-0035-5
26 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
27 G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59(3), 1758 (1999)
https://doi.org/10.1103/PhysRevB.59.1758
28 J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)
https://doi.org/10.1103/PhysRevLett.77.3865
29 J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic de-vices, Phys. Rev. B 63(24), 245407 (2001)
https://doi.org/10.1103/PhysRevB.63.245407
30 L. E. Henrickson, Nonequilibrium photocurrent model-ing in resonant tunneling photodetectors, J. Appl. Phys. 91(10), 6273 (2002)
https://doi.org/10.1063/1.1473677
31 Y. Xie, M. Chen, Z. Wu, Y. Hu, Y. Wang, J. Wang, and H. Guo, Two-dimensional photogalvanic spin-battery, Phys. Rev. Appl. 10(3), 034005 (2018)
https://doi.org/10.1103/PhysRevApplied.10.034005
32 Y. Xie, L. Zhang, Y. Zhu, L. Liu, and H. Guo, Photogal-vanic effect in monolayer black phosphorus, Nanotechnol-ogy 26(45), 455202 (2015)
https://doi.org/10.1088/0957-4484/26/45/455202
33 J. Chen, L. Zhang, L.   Zhang, X. Zheng, L. Xiao, S. Jia, and J. Wang, Photogalvanic effect induced fully spin polar-ized current and pure spin current in zigzag SiC nanorib-bons, Phys. Chem. Chem. Phys. 20, 26744 (2018)
https://doi.org/10.1039/C8CP05046E
34 L. Zhang, K. Gong, J. Chen, L. Liu, Y. Zhu, D. Xiao, and H. Guo, Generation and transport of valley polarized current in transition metal dichalcogenides, Phys. Rev. B 90, 195428 (2014)
https://doi.org/10.1103/PhysRevB.90.195428
35 V. I. Belinicher and B. I. Sturman, The photogalvanic ef-fect in media lacking a center of symmetry, Sov. Phys. Usp. 23(3), 199 (1980)
https://doi.org/10.1070/PU1980v023n03ABEH004703
36 S. D. Ganichev, H. Ketterl, W. Prettl, E. L. Ivchenko, and L. E. Vorobjev, Circular photogalvanic effect induced by monopolar spin orientation in p-GaAs/AlGaAs multiple-quantum wells, Appl. Phys. Lett. 77(20), 3146 (2000)
https://doi.org/10.1063/1.1326488
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed