|
|
Biorthogonal quantum criticality in non-Hermitian many-body systems |
Gaoyong Sun1,2( ), Jia-Chen Tang1,2, Su-Peng Kou3( ) |
1. College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China 2. Key Laboratory of Aerospace Information Materials and Physics(Nanjing University of Aeronautics and Astronautics), MIIT, Nanjing 211106, China 3. Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China |
|
|
Abstract We develop the perturbation theory of the fidelity susceptibility in biorthogonal bases for arbitrary interacting non-Hermitian many-body systems with real eigenvalues. The quantum criticality in the non-Hermitian transverse field Ising chain is investigated by the second derivative of the ground-state energy and the ground-state fidelity susceptibility. We show that the system undergoes a second-order phase transition with the Ising universal class by numerically computing the critical points and the critical exponents from the finite-size scaling theory. Interestingly, our results indicate that the biorthogonal quantum phase transitions are described by the biorthogonal fidelity susceptibility instead of the conventional fidelity susceptibility.
|
Keywords
biorthogonal quantum criticality
non-Hermitian systems
fidelity susceptibility
|
Corresponding Author(s):
Gaoyong Sun,Su-Peng Kou
|
Issue Date: 23 November 2021
|
|
1 |
S. Sachdev , Quantum Phase Transitions, Cambridge University Press, 1999
|
2 |
M. Levin and X. G. Wen , Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96 (11), 110405 (2006)
https://doi.org/10.1103/PhysRevLett.96.110405
|
3 |
M. E. Fisher and M. N. Barber , Scaling theory for finitesize effects in the critical region, Phys. Rev. Lett. 28, 1516 (1972)
https://doi.org/10.1103/PhysRevLett.28.1516
|
4 |
M. E. Fisher , The renormalization group in the theory of critical behavior, Rev. Mod. Phys. 46 (4), 597 (1974)
https://doi.org/10.1103/RevModPhys.46.597
|
5 |
E. J. Bergholtz , J. C. Budich , and F. K. Kunst , Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93 (1), 015005 (2021)
https://doi.org/10.1103/RevModPhys.93.015005
|
6 |
Y. Ashida , Z. Gong , and M. Ueda , Non-Hermitian physics, Adv. Phys. 69 (3), 249 (2020)
https://doi.org/10.1080/00018732.2021.1876991
|
7 |
T. E. Lee , Anomalous edge state in a non-Hermitian lattice, Phys. Rev. Lett. 116 (13), 133903 (2016)
https://doi.org/10.1103/PhysRevLett.116.133903
|
8 |
S. Yao , and Z. Wang , Edge states and topological invariants of non-Hermitian systems, Phys. Rev. Lett. 121 (8), 086803 (2018)
https://doi.org/10.1103/PhysRevLett.121.086803
|
9 |
F. K. Kunst , E. Edvardsson , J. C. Budich , and E. J. Bergholtz , Biorthogonal bulk-boundary correspondence in non-Hermitian systems, Phys. Rev. Lett. 121 (2), 026808 (2018)
https://doi.org/10.1103/PhysRevLett.121.026808
|
10 |
Y. Xiong , Why does bulk boundary correspondence fail in some non-Hermitian topological models, J. Phys. Commun. 2 (3), 035043 (2018)
https://doi.org/10.1088/2399-6528/aab64a
|
11 |
Z. Gong , Y. Ashida , K. Kawabata , K. Takasan , S. Higashikawa , and M. Ueda , Topological phases of nonHermitian systems, Phys. Rev. X 8 (3), 031079 (2018)
https://doi.org/10.1103/PhysRevX.8.031079
|
12 |
V. M. M. Alvarez , J. E. B. Vargas , and L. E. F. F. Torres , Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points, Phys. Rev. B 97, 121401(R) (2018)
https://doi.org/10.1103/PhysRevB.97.121401
|
13 |
K. Yokomizo and S. Murakami , Non-Bloch band theory of non-Hermitian systems, Phys. Rev. Lett. 123 (6), 066404 (2019)
https://doi.org/10.1103/PhysRevLett.123.066404
|
14 |
N. Okuma , K. Kawabata , K. Shiozaki , and M. Sato , Topological origin of non-Hermitian skin effects, Phys. Rev. Lett. 124 (8), 086801 (2020)
https://doi.org/10.1103/PhysRevLett.124.086801
|
15 |
K. Zhang , Z. Yang , and C. Fang , Correspondence between winding numbers and skin modes in non-Hermitian systems, Phys. Rev. Lett. 125 (12), 126402 (2020)
https://doi.org/10.1103/PhysRevLett.125.126402
|
16 |
Z. Yang , K. Zhang , C. Fang , and J. Hu , Non-Hermitian bulk-boundary correspondence and auxiliary generalized Brillouin zone theory, Phys. Rev. Lett. 125 (22), 226402 (2020)
https://doi.org/10.1103/PhysRevLett.125.226402
|
17 |
X.-R. Wang , C.-X. Guo , and S.-P. Kou , Defective edge states and number-anomalous bulk-boundary correspondence in non-Hermitian topological systems, Phys. Rev. B 101, 121116(R) (2020)
https://doi.org/10.1103/PhysRevB.101.121116
|
18 |
H. Jiang , R. Lü , and S. Chen , Topological invariants , zero mode edge states and finite size effect for a generalized non-reciprocal Su–Schrieffer–Heeger model, Eur. Phys. J. B 93 (7), 125 (2020)
https://doi.org/10.1140/epjb/e2020-10036-3
|
19 |
S. Weidemann , M. Kremer , T. Helbig , T. Hofmann , A. Stegmaier , M. Greiter , R. Thomale , and A. Szameit , Topological funneling of light, Science 368 (6488), 311 (2020)
https://doi.org/10.1126/science.aaz8727
|
20 |
L. Xiao , T. Deng , K. Wang , G. Zhu , Z. Wang , W. Yi , and P. Xue , Observation of non-Hermitian bulk-boundary correspondence in quantum dynamics, Nat. Phys. 16, 761 (2020)
https://doi.org/10.1038/s41567-020-0836-6
|
21 |
D. S. Borgnia , A. J. Kruchkov , and R. J. Slager , NonHermitian boundary modes and topology, Phys. Rev. Lett. 124 (5), 056802 (2020)
https://doi.org/10.1103/PhysRevLett.124.056802
|
22 |
W. Heiss , The physics of exceptional points, J. Phys. A Math. Theor. 45 (44), 444016 (2012)
https://doi.org/10.1088/1751-8113/45/44/444016
|
23 |
V. Kozii and L. Fu , Non-Hermitian topological theory of finite-lifetime quasiparticles: Prediction of bulk Fermi arc due to exceptional point, arXiv: 1708.05841 (2017)
|
24 |
H. Hodaei , A. U. Hassan , S. Wittek , H. Garcia-Gracia , R. El-Ganainy , D. N. Christodoulides , and M. Khajavikhan , Enhanced sensitivity at higher-order exceptional points, Nature 548 (7666), 187 (2017)
https://doi.org/10.1038/nature23280
|
25 |
H. Zhou , C. Peng , Y. Yoon , C. W. Hsu , K. A. Nelson , L. Fu , J. D. Joannopoulos , M. Soljacic , and B. Zhen , Observation of bulk Fermi arc and polarization half charge from paired exceptional points, Science 359 (6379), 1009 (2018)
https://doi.org/10.1126/science.aap9859
|
26 |
M. A. Miri and A. Alu , Exceptional points in optics and photonics, Science 363 (6422), eaar7709 (2019)
https://doi.org/10.1126/science.aar7709
|
27 |
J. H. Park , A. Ndao , W. Cai , L. Y. Hsu , A. Kodigala , T. Lepetit , Y. H. Lo , and B. Kanté , Observation of plasmonic exceptional points, arXiv: 1904.01073 (2019)
|
28 |
Z. Yang and J. Hu , Non-Hermitian Hopf-link exceptional line semimetals, Phys. Rev. B 99, 081102(R) (2019)
https://doi.org/10.1103/PhysRevB.99.081102
|
29 |
S. Özdemir , S. Rotter , F. Nori , and L. Yang , Parity–time symmetry and exceptional points in photonics, Nat. Mater. 18 (8), 783 (2019)
https://doi.org/10.1038/s41563-019-0304-9
|
30 |
B. Dóra , M. Heyl , and R. Moessner , The Kibble–Zurek mechanism at exceptional points, Nat. Commun. 10 (1), 2254 (2019)
https://doi.org/10.1038/s41467-019-10048-9
|
31 |
Y. R. Zhang , Z. Z. Zhang , J. Q. Yuan , M. Kang , and J. Chen , High-order exceptional points in non-Hermitian Moiré lattices, Front. Phys. 14 (5), 53603 (2019)
https://doi.org/10.1007/s11467-019-0899-y
|
32 |
L. Jin , H. C. Wu , B. B. Wei , and Z. Song , Hybrid exceptional point created from type-Ⅲ Dirac point, Phys. Rev. B 101 (4), 045130 (2020)
https://doi.org/10.1103/PhysRevB.101.045130
|
33 |
L. Xiao , T. Deng , K. Wang , Z. Wang , W. Yi , and P. Xue , Observation of non-Bloch parity-time symmetry and exceptional points, Phys. Rev. Lett. 126 (23), 230402 (2021)
https://doi.org/10.1103/PhysRevLett.126.230402
|
34 |
N. Matsumoto , K. Kawabata , Y. Ashida , S. Furukawa , and M. Ueda , Continuous phase transition without gap closing in non-Hermitian quantum many-body systems, Phys. Rev. Lett. 125 (26), 260601 (2020)
https://doi.org/10.1103/PhysRevLett.125.260601
|
35 |
M. L. Yang , H. Wang , C. X. Guo , X. R. Wang , G. Sun , and S. P. Kou , Anomalous spontaneous symmetry breaking in non-Hermitian systems with biorthogonal Z2-symmetry, arXiv: 2006.10278 (2020)
|
36 |
L. Jin and Z. Song , Scaling behavior and phase diagram of a PT-symmetric non-Hermitian Bose–Hubbard system, Ann. Phys. 330, 142 (2013)
https://doi.org/10.1016/j.aop.2012.11.017
|
37 |
Y. Ashida , S. Furukawa , and M. Ueda , Parity–timesymmetric quantum critical phenomena, Nat. Commun. 8 (1), 15791 (2017)
https://doi.org/10.1038/ncomms15791
|
38 |
L. Herviou , N. Regnault , and J. H. Bardarson , Entanglement spectrum and symmetries in non-Hermitian fermionic non-interacting models, SciPost Physics 7 (5), 069 (2019)
https://doi.org/10.21468/SciPostPhys.7.5.069
|
39 |
P. Y. Chang , J. S. You , X. Wen , and S. Ryu , Entanglement spectrum and entropy in topological non-Hermitian systems and nonunitary conformal field theory, Phys. Rev. Res. 2 (3), 033069 (2020)
https://doi.org/10.1103/PhysRevResearch.2.033069
|
40 |
S. Mu , C. H. Lee , L. Li , and J. Gong , Emergent Fermi surface in a many-body non-Hermitian fermionic chain, Phys. Rev. B 102, 081115(R) (2020)
https://doi.org/10.1103/PhysRevB.102.081115
|
41 |
E. Lee , H. Lee , and B.-J. Yang , Many-body approach to non-Hermitian physics in fermionic systems, Phys. Rev. B 101, 121109(R) (2020)
https://doi.org/10.1103/PhysRevB.101.121109
|
42 |
L. Pan , X. Chen , Y. Chen , and H. Zhai , Non-Hermitian linear response theory, Nat. Phys. 16 (7), 767 (2020)
https://doi.org/10.1038/s41567-020-0889-6
|
43 |
L. Pan , X. Wang , X. Cui , and S. Chen , Interactioninduced dynamical PT-symmetry breaking in dissipative Fermi–Hubbard models, Phys. Rev. A 102 (2), 023306 (2020)
https://doi.org/10.1103/PhysRevA.102.023306
|
44 |
Z. Xu and S. Chen , Topological Bose–Mott insulators in one-dimensional non-Hermitian superlattices, Phys. Rev. B 102 (3), 035153 (2020)
https://doi.org/10.1103/PhysRevB.102.035153
|
45 |
D. W. Zhang , Y. L. Chen , G. Q. Zhang , L. J. Lang , Z. Li , and S. L. Zhu , Skin superfluid, topological Mott insulators, and asymmetric dynamics in an interacting non-Hermitian Aubry–André–Harper model, Phys. Rev. B 101 (23), 235150 (2020)
https://doi.org/10.1103/PhysRevB.101.235150
|
46 |
C. H. Lee , Many-body topological and skin states without open boundaries, arXiv: 2006.01182 (2020)
|
47 |
H. Shackleton and M. S. Scheurer , Protection of paritytime symmetry in topological many-body systems: NonHermitian toric code and fracton models, Phys. Rev. Res. 2 (3), 033022 (2020)
https://doi.org/10.1103/PhysRevResearch.2.033022
|
48 |
T. Liu , J. J. He , T. Yoshida , Z. L. Xiang , and F. Nori , Non-Hermitian topological Mott insulators in one-dimensional fermionic superlattices, Phys. Rev. B 102 (23), 235151 (2020)
https://doi.org/10.1103/PhysRevB.102.235151
|
49 |
K. Yang , S. C. Morampudi , and E. J. Bergholtz , Exceptional spin liquids from couplings to the environment, Phys. Rev. Lett. 126 (7), 077201 (2021)
https://doi.org/10.1103/PhysRevLett.126.077201
|
50 |
R. Hanai , A. Edelman , Y. Ohashi , and P. B. Littlewood , Non-Hermitian phase transition from a polariton Bose– Einstein condensate to a photon laser, Phys. Rev. Lett. 122 (18), 185301 (2019)
https://doi.org/10.1103/PhysRevLett.122.185301
|
51 |
R. Hamazaki , K. Kawabata , and M. Ueda , NonHermitian many-body localization, Phys. Rev. Lett. 123 (9), 090603 (2019)
https://doi.org/10.1103/PhysRevLett.123.090603
|
52 |
W. Xi , Z. H. Zhang , Z. C. Gu , and W. Q. Chen , Classification of topological phases in one dimensional interacting non-Hermitian systems and emergent unitarity, Sci. Bull. (Beijing) 66 (17), 1731 (2021)
https://doi.org/10.1016/j.scib.2021.04.027
|
53 |
K. Yamamoto , M. Nakagawa , K. Adachi , K. Takasan , M. Ueda , and N. Kawakami , Theory of non-Hermitian fermionic superfluidity with a complex-valued interaction, Phys. Rev. Lett. 123 (12), 123601 (2019)
https://doi.org/10.1103/PhysRevLett.123.123601
|
54 |
R. Hanai and P. B. Littlewood , Critical fluctuations at a many-body exceptional point, Phys. Rev. Res. 2 (3), 033018 (2020)
https://doi.org/10.1103/PhysRevResearch.2.033018
|
55 |
R. Arouca , C. H. Lee , and C. M. Smith , Unconventional scaling at non-Hermitian critical points, Phys. Rev. B 102 (24), 245145 (2020)
https://doi.org/10.1103/PhysRevB.102.245145
|
56 |
P. Zanardi and N. Paunkovic , Ground state overlap and quantum phase transitions, Phys. Rev. E 74 (3), 031123 (2006)
https://doi.org/10.1103/PhysRevE.74.031123
|
57 |
L. Campos Venuti and P. Zanardi , Quantum critical scaling of the geometric tensors, Phys. Rev. Lett. 99 (9), 095701 (2007)
https://doi.org/10.1103/PhysRevLett.99.095701
|
58 |
W. L. You , Y. W. Li , and S. J. Gu , Fidelity, dynamic structure factor, and susceptibility in critical phenomena, Phys. Rev. E 76 (2), 022101 (2007)
https://doi.org/10.1103/PhysRevE.76.022101
|
59 |
A. F. Albuquerque , F. Alet , C. Sire , and S. Capponi , Quantum critical scaling of fidelity susceptibility, Phys. Rev. B 81 (6), 064418 (2010)
https://doi.org/10.1103/PhysRevB.81.064418
|
60 |
S. J. Gu , Fidelity approach to quantum phase transitions, Int. J. Mod. Phys. B 24 (23), 4371 (2010)
https://doi.org/10.1142/S0217979210056335
|
61 |
G. Sun , Fidelity susceptibility study of quantum longrange antiferromagnetic Ising chain, Phys. Rev. A 96 (4), 043621 (2017)
https://doi.org/10.1103/PhysRevA.96.043621
|
62 |
Z. Zhu , G. Sun , W. L. You , and D. N. Shi , Fidelity and criticality of a quantum Ising chain with long-range interactions, Phys. Rev. A 98 (2), 023607 (2018)
https://doi.org/10.1103/PhysRevA.98.023607
|
63 |
B. B. Wei and X. C. Lv , Fidelity susceptibility in the quantum Rabi model, Phys. Rev. A 97 (1), 013845 (2018)
https://doi.org/10.1103/PhysRevA.97.013845
|
64 |
B. B. Wei , Fidelity susceptibility in one-dimensional disordered lattice models, Phys. Rev. A 99 (4), 042117 (2019)
https://doi.org/10.1103/PhysRevA.99.042117
|
65 |
S. Chen , L. Wang , Y. Hao , and Y. Wang , Intrinsic relation between ground-state fidelity and the characterization of a quantum phase transition, Phys. Rev. A 77 (3), 032111 (2008)
https://doi.org/10.1103/PhysRevA.77.032111
|
66 |
S. J. Gu , H. M. Kwok , W. Q. Ning , and H. Q. Lin , Fidelity susceptibility, scaling, and universality in quantum critical phenomena, Phys. Rev. B 77 (24), 245109 (2008)
https://doi.org/10.1103/PhysRevB.77.245109
|
67 |
S. Yang , S. J. Gu , C. P. Sun , and H. Q. Lin , Fidelity susceptibility and long-range correlation in the Kitaev honeycomb model, Phys. Rev. A 78 (1), 012304 (2008)
https://doi.org/10.1103/PhysRevA.78.012304
|
68 |
H. M. Kwok , W. Q. Ning , S. J. Gu , and H. Q. Lin , Quantum criticality of the Lipkin–Meshkov–Glick model in terms of fidelity susceptibility, Phys. Rev. E 78 (3), 032103 (2008)
https://doi.org/10.1103/PhysRevE.78.032103
|
69 |
L. Gong and P. Tong , Fidelity, fidelity susceptibility, and von Neumann entropy to characterize the phase diagram of an extended Harper model, Phys. Rev. B 78 (11), 115114 (2008)
https://doi.org/10.1103/PhysRevB.78.115114
|
70 |
W. C. Yu , H. M. Kwok , J. Cao , and S. J. Gu , Fidelity susceptibility in the two-dimensional transverse-field Ising and XXZ models, Phys. Rev. E 80 (2), 021108 (2009)
https://doi.org/10.1103/PhysRevE.80.021108
|
71 |
D. Schwandt , F. Alet , and S. Capponi , Quantum Monte Carlo simulations of fidelity at magnetic quantum phase transitions, Phys. Rev. Lett. 103 (17), 170501 (2009)
https://doi.org/10.1103/PhysRevLett.103.170501
|
72 |
Q. Luo , J. Zhao , and X. Wang , Fidelity susceptibility of the anisotropic XY model: The exact solution, Phys. Rev. E 98 (2), 022106 (2018)
https://doi.org/10.1103/PhysRevE.98.022106
|
73 |
M. M. Rams and B. Damski , Quantum fidelity in the thermodynamic limit, Phys. Rev. Lett. 106 (5), 055701 (2011)
https://doi.org/10.1103/PhysRevLett.106.055701
|
74 |
S. H. Li , Q. Q. Shi , Y. H. Su , J. H. Liu , Y. W. Dai , and H. Q. Zhou , Tensor network states and ground-state fidelity for quantum spin ladders, Phys. Rev. B 86 (6), 064401 (2012)
https://doi.org/10.1103/PhysRevB.86.064401
|
75 |
V. Mukherjee , A. Dutta , and D. Sen , Quantum fidelity for one-dimensional Dirac fermions and two-dimensional Kitaev model in the thermodynamic limit, Phys. Rev. B 85 (2), 024301 (2012)
https://doi.org/10.1103/PhysRevB.85.024301
|
76 |
B. Damski , Fidelity susceptibility of the quantum Ising model in a transverse field: The exact solution, Phys. Rev. E 87 (5), 052131 (2013)
https://doi.org/10.1103/PhysRevE.87.052131
|
77 |
J. Carrasquilla , S. R. Manmana , and M. Rigol , Scaling of the gap , Scaling of the gap, fidelity susceptibility, and Bloch oscillations across the superfluid-to-Mott-insulator transition in the one-dimensional Bose–Hubbard model, Phys. Rev. A 87 (4), 043606 (2013)
https://doi.org/10.1103/PhysRevA.87.043606
|
78 |
M. Łącki , B. Damski , and J. Zakrzewski , Numerical studies of ground-state fidelity of the Bose–Hubbard model, Phys. Rev. A 89 (3), 033625 (2014)
https://doi.org/10.1103/PhysRevA.89.033625
|
79 |
G. Sun and T. Vekua , Topological quasi-one-dimensional state of interacting spinless electrons, Phys. Rev. B 93 (20), 205137 (2016)
https://doi.org/10.1103/PhysRevB.93.205137
|
80 |
M.-F. Yang , Ground-state fidelity in one-dimensional gapless models, Phys. Rev. B 76, 180403(R) (2007)
https://doi.org/10.1103/PhysRevB.76.180403
|
81 |
J. O. Fjærestad , Ground state fidelity of Luttinger liquids: A wavefunctional approach, J. Stat. Mech. 2008 (07), P07011 (2008)
https://doi.org/10.1088/1742-5468/2008/07/P07011
|
82 |
A. Langari and A. Rezakhani , Quantum renormalization group for ground-state fidelity, New J. Phys. 14 (5), 053014 (2012)
https://doi.org/10.1088/1367-2630/14/5/053014
|
83 |
G. Sun , A. K. Kolezhuk , and T. Vekua , Fidelity at Berezinskii–Kosterlitz–Thouless quantum phase transitions, Phys. Rev. B 91 (1), 014418 (2015)
https://doi.org/10.1103/PhysRevB.91.014418
|
84 |
L. Cincio , M. M. Rams , J. Dziarmaga , and W. H. Zurek , Universal shift of the fidelity susceptibility peak away from the critical point of the Berezinskii–Kosterlitz–Thouless quantum phase transition, Phys. Rev. B 100, 081108(R) (2019)
https://doi.org/10.1103/PhysRevB.100.081108
|
85 |
G. Sun , B. B. Wei , and S. P. Kou , Fidelity as a probe for a deconfined quantum critical point, Phys. Rev. B 100 (6), 064427 (2019)
https://doi.org/10.1103/PhysRevB.100.064427
|
86 |
H. Jiang , C. Yang , and S. Chen , Topological invariants and phase diagrams for one-dimensional two-band nonHermitian systems without chiral symmetry, Phys. Rev. A 98 (5), 052116 (2018)
https://doi.org/10.1103/PhysRevA.98.052116
|
87 |
C. Wang , M. L. Yang , C. X. Guo , X. M. Zhao , and S. P. Kou , Effective non-Hermitian physics for degenerate ground states of a non-Hermitian Ising model with RT symmetry, EPL (Europhysics Letters) 128 (4), 41001 (2020)
https://doi.org/10.1209/0295-5075/128/41001
|
88 |
C. X. Guo , X. R. Wang , and S. P. Kou , Non-Hermitian avalanche effect: Non-perturbative effect induced by local non-Hermitian perturbation on a Z2 topological order, EPL (Europhysics Letters) 131 (2), 27002 (2020)
https://doi.org/10.1209/0295-5075/131/27002
|
89 |
Y. Nishiyama , Imaginary-field-driven phase transition for the 2D Ising antiferromagnet: A fidelity-susceptibility approach, Physica A 555, 124731 (2020)
https://doi.org/10.1016/j.physa.2020.124731
|
90 |
Y. Nishiyama , Fidelity-susceptibility analysis of the honeycomb-lattice Ising antiferromagnet under the imaginary magnetic field, Eur. Phys. J. B 93 (9), 174 (2020)
https://doi.org/10.1140/epjb/e2020-10264-5
|
91 |
Y. C. Tzeng , C. Y. Ju , G. Y. Chen , and W. M. Huang , Hunting for the non-Hermitian exceptional points with fidelity susceptibility, Phys. Rev. Res. 3 (1), 013015 (2021)
https://doi.org/10.1103/PhysRevResearch.3.013015
|
92 |
D. D. Solnyshkov , C. Leblanc , L. Bessonart , A. Nalitov , J. Ren , Q. Liao , F. Li , and G. Malpuech , Quantum metric and wave packets at exceptional points in non-Hermitian systems, Phys. Rev. B 103 (12), 125302 (2021)
https://doi.org/10.1103/PhysRevB.103.125302
|
93 |
D. C. Brody , Biorthogonal quantum mechanics, J. Phys. A Math. Theor. 47 (3), 035305 (2014)
https://doi.org/10.1088/1751-8113/47/3/035305
|
94 |
M. M. Sternheim and J. F. Walker , Non-Hermitian Hamiltonians, decaying states, and perturbation theory, Phys. Rev. C 6 (1), 114 (1972)
https://doi.org/10.1103/PhysRevC.6.114
|
95 |
A. Mostafazadeh , Pseudo-hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian, J. Math. Phys. 43 (1), 205 (2002)
https://doi.org/10.1063/1.1418246
|
96 |
A. Mostafazadeh , Pseudo-hermiticity versus PT-symmetry (Ⅱ): A complete characterization of non-Hermitian Hamiltonians with a real spectrum, J. Math. Phys. 43 (5), 2814 (2002)
https://doi.org/10.1063/1.1461427
|
97 |
A. Mostafazadeh , Pseudo-hermiticity versus PT-symmetry (Ⅲ): Equivalence of pseudo-hermiticity and the presence of antilinear symmetries, J. Math. Phys. 43 (8), 3944 (2002)
https://doi.org/10.1063/1.1489072
|
98 |
Y. Y. Fu , Y. Fei , D. X. Dong , and Y. W. Liu , Photonic spin Hall effect in PT-symmetric metamaterials, Front. Phys. 14 (6), 62601 (2019)
https://doi.org/10.1007/s11467-019-0938-8
|
99 |
Y. Zhao , Equivariant PT-symmetric real Chern insulators, Front. Phys. 15 (1), 13603 (2020)
https://doi.org/10.1007/s11467-019-0943-y
|
100 |
Y. C. Chen , M. Gong , P. Xue , H. D. Yuan , and C. J. Zhang , Quantum deleting and cloning in a pseudounitary system, Front. Phys. 16 (5), 53601 (2021)
https://doi.org/10.1007/s11467-021-1063-z
|
101 |
A. Uhlmann , The “transition probability” in the state space of a ∗-algebra, Rep. Math. Phys. 9 (2), 273 (1976)
https://doi.org/10.1016/0034-4877(76)90060-4
|
102 |
M. Hauru and G. Vidal , Uhlmann fidelities from tensor networks, Phys. Rev. A 98 (4), 042316 (2018)
https://doi.org/10.1103/PhysRevA.98.042316
|
103 |
G. Gehlen , Critical and off-critical conformal analysis of the Ising quantum chain in an imaginary field, J. Phys. Math. Gen. 24 (22), 5371 (1991)
https://doi.org/10.1088/0305-4470/24/22/021
|
104 |
D. Bianchini , O. Castro-Alvaredo , B. Doyon , E. Levi , and F. Ravanini , Entanglement entropy of non-unitary conformal field theory, J. Phys. A Math. Theor. 48 (4), 04FT01 (2015)
https://doi.org/10.1088/1751-8113/48/4/04FT01
|
105 |
K. L. Zhang and Z. Song , Ising chain with topological degeneracy induced by dissipation, Phys. Rev. B 101 (24), 245152 (2020)
https://doi.org/10.1103/PhysRevB.101.245152
|
106 |
J. Um , S. I. Lee , and B. J. Kim , Quantum phase transition and finite-size scaling of the one-dimensional Ising model, J. Korean Phys. Soc. 50, 285 (2007)
|
107 |
W. L. You and W. L. Lu , Scaling of reduced fidelity susceptibility in the one-dimensional transverse-field XY model, Phys. Lett. A 373 (16), 1444 (2009)
https://doi.org/10.1016/j.physleta.2009.02.046
|
108 |
N. Hatano and H. Obuse , Delocalization of a nonHermitian quantum walk on random media in one dimension, Ann. Phys. 168615 (2021)
https://doi.org/10.1016/j.aop.2021.168615
|
109 |
T. Liu , S. Cheng , H. Guo , and G. Xianlong , Fate of Majorana zero modes, exact location of critical states, and unconventional real-complex transition in non-Hermitian quasiperiodic lattices, Phys. Rev. B 103 (10), 104203 (2021)
https://doi.org/10.1103/PhysRevB.103.104203
|
110 |
Q. Lin , T. Li , L. Xiao , K. Wang , W. Yi , and P. Xue , Observation of non-Hermitian topological Anderson insulator in quantum dynamics, arXiv: 2108.01097 (2021)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|