Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (2) : 21502    https://doi.org/10.1007/s11467-021-1108-3
RESEARCH ARTICLE
Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms
Shuai Liu1,2, Jun-Hui Shen3,1(), Ri-Hua Zheng1,2, Yi-Hao Kang1,2, Zhi-Cheng Shi1,2, Jie Song4, Yan Xia1,2
1. Fujian Key Laboratory of Quantum Information and Quantum Optics (Fuzhou University), Fuzhou 350116, China
2. Department of Physics, Fuzhou University, Fuzhou 350116, China
3. School of Rail Transportation, Fujian Chuanzheng Communications College, Fuzhou 350007, China
4. Department of Physics, Harbin Institute of Technology, Harbin 150001, China
 Download: PDF(1583 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we propose a scheme for implementing the nonadiabatic holonomic quantum computation (NHQC+) of two Rydberg atoms by using invariant-based reverse engineering (IBRE). The scheme is based on Förster resonance induced by strong dipole–dipole interaction between two Rydberg atoms, which provides a selective coupling mechanism to simply the dynamics of system. Moreover, for improving the fidelity of the scheme, the optimal control method is introduced to enhance the gate robustness against systematic errors. Numerical simulations show the scheme is robust against the random noise in control fields, the deviation of dipole–dipole interaction, the Förster defect, and the spontaneous emission of atoms. Therefore, the scheme may provide some useful perspectives for the realization of quantum computation with Rydberg atoms.

Keywords nonadiabatic holonomic quantum computation      reverse engineering      Förster resonance     
Corresponding Author(s): Jun-Hui Shen,Yan Xia   
Issue Date: 30 August 2021
 Cite this article:   
Shuai Liu,Jun-Hui Shen,Ri-Hua Zheng, et al. Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms[J]. Front. Phys. , 2022, 17(2): 21502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1108-3
https://academic.hep.com.cn/fop/EN/Y2022/V17/I2/21502
1 L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79(2), 325 (1997)
https://doi.org/10.1103/PhysRevLett.79.325
2 G. L. Long, Grover algorithm with zero theoretical failure rate, Phys. Rev. A 64(2), 022307 (2001)
https://doi.org/10.1103/PhysRevA.64.022307
3 B. Paredes, F. Verstraete, and J. I. Cirac, Exploiting quantum parallelism to simulate quantum random many-body systems, Phys. Rev. Lett.95(14), 140501 (2005)
https://doi.org/10.1103/PhysRevLett.95.140501
4 Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, and C. P. Yang, One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14(2), 21602 (2019)
https://doi.org/10.1007/s11467-018-0875-y
5 H. Fan and X. Zhu, 12 superconducting qubits for quantum walks, Front. Phys. 14(6), 61201 (2019)
https://doi.org/10.1007/s11467-019-0915-2
6 E. Sjöqvist, D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, and K. Singh, Non-adiabatic holonomic quantum computation, New J. Phys.14(10), 103035 (2012)
https://doi.org/10.1088/1367-2630/14/10/103035
7 G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, Nonadiabatic holonomic quantum computation in decoherence-free subspaces, Phys. Rev. Lett. 109(17), 170501 (2012)
https://doi.org/10.1103/PhysRevLett.109.170501
8 P. Z. Zhao, G. F. Xu, and D. M. Tong, Nonadiabatic holonomic multiqubit controlled gates, Phys. Rev. A 99(5), 052309 (2019)
https://doi.org/10.1103/PhysRevA.99.052309
9 P. Z. Zhao, K. Z. Li, G. F. Xu, and D. M. Tong, General approach for constructing Hamiltonians for nonadiabatic holonomic quantum computation, Phys. Rev. A 101(6), 062306 (2020)
https://doi.org/10.1103/PhysRevA.101.062306
10 T. H. Xing, X. Wu, and G. F. Xu, Nonadiabatic holonomic three-qubit controlled gates realized by one-shot implementation, Phys. Rev. A 101(1), 012306 (2020)
https://doi.org/10.1103/PhysRevA.101.012306
11 P. Z. Zhao, X. Wu, T. H. Xing, G. F. Xu, and D. M. Tong, Nonadiabatic holonomic quantum computation with Rydberg superatoms, Phys. Rev. A 98(3), 032313 (2018)
https://doi.org/10.1103/PhysRevA.98.032313
12 G. F. Xu, P. Z. Zhao, T. H. Xing, E. Sjöqvist, and D. M. Tong, Composite nonadiabatic holonomic quantum computation, Phys. Rev. A 95(3), 032311 (2017)
https://doi.org/10.1103/PhysRevA.95.032311
13 T. Chen, J. Zhang, and Z. Y. Xue, Nonadiabatic holonomic quantum computation on coupled transmons with ancillaries, Phys. Rev. A 98(5), 052314 (2018)
https://doi.org/10.1103/PhysRevA.98.052314
14 Y. Xu, Z. Hua, T. Chen, X. Pan, X. Li, J. Han, W. Cai, Y. Ma, H. Wang, Y. P. Song, Z. Y. Xue, and L. Sun, Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit, Phys.Rev. Lett. 124(23), 230503 (2020)
https://doi.org/10.1103/PhysRevLett.124.230503
15 S. Li, P. Shen, T. Chen, and Z. Y. Xue, Noncyclic nonadiabatic holonomic quantum gates via shortcuts to adiabaticity, Front. Phys. 16(5), 51502 (2021)
https://doi.org/10.1007/s11467-021-1087-4
16 B. J. Liu, X. K. Song, Z. Y. Xue, X. Wang, and M. H. Yung, Plug-and-play approach to nonadiabatic geometric quantum gates, Phys. Rev. Lett. 123(10), 100501 (2019)
https://doi.org/10.1103/PhysRevLett.123.100501
17 M. V. Berry, Transitionless quantum driving, J. Phys. A42(36), 365303 (2009)
https://doi.org/10.1088/1751-8113/42/36/365303
18 X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, Shortcut to adiabatic passage in two- and three-level atoms, Phys. Rev. Lett. 105(12), 123003 (2010)
https://doi.org/10.1103/PhysRevLett.105.123003
19 A. del Campo, Shortcuts to adiabaticity by counterdiabatic driving, Phys. Rev. Lett. 111(10), 100502 (2013)
https://doi.org/10.1103/PhysRevLett.111.100502
20 S. Qi and J. Jing, Berry-phase-based quantum gates assisted by transitionless quantum driving, J. Opt. Soc. Am. B 37(3), 682 (2020)
https://doi.org/10.1364/JOSAB.381706
21 K. Khodjasteh and D. A. Lidar, Fault-tolerant quantum dynamical decoupling, Phys. Rev. Lett. 95(18), 180501 (2005)
https://doi.org/10.1103/PhysRevLett.95.180501
22 A. M. Souza, G. A. Álvarez, and D. Suter, Robust dynamical decoupling for quantum computing and quantum memory, Phys. Rev. Lett. 106(24), 240501 (2011)
https://doi.org/10.1103/PhysRevLett.106.240501
23 G. T. Genov, D. Schraft, N. V. Vitanov, and T. Halfmann, Arbitrarily accurate pulse sequences for robust dynamical decoupling, Phys. Rev. Lett. 118(13), 133202 (2017)
https://doi.org/10.1103/PhysRevLett.118.133202
24 D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin, Robust quantum control by a single-shot shaped pulse, Phys. Rev. Lett. 111(5), 050404 (2013)
https://doi.org/10.1103/PhysRevLett.111.050404
25 X. T. Yu, Q. Zhang, Y. Ban, and X. Chen, Fast and robust control of two interacting spins, Phys. Rev. A 97(6), 062317 (2018)
https://doi.org/10.1103/PhysRevA.97.062317
26 H. R. Jr Lewis and W. B. Riesenfeld, An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time‐dependent electromagnetic field, J. Math. Phys. 10(8), 1458 (1969)
https://doi.org/10.1063/1.1664991
27 X. Chen, E. Torrontegui, and J. G. Muga, Lewis– Riesenfeld invariants and transitionless quantum driving, Phys. Rev. A 83(6), 062116 (2011)
https://doi.org/10.1103/PhysRevA.83.062116
28 S. Li, T. Chen, and Z. Y. Xue, Fast holonomic quantum computation on superconducting circuits with optimal control, Adv. Quantum Technol. 3(3), 2000001 (2020)
https://doi.org/10.1002/qute.202000001
29 T. Yan, B. J. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. H. Yung, Y. Chen, and D. Yu, Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates, Phys. Rev. Lett. 122(8), 080501 (2019)
https://doi.org/10.1103/PhysRevLett.122.080501
30 J. Xu, S. Li, T. Chen, and Z. Y. Xue, Nonadiabatic geometric quantum computation with optimal control on superconducting circuits, Front. Phys. 15(4), 41503 (2020)
https://doi.org/10.1007/s11467-020-0976-2
31 Y. H. Kang, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, Flexible scheme for the implementation of nonadiabatic geometric quantum computation, Phys. Rev. A 101(3), 032322 (2020)
https://doi.org/10.1103/PhysRevA.101.032322
32 C. Zhang, T. Chen, S. Li, X. Wang, and Z. Y. Xue, Highfidelity geometric gate for silicon-based spin qubits, Phys. Rev. A 101(5), 052302 (2020)
https://doi.org/10.1103/PhysRevA.101.052302
33 C. Y. Guo, L. L. Yan, S. Zhang, S. L. Su, and W. Li, Optimized geometric quantum computation with a mesoscopic ensemble of Rydberg atoms, Phys. Rev. A 102(4), 042607 (2020)
https://doi.org/10.1103/PhysRevA.102.042607
34 Y. H. Kang, Z. C. Shi, J. Song, and Y. Xia, Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade, Phys. Rev. A 102(2), 022617 (2020)
https://doi.org/10.1103/PhysRevA.102.022617
35 B. J. Liu, S. L. Su, and M. H. Yung, Nonadiabatic noncyclic geometric quantum computation in Rydberg atoms, Phys. Rev. Research 2(4), 043130 (2020)
https://doi.org/10.1103/PhysRevResearch.2.043130
36 T. Chen, P. Shen, and Z. Y. Xue, Robust and fast holonomic quantum gates with encoding on superconducting circuits, Phys. Rev. Appl. 14(3), 034038 (2020)
https://doi.org/10.1103/PhysRevApplied.14.034038
37 M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010)
https://doi.org/10.1103/RevModPhys.82.2313
38 E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, Observation of Rydberg blockade between two atoms, Nat. Phys. 5(2), 110 (2009)
https://doi.org/10.1038/nphys1178
39 A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime, Nat. Phys. 5(2), 115 (2009)
https://doi.org/10.1038/nphys1183
40 D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, and C. S. Adams, Coherent excitation transfer in a spin chain of three Rydberg atoms, Phys. Rev. Lett. 114(11), 113002 (2015)
https://doi.org/10.1103/PhysRevLett.114.113002
41 S. L. Su, Y. Gao, E. Liang, and S. Zhang, Fast Rydberg antiblockade regime and its applications in quantum logic gates, Phys. Rev. A 95(2), 022319 (2017)
https://doi.org/10.1103/PhysRevA.95.022319
42 Y. H. Kang, Y. H. Chen, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, Nonadiabatic holonomic quantum computation using Rydberg blockade, Phys. Rev. A 97(4), 042336 (2018)
https://doi.org/10.1103/PhysRevA.97.042336
43 S. L. Su, H. Z. Shen, E. Liang, and S. Zhang, One-step construction of the multiple-qubit Rydberg controlled-phase gate, Phys. Rev. A 98(3), 032306 (2018)
https://doi.org/10.1103/PhysRevA.98.032306
44 D. X. Li and X. Q. Shao, Directional quantum state transfer in a dissipative Rydberg-atom-cavity system, Phys. Rev. A 99(3), 032348 (2019)
https://doi.org/10.1103/PhysRevA.99.032348
45 Y. H. Chen, Z. C. Shi, J. Song, Y. Xia, and S. B. Zheng, Accelerated and noise-resistant generation of highfidelity steady-state entanglement with Rydberg atoms, Phys. Rev. A 97(3), 032328 (2018)
https://doi.org/10.1103/PhysRevA.97.032328
46 R. H. Zheng, Y. H. Kang, D. Ran, Z. C. Shi, and Y. Xia, Deterministic interconversions between the Greenberger– Horne–Zeilinger states and the W states by invariant-based pulse design, Phys. Rev. A 101(1), 012345 (2020)
https://doi.org/10.1103/PhysRevA.101.012345
47 R. H. Zheng, Y. H. Kang, S. L. Su, J. Song, and Y. Xia, Robust and high-fidelity nondestructive Rydberg parity meter, Phys. Rev. A 102(1), 012609 (2020)
https://doi.org/10.1103/PhysRevA.102.012609
48 S. L. Su, F. Q. Guo, L. Tian, X. Y. Zhu, L. L. Yan, E. J. Liang, and M. Feng, Nondestructive Rydberg parity meter and its applications, Phys. Rev. A 101(1), 012347 (2020)
https://doi.org/10.1103/PhysRevA.101.012347
49 X. F. Shi, Rydberg quantum computation with nuclear spins in two-electron neutral atoms, Front. Phys. 16(5), 52501 (2021)
https://doi.org/10.1007/s11467-021-1069-6
50 R. H. Zheng, Y. Xiao, S. L. Su, Y. H. Chen, Z. C. Shi, J. Song, Y. Xia, and S. B. Zheng, Fast and dephasing-tolerant preparation of steady Knill–Laflamme–Milburn states via dissipative Rydberg pumping, Phys. Rev. A 103(5), 052402 (2021)
https://doi.org/10.1103/PhysRevA.103.052402
51 H. D. Yin, X. X. Li, G. C. Wang, and X. Q. Shao, Onestep implementation of Toffoli gate for neutral atoms based on unconventional Rydberg pumping, Opt. Express 28(24), 35576 (2020)
https://doi.org/10.1364/OE.410158
52 D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, Fast quantum gates for neutral atoms, Phys. Rev. Lett. 85(10), 2208 (2000)
https://doi.org/10.1103/PhysRevLett.85.2208
53 M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Phys. Rev. Lett. 87(3), 037901 (2001)
https://doi.org/10.1103/PhysRevLett.87.037901
54 C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Antiblockade in Rydberg excitation of an ultracold lattice gas, Phys. Rev. Lett. 98(2), 023002 (2007)
https://doi.org/10.1103/PhysRevLett.98.023002
55 T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, Evidence of antiblockade in an ultracold Rydberg gas, Phys. Rev. Lett. 104(1), 013001 (2010)
https://doi.org/10.1103/PhysRevLett.104.013001
56 S. L. Su, Y. Tian, H. Z. Shen, H. Zang, E. Liang, and S. Zhang, Applications of the modified Rydberg antiblockade regime with simultaneous driving, Phys. Rev. A 96(4), 042335 (2017)
https://doi.org/10.1103/PhysRevA.96.042335
57 M. M. Müller, M. Murphy, S. Montangero, T. Calarco, P. Grangier, and A. Browaeys, Implementation of an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms, Phys. Rev. A 89(3), 032334 (2014)
https://doi.org/10.1103/PhysRevA.89.032334
58 T. Keating, R. L. Cook, A. M. Hankin, Y. Y. Jau, G. W. Biedermann, and I. H. Deutsch, Robust quantum logic in neutral atoms via adiabatic Rydberg dressing, Phys. Rev. A 91(1), 012337 (2015)
https://doi.org/10.1103/PhysRevA.91.012337
59 A. Mitra, M. J. Martin, G. W. Biedermann, A. M. Marino, P. M. Poggi, and I. H. Deutsch, Robust Mølmer–Sørensen gate for neutral atoms using rapid adiabatic Rydberg dressing, Phys. Rev. A 101(3), 030301 (2020)
https://doi.org/10.1103/PhysRevA.101.030301
60 X. R. Huang, Z. X. Ding, C. S. Hu, L. T. Shen, W. Li, H. Wu, and S. B. Zheng, Robust Rydberg gate via Landau– Zener control of Förster resonance, Phys. Rev. A 98(5), 052324 (2018)
https://doi.org/10.1103/PhysRevA.98.052324
61 I. I. Beterov, G. N. Hamzina, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, and I. I. Ryabtsev, Adiabatic passage of radio-frequency-assisted Förster resonances in Rydberg atoms for two-qubit gates and the generation of Bell states, Phys. Rev. A 97(3), 032701 (2018)
https://doi.org/10.1103/PhysRevA.97.032701
62 T. Förster, Zwischenmolekulare energiewanderung und fluoreszenz, Ann. Phys. 437(1–2), 55 (1948)
https://doi.org/10.1002/andp.19484370105
63 I. I. Ryabtsev, D. B. Tretyakov, I. I. Beterov, and V. M. Entin, Observation of the stark-tuned Förster resonance between two Rydberg atoms, Phys. Rev. Lett. 104(7), 073003 (2010)
https://doi.org/10.1103/PhysRevLett.104.073003
64 H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Büchler, I. Lesanovsky, and S. Hofferberth, Enhancement of Rydberg-mediated singlephoton nonlinearities by electrically tuned Förster Resonances, Nat. Commun. 7, 12480 (2016)
https://doi.org/10.1038/ncomms12480
65 S. Ravets, H. Labuhn, D. Barredo, L. Béguin, T. Lahaye, and A. Browaeys, Coherent dipole–dipole coupling between two single Rydberg atoms at an electrically-tuned Förster resonance, Nat. Phys. 10(12), 914 (2014)
https://doi.org/10.1038/nphys3119
66 H. Z. Wu, Z. B. Yang, and S. B. Zheng, Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade, Phys. Rev. A 82(3), 034307 (2010)
https://doi.org/10.1103/PhysRevA.82.034307
67 X. Q. Shao, Selective Rydberg pumping via strong dipole blockade, Phys. Rev. A 102(5), 053118 (2020)
https://doi.org/10.1103/PhysRevA.102.053118
68 I. I. Beterov, M. Saffman, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, S. Bergamini, E. A. Kuznetsova, and I. I. Ryabtsev, Two-qubit gates using adiabatic passage of the Stark-tuned Förster resonances in Rydberg atoms, Phys. Rev. A 94(6), 062307 (2016)
https://doi.org/10.1103/PhysRevA.94.062307
69 I. I. Beterov, I. N. Ashkarin, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, I. I. Ryabtsev, P. Cheinet, P. Pillet, and M. Saffman, Fast three-qubit Toffoli quantum gate based on three-body Förster resonances in Rydberg atoms, Phys. Rev. A 98(4), 042704 (2018)
https://doi.org/10.1103/PhysRevA.98.042704
70 D. X. Li and X. Q. Shao, Unconventional Rydberg pumping and applications in quantum information processing, Phys. Rev. A 98(6), 062338 (2018)
https://doi.org/10.1103/PhysRevA.98.062338
71 W. Li, P. J. Tanner, and T. F. Gallagher, Dipole–dipole excitation and ionization in an ultracold gas of Rydberg atoms, Phys. Rev. Lett. 94(17), 173001 (2005)
https://doi.org/10.1103/PhysRevLett.94.173001
72 T. Amthor, M. Reetz-Lamour, S. Westermann, J. Denskat, and M. Weidemüller, Mechanical effect of van der Waals interactions observed in real time in an ultracold Rydberg gas, Phys. Rev. Lett. 98(2), 023004 (2007)
https://doi.org/10.1103/PhysRevLett.98.023004
73 T. Amthor, M. Reetz-Lamour, C. Giese, and M. Weidemüller, Modeling many-particle mechanical effects of an interacting Rydberg gas, Phys. Rev. A76(5), 054702 (2007)
https://doi.org/10.1103/PhysRevA.76.054702
74 A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, Optimally robust shortcuts to population inversion in two-level quantum systems, New J. Phys. 14(9), 093040 (2012)
https://doi.org/10.1088/1367-2630/14/9/093040
75 T. G. Walker and M. Saffman, Zeros of Rydberg–Rydberg Föster interactions, J. Phys. B 38(2), S309 (2005)
https://doi.org/10.1088/0953-4075/38/2/022
76 T. G. Walker and M. Saffman, Consequences of Zeeman degeneracy for the van der Waals blockade between Rydberg atoms, Phys. Rev. A 77(3), 032723 (2008)
https://doi.org/10.1103/PhysRevA.77.032723
77 D. F. James and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys.85(6), 625 (2007)
https://doi.org/10.1139/p07-060
78 S. Ravets, H. Labuhn, D. Barredo, T. Lahaye, and A. Browaeys, Measurement of the angular dependence of the dipole–dipole interaction between two individual Rydberg atoms at a Förster resonance, Phys. Rev. A 92(2), 020701 (2015)
https://doi.org/10.1103/PhysRevA.92.020701
79 P. Zanardi and D. A. Lidar, Purity and state fidelity of quantum channels, Phys. Rev. A 70(1), 012315 (2004)
https://doi.org/10.1103/PhysRevA.70.012315
80 L. H. Pedersen, N. M. Møller, and K. Mølmer, Fidelity of quantum operations, Phys. Lett. A 367(1–2), 47 (2007)
https://doi.org/10.1016/j.physleta.2007.02.069
81 Z. Y. Xue, J. Zhou, and Z. D. Wang, Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits, Phys. Rev. A 92(2), 022320 (2015)
https://doi.org/10.1103/PhysRevA.92.022320
82 Z. Y. Xue, J. Zhou, Y. M. Chu, and Y. Hu, Nonadiabatic holonomic quantum computation with all-resonant control, Phys. Rev. A 94(2), 022331 (2016)
https://doi.org/10.1103/PhysRevA.94.022331
83 Z. Y. Xue, F. L. Gu, Z. P. Hong, Z. H. Yang, D. W. Zhang, Y. Hu, and J. Q. You, Nonadiabatic holonomic quantum computation with dressed-state qubits, Phys. Rev. Appl.7(5), 054022 (2017)
https://doi.org/10.1103/PhysRevApplied.7.054022
84 P. Z. Zhao, X. D. Cui, G. F. Xu, E. Sjöqvist, and D. M. Tong, Rydberg-atom-based scheme of nonadiabatic geometric quantum computation, Phys. Rev. A 96(5), 052316 (2017)
https://doi.org/10.1103/PhysRevA.96.052316
85 Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Q. Yin, and L. Sun, Single-loop realization of arbitrary nonadiabatic holonomic singlequbit quantum gates in a superconducting circuit, Phys. Rev. Lett. 121(11), 110501 (2018)
https://doi.org/10.1103/PhysRevLett.121.110501
86 M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Realization of three-qubit quantum error correction with superconducting circuits, Nature 482(7385), 382 (2012)
https://doi.org/10.1038/nature10786
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed