|
|
Transport features of topological corner states in honeycomb lattice with multihollow structure |
Kai-Tong Wang1,2, Fuming Xu2( ), Bin Wang2, Yunjin Yu2, Yadong Wei2 |
1. School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China 2. College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China |
|
|
Abstract Higher-order topological phase in 2-dimensional (2D) systems is characterized by in-gap corner states, which are hard to detect and utilize. We numerically investigate transport properties of topological corner states in 2D honeycomb lattice, where the second-order topological phase is induced by an in-plane Zeeman field in the conventional Kane–Mele model. Through engineering multihollow structures with appropriate boundaries in honeycomb lattice, multiple corner states emerge, which greatly increases the probability to observe them. A typical two-probe setup is built to study the transport features of a diamond-shaped system with multihollow structures. Numerical results reveal the existence of global resonant states in bulk insulator, which corresponds to the resonant tunneling of multiple corner states and occupies the entire scattering region. Furthermore, based on the well separated energy levels of multiple corner states, a single-electron source is constructed.
|
Keywords
second-order topological insulator
Kane–Mele model
global resonant state
single-electron source
|
Corresponding Author(s):
Kai-Tong Wang
|
Issue Date: 16 December 2021
|
|
1 |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys.83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
|
2 |
Y. Ren, Z. Qiao, and Q. Niu, Topological phases in two-dimensional materials: A review, Rep. Prog. Phys.79(6), 066501 (2016)
https://doi.org/10.1088/0034-4885/79/6/066501
|
3 |
J. Qi, H. Liu, H. Jiang, and X. C. Xie, Dephasing effects in topological insulators, Front. Phys.14(4), 43403 (2019)
https://doi.org/10.1007/s11467-019-0907-2
|
4 |
Q. Niu, Advances on topological materials, Front. Phys.15(4), 43601 (2020)
https://doi.org/10.1007/s11467-020-0979-z
|
5 |
B. Xie, H. X. Wang, X. Zhang, P. Zhan, J. H. Jiang, M. Lu, and Y. Chen, Higher-order band topology, Nat. Rev. Phys.3(7), 520 (2021)
https://doi.org/10.1038/s42254-021-00323-4
|
6 |
W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized electric multipole insulators, Science357(6346), 61 (2017)
https://doi.org/10.1126/science.aah6442
|
7 |
J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W. Brouwer, Reflection-symmetric second-order topological insulators and superconductors, Phys. Rev. Lett.119(24), 246401 (2017)
https://doi.org/10.1103/PhysRevLett.119.246401
|
8 |
F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P. Parkin, B. A. Bernevig, and T. Neupert, Higher-order topological insulators, Sci. Adv.4(6), eaat0346 (2018)
https://doi.org/10.1126/sciadv.aat0346
|
9 |
R.-J. Slager, L. Rademaker, J. Zaanen, and L. Balents, Impurity-bound states and Green’s function zeros as local signatures of topology, Phys. Rev. B92, 085126 (2015)
https://doi.org/10.1103/PhysRevB.92.085126
|
10 |
Y. Volpez, D. Loss, and J. Klinovaja, Second-order topological superconductivity in π-junction Rashba layers, Phys. Rev. Lett122, 126402 (2019)
https://doi.org/10.1103/PhysRevLett.122.126402
|
11 |
Y. L. Tao, N. Dai, Y. B. Yang, Q. B. Zeng, and Y. Xu, Hinge solitons in three-dimensional second-order topological insulators, New J. Phys.22(10), 103058 (2020)
https://doi.org/10.1088/1367-2630/abc1f9
|
12 |
H. Li and K. Sun, Topological insulators and higher-order topological insulators from gauge-invariant one-dimensional lines, Phys. Rev. B102(8), 085108 (2020)
https://doi.org/10.1103/PhysRevB.102.085108
|
13 |
Y. Yang, Z. Jia, Y. Wu, R. C. Xiao, Z. H. Hang, H. Jiang, and X. C. Xie, Gapped topological kink states and topological corner states in honeycomb lattice, Sci. Bull. (Beijing)65(7), 531 (2020)
https://doi.org/10.1016/j.scib.2020.01.024
|
14 |
Z. R. Liu, L. H. Hu, C. Z. Chen, B. Zhou, and D. H. Xu, Topological excitonic corner states and nodal phase in bilayer quantum spin Hall insulators, Phys. Rev. B103(20), L201115 (2021)
https://doi.org/10.1103/PhysRevB.103.L201115
|
15 |
X. Cheng, J. Chen, L. Zhang, L. Xiao, and S. Jia, Antichiral edge states and hinge states based on the Haldane model, Phys. Rev. B104(8), L081401 (2021)
https://doi.org/10.1103/PhysRevB.104.L081401
|
16 |
B. Liu, L. Xian, H. Mu, G. Zhao, Z. Liu, A. Rubio, and Z. F. Wang, Higher-order band topology in twisted Moiré superlattice, Phys. Rev. Lett.126(6), 066401 (2021)
https://doi.org/10.1103/PhysRevLett.126.066401
|
17 |
J. H. Wang, Y. B. Yang, N. Dai, and Y. Xu, Structural-disorder-induced second-order topological insulators in three dimensions, Phys. Rev. Lett.126(20), 206404 (2021)
https://doi.org/10.1103/PhysRevLett.126.206404
|
18 |
R. Chen, C. Z. Chen, J. H. Gao, B. Zhou, and D. H. Xu, Higher-order topological insulators in quasicrystals, Phys. Rev. Lett.124(3), 036803 (2020)
https://doi.org/10.1103/PhysRevLett.124.036803
|
19 |
C.-B. Hua, R. Chen, B. Zhou, and D.-H. Xu, Higher-order topological insulator in a dodecagonal quasicrystal, Phys. Rev. B102, 241102(R) (2020)
https://doi.org/10.1103/PhysRevB.102.241102
|
20 |
J. Fan and H. Huang, Topological states in quasicrystals, Front. Phys.17(1), 13203 (2022)
https://doi.org/10.1007/s11467-021-1100-y
|
21 |
Y. B. Yang, K. Li, L. M. Duan, and Y. Xu, Higher-order topological Anderson insulators, Phys. Rev. B103(8), 085408 (2021)
https://doi.org/10.1103/PhysRevB.103.085408
|
22 |
W. Zhang, D. Zou, Q. Pei, W. He, J. Bao, H. Sun, and X. Zhang, Experimental observation of higher-order topological Anderson insulators, Phys. Rev. Lett.126(14), 146802 (2021)
https://doi.org/10.1103/PhysRevLett.126.146802
|
23 |
Z. Qiao, W. K. Tse, H. Jiang, Y. Yao, and Q. Niu, Two-dimensional topological insulator state and topological phase transition in bilayer graphene, Phys. Rev. Lett.107(25), 256801 (2011)
https://doi.org/10.1103/PhysRevLett.107.256801
|
24 |
D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett.108(19), 196802 (2012)
https://doi.org/10.1103/PhysRevLett.108.196802
|
25 |
J. W. Jiang, Graphene versus MoS2: A short review, Front. Phys.10(3), 106801 (2015)
https://doi.org/10.1007/s11467-015-0459-z
|
26 |
F. Xu, Z. Yu, Y. Ren, B. Wang, Y. Wei, and Z. Qiao, Transmission spectra and valley processing of graphene and carbon nanotube superlattices with inter-valley coupling, New J. Phys.18(11), 113011 (2016)
https://doi.org/10.1088/1367-2630/18/11/113011
|
27 |
F. Xu, Z. Yu, Z. Gong, and H. Jin, First-principles study on the electronic and transport properties of periodically nitrogen-doped graphene and carbon nanotube superlattices, Front. Phys.12(4), 127306 (2017)
https://doi.org/10.1007/s11467-017-0650-5
|
28 |
Y. Ren, J. Zeng, K. Wang, F. Xu, and Z. Qiao, Tunable current partition at zero-line intersection of quantum anomalous Hall topologies, Phys. Rev. B96(15), 155445 (2017)
https://doi.org/10.1103/PhysRevB.96.155445
|
29 |
C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett.95(22), 226801 (2005)
https://doi.org/10.1103/PhysRevLett.95.226801
|
30 |
Y. Yao, F. Ye, X.-L. Qi, S.-C. Zhang, and Z. Fang, Spin– orbit gap of graphene: First-principles calculations, Phys. Rev. B75, 041401(R) (2007)
https://doi.org/10.1103/PhysRevB.75.041401
|
31 |
C. C. Liu, W. Feng, and Y. Yao, Quantum spin Hall effect in silicene and two-dimensional germanium, Phys. Rev. Lett.107(7), 076802 (2011)
https://doi.org/10.1103/PhysRevLett.107.076802
|
32 |
C. C. Liu, H. Jiang, and Y. Yao, Low-energy effective Hamiltonian involving spin–orbit coupling in silicene and two-dimensional germanium and tin, Phys. Rev. B84(19), 195430 (2011)
https://doi.org/10.1103/PhysRevB.84.195430
|
33 |
M. Ezawa, Valley-polarized metals and quantum anomalous Hall effect in silicene, Phys. Rev. Lett.109(5), 055502 (2012)
https://doi.org/10.1103/PhysRevLett.109.055502
|
34 |
H. Pan, Z. Li, C. C. Liu, G. Zhu, Z. Qiao, and Y. Yao, Valley-polarized quantum anomalous Hall effect in silicene, Phys. Rev. Lett.112(10), 106802 (2014)
https://doi.org/10.1103/PhysRevLett.112.106802
|
35 |
Y. Xu, B. Yan, H. J. Zhang, J. Wang,, G. Xu, P. Tang, W. Duan, and S. C. Zhang, Large-gap quantum spin Hall insulators in tin films, Phys. Rev. Lett.111(13), 136804 (2013)
https://doi.org/10.1103/PhysRevLett.111.136804
|
36 |
Y. Xu, New physics in old material: Topological and superconducting properties of stanene, Front. Phys.15(5), 53202 (2020)
https://doi.org/10.1007/s11467-020-1008-y
|
37 |
C. X. Zhao and J. F. Jia, Stanene: A good platform for topological insulator and topological superconductor, Front. Phys.15(5), 53201 (2020)
https://doi.org/10.1007/s11467-020-0965-5
|
38 |
A. Marrazzo, M. Gibertini, D. Campi, N. Mounet, and N. Marzari, Prediction of a large-gap and switchable Kane–Mele quantum spin Hall insulator, Phys. Rev. Lett.120(11), 117701 (2018)
https://doi.org/10.1103/PhysRevLett.120.117701
|
39 |
A. Marrazzo, M. Gibertini, D. Campi, N. Mounet, and N. Marzari, Relative abundance of Z2 topological order in exfoliable two-dimensional insulators, Nano Lett.19(12), 8431 (2019)
https://doi.org/10.1021/acs.nanolett.9b02689
|
40 |
Z. Liu, Y. Han, Y. Ren, Q. Niu, and Z. Qiao, Van der Waals heterostructure Pt2HgSe3/CrI3 for topological valleytronics, Phys. Rev. B104(12), L121403 (2021)
https://doi.org/10.1103/PhysRevB.104.L121403
|
41 |
K. Kandrai, P. Vancsó, G. Kukucska, J. Koltai, G. Baranka, Á. Hoffmann, Á. Pekker, K. Kamara, Z. E. Horváth, A. Vymazalová, L. Tapaszto, and P. Nemes-Incze, Signature of large-gap quantum spin Hall state in the layered mineral jacutingaite, Nano Lett.20(7), 5207 (2020)
https://doi.org/10.1021/acs.nanolett.0c01499
|
42 |
Y. Ren, Z. Qiao, and Q. Niu, Engineering corner states from two-dimensional topological insulators, Phys. Rev. Lett.124(16), 166804 (2020)
https://doi.org/10.1103/PhysRevLett.124.166804
|
43 |
K. T. Wang, Y. Ren, F. Xu, Y. Wei, and J. Wang, Transport induced dimer state from topological corner states, Sci. China Phys. Mech. Astron.64(5), 257811 (2021)
https://doi.org/10.1007/s11433-020-1677-9
|
44 |
M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100), J. Phys. F Met. Phys.14(5), 1205 (1984)
https://doi.org/10.1088/0305-4608/14/5/016
|
45 |
M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F Met. Phys.15(4), 851 (1985)
https://doi.org/10.1088/0305-4608/15/4/009
|
46 |
S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, UK, 1995
https://doi.org/10.1017/CBO9780511805776
|
47 |
J. Wang and H. Guo, Relation between nonequilibrium Green’s function and Lippmann–Schwinger formalism in the firstprinciples quantum transport theory, Phys. Rev. B79(4), 045119 (2009)
https://doi.org/10.1103/PhysRevB.79.045119
|
48 |
V. Gasparian, T. Christen, and M. Büttiker, Partial densities of states, scattering matrices, and Green’s functions, Phys. Rev. A54(5), 4022 (1996)
https://doi.org/10.1103/PhysRevA.54.4022
|
49 |
T. Gramespacher and M. Büttiker, Nanoscopic tunneling contacts on mesoscopic multiprobe conductors, Phys. Rev. B56(20), 13026 (1997)
https://doi.org/10.1103/PhysRevB.56.13026
|
50 |
O. Ly, R. A. Jalabert, S. Tomsovic, and D. Weinmann, Partial local density of states from scanning gate microscopy, Phys. Rev. B96(12), 125439 (2017)
https://doi.org/10.1103/PhysRevB.96.125439
|
51 |
Ç. Ö. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C. H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie, and A. Zettl, Graphene at the edge: Stability and dynamics, Science323(5922), 1705 (2009)
https://doi.org/10.1126/science.1166999
|
52 |
O. V. Yazyev and S. G. Louie, Electronic transport in polycrystalline graphene, Nat. Mater.9(10), 806 (2010)
https://doi.org/10.1038/nmat2830
|
53 |
M. Acik and Y. J. Chabal, Nature of graphene edges: A review, Jpn. J. Appl. Phys.50(7), 070101 (2011)
https://doi.org/10.7567/JJAP.50.070101
|
54 |
Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, and G. Zhang, Patterning graphene with zigzag edges by self-aligned anisotropic etching, Adv. Mater.23(27), 3061 (2011)
https://doi.org/10.1002/adma.201100633
|
55 |
T. Zhang, S. Wu, R. Yang, and G. Zhang, Graphene: Nanostructure engineering and applications, Front. Phys.12(1), 127206 (2017)
https://doi.org/10.1007/s11467-017-0648-z
|
56 |
J. B. Pendry, Quasi-extended electron states in strongly disordered systems, J. Phys. Chem.20, 733 (1987)
https://doi.org/10.1088/0022-3719/20/5/009
|
57 |
J. Bertolotti, S. Gottardo, D. S. Wiersma, M. Ghulinyan, and L. Pavesi, Optical necklace states in Anderson localized 1D systems, Phys. Rev. Lett.94(11), 113903 (2005)
https://doi.org/10.1103/PhysRevLett.94.113903
|
58 |
L. Chen and X. Jiang, Characterization of short necklace states in the logarithmic transmission spectra of localized systems, J. Phys.: Condens. Matter25(17), 175901 (2013)
https://doi.org/10.1088/0953-8984/25/17/175901
|
59 |
F. Sgrignuoli, G. Mazzamuto, N. Caselli, F. Intonti, F. S. Cataliotti, M. Gurioli, and C. Toninelli, Necklace state hallmark in disordered 2D photonic systems, ACS Photonics2(11), 1636 (2015)
https://doi.org/10.1021/acsphotonics.5b00422
|
60 |
M. Balasubrahmaniyam, S. Mondal, and S. Mujumdar, Necklace-state-mediated anomalous enhancement of transport in Anderson-localized non-Hermitian hybrid systems, Phys. Rev. Lett.124(12), 123901 (2020)
https://doi.org/10.1103/PhysRevLett.124.123901
|
61 |
F. Xu and J. Wang, Statistics of Wigner delay time in Anderson disordered systems, Phys. Rev. B84(2), 024205 (2011)
https://doi.org/10.1103/PhysRevB.84.024205
|
62 |
F. Xu and J. Wang, Statistical properties of electrochemical capacitance in disordered mesoscopic capacitors, Phys. Rev. B89(24), 245430 (2014)
https://doi.org/10.1103/PhysRevB.89.245430
|
63 |
C. Bäuerle, D. C. Glattli, T. Meunier, F. Portier, P. Roche, P. Roulleau, S. Takada, and X. Waintal, Coherent control of single electrons: A review of current progress, Rep. Prog. Phys.81(5), 056503 (2018)
https://doi.org/10.1088/1361-6633/aaa98a
|
64 |
Q. Niu, Towards a quantum pump of electric charges, Phys. Rev. Lett.64(15), 1812 (1990)
https://doi.org/10.1103/PhysRevLett.64.1812
|
65 |
M. Moskalets, G. Haack, and M. Büttiker, Single-electron source: Adiabatic versus nonadiabatic emission, Phys. Rev. B Condens. Matter Mater. Phys.87(12), 125429 (2013)
https://doi.org/10.1103/PhysRevB.87.125429
|
66 |
W. Y. Deng, K. J. Zhong, R. Zhu, and W. J. Deng, Anharmonic effect of adiabatic quantum pumping, Front. Phys.9(2), 164 (2014)
https://doi.org/10.1007/s11467-013-0394-9
|
67 |
Z. Wang, L. Wang, J. Chen, C. Wang, and J. Ren, Geometric heat pump: Controlling thermal transport with time-dependent modulations, Front. Phys.17(1), 13201 (2022)
https://doi.org/10.1007/s11467-021-1095-4
|
68 |
F. Xu, Y. Xing, and J. Wang, Numerical study of parametric pumping current in mesoscopic systems in the presence of a magnetic field, Phys. Rev. B84(24), 245323 (2011)
https://doi.org/10.1103/PhysRevB.84.245323
|
69 |
G. Yamahata, S. Ryu, N. Johnson, H. S. Sim, A. Fujiwara, and M. Kataoka, Picosecond coherent electron motion in a silicon single-electron source, Nat. Nanotechnol.14(11), 1019 (2019)
https://doi.org/10.1038/s41565-019-0563-2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|