Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (1) : 13201    https://doi.org/10.1007/s11467-021-1095-4
TOPICAL REVIEW
Geometric heat pump: Controlling thermal transport with time-dependent modulations
Zi Wang1, Luqin Wang1, Jiangzhi Chen1, Chen Wang2(), Jie Ren1()
1. Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
2. Department of Physics, Zhejiang Normal University, Jinhua 321004, China
 Download: PDF(1357 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The second law of thermodynamics dictates that heat simultaneously flows from the hot to cold bath on average. To go beyond this picture, a range of works in the past decade show that, other than the average dynamical heat flux determined by instantaneous thermal bias, a non-trivial flux contribution of intrinsic geometric origin is generally present in temporally driven systems. This additional heat flux provides a free lunch for the pumped heat and could even drive heat against the bias. We review here the emergence and development of this so called “geometric heat pump”, originating from the topological geometric phase effect, and cover various quantum and classical transport systems with different internal dynamics. The generalization from the adiabatic to the non-adiabatic regime and the application of control theory are also discussed. Then, we briefly discuss the symmetry restriction on the heat pump effect, such as duality, supersymmetry and time-reversal symmetry. Finally, we examine open problems concerning the geometric heat pump process and elucidate their prospective significance in devising thermal machines with high performance.

Keywords geometric phase      heat pump      stochastic heat transport      non-adiabatic control     
Corresponding Author(s): Chen Wang,Jie Ren   
Issue Date: 03 August 2021
 Cite this article:   
Zi Wang,Luqin Wang,Jiangzhi Chen, et al. Geometric heat pump: Controlling thermal transport with time-dependent modulations[J]. Front. Phys. , 2022, 17(1): 13201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1095-4
https://academic.hep.com.cn/fop/EN/Y2022/V17/I1/13201
1 P. W. Brouwer, Scattering approach to parametric pump-ing, Phys. Rev. B 58(16), R10135 (1998)
https://doi.org/10.1103/PhysRevB.58.R10135
2 P. Hänggi and F. Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Mod. Phys. 81(1), 387 (2009)
https://doi.org/10.1103/RevModPhys.81.387
3 I. L. Aleiner and A. V. Andreev, Adiabatic charge pumping in almost open dots, Phys. Rev. Lett. 81(6), 1286 (1998)
https://doi.org/10.1103/PhysRevLett.81.1286
4 T. H. Oosterkamp, L. P. Kouwenhoven, A. E. A. Koolen, N. C. van der Vaart, and C. J. P. M. Harmans, Photon sidebands of the ground state and first excited state of a quantum dot, Phys. Rev. Lett. 78(8), 1536 (1997)
https://doi.org/10.1103/PhysRevLett.78.1536
5 F. Grossmann, T. Dittrich, P. Jung, and P. Hänggi, Co-herent destruction of tunneling, Phys. Rev. Lett. 67(4), 516 (1991)
https://doi.org/10.1103/PhysRevLett.67.516
6 S. Rahav, J. Horowitz, and C. Jarzynski, Directed flow in nonadiabatic stochastic pumps, Phys. Rev. Lett. 101(14), 140602 (2008)
https://doi.org/10.1103/PhysRevLett.101.140602
7 M. Braun and G. Burkard, Nonadiabatic two-parameter charge and spin pumping in a quantum dot, Phys. Rev. Lett. 101(3), 036802 (2008)
https://doi.org/10.1103/PhysRevLett.101.036802
8 F. Cavaliere, M. Governale, and J. König, Nonadiabatic pumping through interacting quantum dots, Phys. Rev. Lett. 103(13), 136801 (2009)
https://doi.org/10.1103/PhysRevLett.103.136801
9 V. Y. Chernyak and N. A. Sinitsyn, Pumping restriction theorem for stochastic networks, Phys. Rev. Lett. 101(16), 160601 (2008)
https://doi.org/10.1103/PhysRevLett.101.160601
10 J. Ren, V. Chernyak, and N. Sinitsyn, Duality and fluctuation relations for statistics of currents on cyclic graphs, J. Stat. Mech. 2011(05), P05011 (2011)
https://doi.org/10.1088/1742-5468/2011/05/P05011
11 S. Asban and S. Rahav, No-pumping theorem for many particle stochastic pumps, Phys. Rev. Lett. 112(5), 050601 (2014)
https://doi.org/10.1103/PhysRevLett.112.050601
12 M. V. Berry, Quantal phase factors accompanying adia-batic changes, Proc. Math. Phys. Eng. Sci. 392, 45 (1984)
https://doi.org/10.1098/rspa.1984.0023
13 D. J. Thouless, Quantization of particle transport, Phys. Rev. B 27(10), 6083 (1983)
https://doi.org/10.1103/PhysRevB.27.6083
14 S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wang, M. Troyer, and Y. Takahashi, Topological Thou-less pumping of ultracold fermions, Nat. Phys. 12(4), 296 (2016)
https://doi.org/10.1038/nphys3622
15 N. A. Sinitsyn and I. Nemenman, Universal geometric the-ory of mesoscopic stochastic pumps and reversible ratchets, Phys. Rev. Lett. 99(22), 220408 (2007)
https://doi.org/10.1103/PhysRevLett.99.220408
16 N. Sinitsyn, The stochastic pump effect and geometric phases in dissipative and stochastic systems, J. Phys. A Math. Theor. 42(19), 193001 (2009)
https://doi.org/10.1088/1751-8113/42/19/193001
17 C. Chamon, E. R. Mucciolo, L. Arrachea, and R. B. Capaz, Heat pumping in nanomechanical systems, Phys. Rev. Lett. 106(13), 135504 (2011)
https://doi.org/10.1103/PhysRevLett.106.135504
18 R. Marathe, A. M. Jayannavar, and A. Dhar, Two simple models of classical heat pumps, Phys. Rev. E 75(3), 030103 (2007)
https://doi.org/10.1103/PhysRevE.75.030103
19 D. Segal, Stochastic pumping of heat: Approaching the Carnot efficiency, Phys. Rev. Lett. 101(26), 260601 (2008)
https://doi.org/10.1103/PhysRevLett.101.260601
20 J. Ren and B. Li, Emergence and control of heat current from strict zero thermal bias, Phys. Rev. E 81(2), 021111 (2010)
https://doi.org/10.1103/PhysRevE.81.021111
21 J. Ren, P. Hänggi, and B. Li, Berry-phase-induced heat pumping and its impact on the fluctuation theorem, Phys. Rev. Lett. 104(17), 170601 (2010)
https://doi.org/10.1103/PhysRevLett.104.170601
22 J. Ren, S. Liu, and B. Li, Geometric heat flux for classical thermal transport in interacting open systems, Phys. Rev. Lett. 108(21), 210603 (2012)
https://doi.org/10.1103/PhysRevLett.108.210603
23 T. Chen, X. B. Wang, and J. Ren, Dynamic control of quantum geometric heat flux in a nonequilibrium spin-boson model, Phys. Rev. B 87(14), 144303 (2013)
https://doi.org/10.1103/PhysRevB.87.144303
24 C. Wang, J. Ren, and J. Cao, Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics, Phys. Rev. A 95(2), 023610 (2017)
https://doi.org/10.1103/PhysRevA.95.023610
25 J. Ohkubo, The stochastic pump current and the nonadiabatic geometrical phase, J. Stat. Mech. 2008(02), P02011 (2008)
https://doi.org/10.1088/1742-5468/2008/02/P02011
26 C. Uchiyama, Nonadiabatic effect on the quantum heat flux control, Phys. Rev. E 89(5), 052108 (2014)
https://doi.org/10.1103/PhysRevE.89.052108
27 D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Tor-rontegui, S. Martínez-Garaot, and J. G. Muga, Shortcuts to adiabaticity: Concepts, methods, and applications, Rev. Mod. Phys. 91(4), 045001 (2019)
https://doi.org/10.1103/RevModPhys.91.045001
28 D. d’Alessandro, Introduction to Quantum Control and Dynamics, CRC Press, 2007
29 K. Funo, N. Lambert, F. Nori, and C. Flindt, Shortcuts to adiabatic pumping in classical stochastic systems, Phys. Rev. Lett. 124(15), 150603 (2020)
https://doi.org/10.1103/PhysRevLett.124.150603
30 K. Takahashi, K. Fujii, Y. Hino, and H. Hayakawa, Nona-diabatic control of geometric pumping, Phys. Rev. Lett. 124(15), 150602 (2020)
https://doi.org/10.1103/PhysRevLett.124.150602
31 A. Kamenev, Field Theory of Non-Equilibrium Systems, Cambridge University Press, 2011
32 L. S. Levitov and G. B. Lesovik, Charge distribution in quantum shot noise, JETP Lett. 58, 230 (1993)
33 P. L. Kelley and W. H. Kleiner, Theory of electromagnetic field measurement and photoelectron counting, Phys. Rev. 136(2A), A316 (1964)
https://doi.org/10.1103/PhysRev.136.A316
34 C. W. Gardiner and P. Zoller, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Op-tics, Springer Science & Business Media, 2004
35 D. Andrieux and P. Gaspard, A fluctuation theorem for currents and non-linear response coefficients, J. Stat. Mech. 2007(02), P02006 (2007)
https://doi.org/10.1088/1742-5468/2007/02/P02006
36 P. Stegmann, J. König, and S. Weiss, Coherent dynamics in stochastic systems revealed by full counting statistics, Phys. Rev. B 98(3), 035409 (2018)
https://doi.org/10.1103/PhysRevB.98.035409
37 M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys. 81(4), 1665 (2009)
https://doi.org/10.1103/RevModPhys.81.1665
38 M. Campisi, P. Hänggi, and P. Talkner, Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys. 83(3), 771 (2011)
https://doi.org/10.1103/RevModPhys.83.771
39 R. J. Harris and G. M. Schütz, Fluctuation theorems for stochastic dynamics, J. Stat. Mech. 2007(07), P07020 (2007)
https://doi.org/10.1088/1742-5468/2007/07/P07020
40 P. Talkner, E. Lutz, and P. Hänggi, Fluctuation theorems: Work is not an observable, Phys. Rev. E 75(5), 050102 (2007)
https://doi.org/10.1103/PhysRevE.75.050102
41 W. De Roeck and C. Maes, Quantum version of free-energy–irreversible-work relations, Phys. Rev. E 69(2), 026115 (2004)
https://doi.org/10.1103/PhysRevE.69.026115
42 M. Esposito and S. Mukamel, Fluctuation theorems for quantum master equations, Phys. Rev. E 73(4), 046129 (2006)
https://doi.org/10.1103/PhysRevE.73.046129
43 P. Talkner and P. Hänggi, Statistical mechanics and ther-modynamics at strong coupling: Quantum and classical, Rev. Mod. Phys. 92(4), 041002 (2020)
https://doi.org/10.1103/RevModPhys.92.041002
44 M. Silaev, T. T. Heikkilä, and P. Virtanen, Lindblad-equation approach for the full counting statistics of work and heat in driven quantum systems, Phys. Rev. E 90(2), 022103 (2014)
https://doi.org/10.1103/PhysRevE.90.022103
45 C. W. Gardiner, et al., Handbook of Stochastic Methods, Vol. 3, Springer Berlin, 1985
46 S. Larocque, E. Pinsolle, C. Lupien, and B. Reulet, Shot noise of a temperature-biased tunnel junction, Phys. Rev. Lett. 125(10), 106801 (2020)
https://doi.org/10.1103/PhysRevLett.125.106801
47 O. Maillet, P. A. Erdman, V. Cavina, B. Bhandari, E. T. Mannila, J. T. Peltonen, A. Mari, F. Taddei, C. Jarzyn-ski, V. Giovannetti, and J. P. Pekola, Optimal probabilis-tic work extraction beyond the free energy difference with a single-electron device, Phys. Rev. Lett. 122(15), 150604 (2019)
https://doi.org/10.1103/PhysRevLett.122.150604
48 Y. Aharonov and J. Anandan, Phase change during a cyclic quantum evolution, Phys. Rev. Lett. 58(16), 1593 (1987)
https://doi.org/10.1103/PhysRevLett.58.1593
49 R. Resta, The insulating state of matter: A geometrical theory, Eur. Phys. J. B 79(2), 121 (2011)
https://doi.org/10.1140/epjb/e2010-10874-4
50 J. Ren, The third way of thermal-electric conversion be-yond Seebeck and pyroelectric effects, arXiv: 1402.3645 (2014)
https://doi.org/10.2172/1120714
51 N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84(3), 1045 (2012)
https://doi.org/10.1103/RevModPhys.84.1045
52 M. Josefsson, A. Svilans, A. M. Burke, E. A. Hoffmann, S. Fahlvik, C. Thelander, M. Leijnse, and H. Linke, A quantum-dot heat engine operating close to the thermo-dynamic efficiency limits, Nat. Nanotechnol. 13(10), 920 (2018)
https://doi.org/10.1038/s41565-018-0200-5
53 S. Seah, S. Nimmrichter, and V. Scarani, Maxwell’s lesser demon: A quantum engine driven by pointer measure-ments, Phys. Rev. Lett. 124(10), 100603 (2020)
https://doi.org/10.1103/PhysRevLett.124.100603
54 P. Abiuso and M. Perarnau-Llobet, Optimal cycles for low-dissipation heat engines, Phys. Rev. Lett. 124(11), 110606 (2020)
https://doi.org/10.1103/PhysRevLett.124.110606
55 A. Marcos-Vicioso, C. Löpez-Jurado, M. Ruiz-Garcia, and R. Sánchez, Thermal rectification with interacting elec-tronic channels: Exploiting degeneracy, quantum super-positions, and interference, Phys. Rev. B 98(3), 035414 (2018)
https://doi.org/10.1103/PhysRevB.98.035414
56 W. Nie, G. Li, X. Li, A. Chen, Y. Lan, and S. Y. Zhu, Berry-phase-like effect of thermo-phonon transport in optomechanics, Phys. Rev. A 102(4), 043512 (2020)
https://doi.org/10.1103/PhysRevA.102.043512
57 H. Touchette, The large deviation approach to statistical mechanics, Phys. Rep. 478(1–3), 1 (2009)
https://doi.org/10.1016/j.physrep.2009.05.002
58 A. Dhar, Heat transport in low-dimensional systems, Adv. Phys. 57(5), 457 (2008)
https://doi.org/10.1080/00018730802538522
59 D. Torrent, O. Poncelet, and J. C. Batsale, Nonrecipro-cal thermal material by spatiotemporal modulation, Phys. Rev. Lett. 120(12), 125501 (2018)
https://doi.org/10.1103/PhysRevLett.120.125501
60 D. Segal and A. Nitzan, Molecular heat pump, Phys. Rev. E 73(2), 026109 (2006)
https://doi.org/10.1103/PhysRevE.73.026109
61 L. Arrachea, E. R. Mucciolo, C. Chamon, and R. B. Capaz, Microscopic model of a phononic refrigerator, Phys. Rev. B 86(12), 125424 (2012)
https://doi.org/10.1103/PhysRevB.86.125424
62 N. Li and B. Li, Temperature dependence of thermal con-ductivity in 1D nonlinear lattices, EPL 78(3), 34001 (2007)
https://doi.org/10.1209/0295-5075/78/34001
63 H. Li, L. J. Fernández-Alcázar, F. Ellis, B. Shapiro, and T. Kottos, Adiabatic thermal radiation pumps for thermal photonics, Phys. Rev. Lett. 123(16), 165901 (2019)
https://doi.org/10.1103/PhysRevLett.123.165901
64 B. Bhandari, P. T. Alonso, F. Taddei, F. von Oppen, R. Fazio, and L. Arrachea, Geometric properties of adiabatic quantum thermal machines, Phys. Rev. B 102(15), 155407 (2020)
https://doi.org/10.1103/PhysRevB.102.155407
65 L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Non-relativistic Theory, Vol. 3, Elsevier, 2013
66 J. Ohkubo and T. Eggel, Noncyclic and nonadiabatic ge-ometric phase for counting statistics, J. Phys. A Math. Theor. 43(42), 425001 (2010)
https://doi.org/10.1088/1751-8113/43/42/425001
67 T. Harada and S. I. Sasa, Equality connecting energy dissi-pation with a violation of the fluctuation-response relation, Phys. Rev. Lett. 95(13), 130602 (2005)
https://doi.org/10.1103/PhysRevLett.95.130602
68 E. Lippiello, M. Baiesi, and A. Sarracino, Nonequilib-rium fluctuation-dissipation theorem and heat production, Phys. Rev. Lett. 112(14), 140602 (2014)
https://doi.org/10.1103/PhysRevLett.112.140602
69 A. del Campo, Shortcuts to adiabaticity by counterdia-batic driving, Phys. Rev. Lett. 111(10), 100502 (2013)
https://doi.org/10.1103/PhysRevLett.111.100502
70 M. Kolodrubetz, D. Sels, P. Mehta, and A. Polkovnikov, Geometry and non-adiabatic response in quantum and classical systems, Phys. Rep. 697, 1 (2017)
https://doi.org/10.1016/j.physrep.2017.07.001
71 H. Risken, in: The Fokker–Planck Equation, Springer, 1996
https://doi.org/10.1007/978-3-642-61544-3_4
72 J. Kurchan, Fluctuation theorem for stochastic dynamics, J. Phys. Math. Gen. 31(16), 3719 (1998)
https://doi.org/10.1088/0305-4470/31/16/003
73 M. Carrega, P. Solinas, A. Braggio, M. Sassetti, and U. Weiss, Functional integral approach to time-dependent heat exchange in open quantum systems: General method and applications, New J. Phys. 17(4), 045030 (2015)
https://doi.org/10.1088/1367-2630/17/4/045030
74 H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Topo-logical energy transfer in an optomechanical system with exceptional points, Nature 537(7618), 80 (2016)
https://doi.org/10.1038/nature18604
75 C. Wang, L. Q. Wang, and J. Ren, Managing quantum heat transfer in a nonequilibrium qubit-phonon hybrid system with coherent phonon states, Chin. Phys. Lett. 38(1), 010501 (2021)
https://doi.org/10.1088/0256-307X/38/1/010501
76 S. K. Giri and H. P. Goswami, Geometric phase-like effects in a quantum heat engine, Phys. Rev. E 96(5), 052129 (2017)
https://doi.org/10.1103/PhysRevE.96.052129
77 Y. Hino and H. Hayakawa, Geometrical Formulation of Adiabatic Pumping as a Heat Engine, Phys. Rev. Research 3(1), 013187 (2021)
https://doi.org/10.1103/PhysRevResearch.3.013187
78 K. Brandner and K. Saito, Thermodynamic geometry of microscopic heat engines, Phys. Rev. Lett. 124(4), 040602 (2020)
https://doi.org/10.1103/PhysRevLett.124.040602
79 T. Sagawa and H. Hayakawa, Geometrical expression of excess entropy production, Phys. Rev. E 84(5), 051110 (2011)
https://doi.org/10.1103/PhysRevE.84.051110
80 N. Shiraishi, K. Saito, and H. Tasaki, Universal tradeoff relation between power and efficiency for heat engines, Phys. Rev. Lett. 117(19), 190601 (2016)
https://doi.org/10.1103/PhysRevLett.117.190601
81 J. M. Horowitz and T. R. Gingrich, Thermodynamic uncertainty relations constrain non-equilibrium fluctuations, Nat. Phys. 16(1), 15 (2020)
https://doi.org/10.1038/s41567-019-0702-6
82 K. Sekimoto, Microscopic heat from the energetics of stochastic phenomena, Phys. Rev. E 76(6), 060103 (2007)
https://doi.org/10.1103/PhysRevE.76.060103
83 R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, Vol. 31, Springer Science & Business Media, 2012
[1] Aviv Karnieli, Yongyao Li, Ady Arie. The geometric phase in nonlinear frequency conversion[J]. Front. Phys. , 2022, 17(1): 12301-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed