Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (5) : 53503    https://doi.org/10.1007/s11467-021-1149-7
RESEARCH ARTICLE
Vector valley Hall edge solitons in the photonic lattice with type-II Dirac cones
Yiqing Tian1, Yiqi Zhang1(), Yongdong Li1, R. Belić Milivoj2
1. Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2. Science Program, Texas A&M University at Qatar, P.O. Box 23874 Doha, Qatar
 Download: PDF(1048 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Topological edge solitons represent a significant research topic in the nonlinear topological photonics. They maintain their profiles during propagation, due to the joint action of lattice potential and nonlinearity, and at the same time are immune to defects or disorders, thanks to the topological protection. In the past few years topological edge solitons were reported in systems composed of helical waveguide arrays, in which the time-reversal symmetry is effectively broken. Very recently, topological valley Hall edge solitons have been demonstrated in straight waveguide arrays with the time-reversal symmetry preserved. However, these were scalar solitary structures. Here, for the first time, we report vector valley Hall edge solitons in straight waveguide arrays arranged according to the photonic lattice with innate type-II Dirac cones, which is different from the traditional photonic lattices with type-I Dirac cones such as honeycomb lattice. This comes about because the valley Hall edge state can possess both negative and positive dispersions, which allows the mixing of two different edge states into a vector soliton. Our results not only provide a novel avenue for manipulating topological edge states in the nonlinear regime, but also enlighten relevant research based on the lattices with type-II Dirac cones.

Keywords valley Hall effect      topological edge soliton      photonic topological insulator     
Corresponding Author(s): Yiqi Zhang   
Issue Date: 28 March 2022
 Cite this article:   
Yiqing Tian,Yiqi Zhang,Yongdong Li, et al. Vector valley Hall edge solitons in the photonic lattice with type-II Dirac cones[J]. Front. Phys. , 2022, 17(5): 53503.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1149-7
https://academic.hep.com.cn/fop/EN/Y2022/V17/I5/53503
1 M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
https://doi.org/10.1103/RevModPhys.82.3045
2 X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
https://doi.org/10.1103/RevModPhys.83.1057
3 R. Süsstrunk and S. D. Huber, Observation of phononic helical edge states in a mechanical topological insulator, Scienc. 349(6243), 47 (2015)
https://doi.org/10.1126/science.aab0239
4 S. D. Huber, Topological mechanics, Nat. Phys. 12(7), 621 (2016)
https://doi.org/10.1038/nphys3801
5 C. He, X. Ni, H. Ge, X. C. Sun, Y. B. Chen, M. H. Lu, X. P. Liu, and Y. F. Chen, Acoustic topological insulator and robust one-way sound transport, Nat. Phys. 12(12), 1124 (2016)
https://doi.org/10.1038/nphys3867
6 Y. G. Peng, C. Z. Qin, D. G. Zhao, Y. X. Shen, X. Y. Xu, M. Bao, H. Jia, and X. F. Zhu, Experimental demonstration of anomalous Floquet topological insulator for sound, Nat. Commun. 7(1), 13368 (2016)
https://doi.org/10.1038/ncomms13368
7 A. V. Nalitov, D. D. Solnyshkov, and G. Malpuech, Polariton Z topological insulator, Phys. Rev. Lett. 114(11), 116401 (2015)
https://doi.org/10.1103/PhysRevLett.114.116401
8 S. Klembt, T. H. Harder, O. A. Egorov, K. Winkler, R. Ge, M. A. Bandres, M. Emmerling, L. Worschech, T. C. H. Liew, M. Segev, C. Schneider, and S. Höfling, Exciton–polariton topological insulator, Naturee 562(7728), 552 (2018)
https://doi.org/10.1038/s41586-018-0601-5
9 G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, Experimental realization of the topological Haldane model with ultracold fermions, Nature 515(7526), 237 (2014)
https://doi.org/10.1038/nature13915
10 N. Goldman, J. Dalibard, A. Dauphin, F. Gerbier, M. Lewenstein, P. Zoller, and I. B. Spielman, Direct imaging of topological edge states in cold-atom systems, Proc. Natl. Acad. Sci. USA 110(17), 6736 (2013)
https://doi.org/10.1073/pnas.1300170110
11 F. D. M. Haldane and S. Raghu, Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry, Phys. Rev. Lett. 100(1), 013904 (2008)
https://doi.org/10.1103/PhysRevLett.100.013904
12 Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic, Observation of unidirectional backscattering-immune topological electromagnetic states, Nature 461(7265), 772 (2009)
https://doi.org/10.1038/nature08293
13 M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, Robust optical delay lines with topological protection, Nat. Phys. 7(11), 907 (2011)
https://doi.org/10.1038/nphys2063
14 A. B. Khanikaev, S. Hossein Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets, Photonic topological insulators, Nat. Mater. 12(3), 233 (2013)
https://doi.org/10.1038/nmat3520
15 N. H. Lindner, G. Refael, and V. Galitski, Floquet topological insulator in semiconductor quantum wells, Nat. Phys. 7(6), 490 (2011)
https://doi.org/10.1038/nphys1926
16 M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Photonic Floquet topological insulators, Nature 496(7444), 196 (2013)
https://doi.org/10.1038/nature12066
17 L. J. Maczewsky, J. M. Zeuner, S. Nolte, and A. Szameit, Observation of photonic anomalous Floquet topological insulators, Nat. Commun. 8(1), 13756 (2017)
https://doi.org/10.1038/ncomms13756
18 S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P. Öhberg, N. Goldman, and R. R. Thomson, Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice, Nat. Commun. 8(1), 13918 (2017)
https://doi.org/10.1038/ncomms13918
19 L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological photonics, Nat. Photonics 8(11), 821 (2014)
https://doi.org/10.1038/nphoton.2014.248
20 T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. Phys. 91(1), 015006 (2019)
https://doi.org/10.1103/RevModPhys.91.015006
21 M. Kim, Z. Jacob, and J. Rho, Recent advances in 2D, 3D and higher-order topological photonics, Light Sci. Appl. 9(1), 130 (2020)
https://doi.org/10.1038/s41377-020-0331-y
22 M. Segev and M. A. Bandres, Topological photonics: Where do we go from here? Nanophoton. 10(1), 425 (2020)
https://doi.org/10.1515/nanoph-2020-0441
23 H. F. Wang, B. Y. Xie, P. Zhan, M. H. Lu, and Y. F. Chen, Research progress of topological photonics, Acta Phy. Sin. 68(22), 224206 (2019) (in Chinese)
https://doi.org/10.7498/aps.68.20191437
24 H. Wang, S. K. Gupta, B. Xie, and M. Lu, Topological photonic crystals: A review, Front. Optoelectron. 13(1), 50 (2020)
https://doi.org/10.1007/s12200-019-0949-7
25 H. Liu, B. Xie, H. Cheng, J. Tian, and S. Chen, Topological photonic states in artificial microstructures, Chin. Opt. Lett. 19(5), 052602 (2021)
https://doi.org/10.3788/COL202119.052602
26 H. Liu, H. N. Wang, B. Y. Xie, H. Cheng, J. G. Tian, and S. Q. Chen, Progress of two-dimensional photonic topological insulators, Chin. Opt. 14(4), 935 (2021)
27 D. J. Bisharat, R. J. Davis, Y. Zhou, P. R. Bandaru, and D. F. Sievenpiper, Photonic topological insulators: A beginner’s introduction, IEEE Antennas Propag. Mag. 63(3), 112 (2021)
https://doi.org/10.1109/MAP.2021.3069276
28 D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, Nonlinear topological photonics, Appl. Phys. Rev. 7(2), 021306 (2020)
https://doi.org/10.1063/1.5142397
29 Y. Ota, K. Takata, T. Ozawa, A. Amo, Z. Jia, B. Kante, M. Notomi, Y. Arakawa, and S. Iwamoto, Active topological photonics, Nanophoton. 9(3), 547 (2020)
https://doi.org/10.1515/nanoph-2019-0376
30 M. Parto, Y. G. N. Liu, B. Bahari, M. Khajavikhan, and D. N. Christodoulides, Non-Hermitian and topological photonics: Optics at an exceptional point, Nanophoton. 10(1), 403 (2020)
https://doi.org/10.1515/nanoph-2020-0434
31 B. Bahari, A. Ndao, F. Vallini, A. El Amili, Y. Fainman, and B. Kanté, Nonreciprocal lasing in topological cavities of arbitrary geometries, Science 358(6363), 636 (2017)
https://doi.org/10.1126/science.aao4551
32 G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, and M. Segev, Topological insulator laser: Theory, Science 359(6381), eaar4003 (2018)
https://doi.org/10.1126/science.aar4003
33 M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, and M. Khajavikhan, Topological insulator laser: Experiments, Science 359(6381), eaar4005 (2018)
https://doi.org/10.1126/science.aar4005
34 Y. V. Kartashov and D. V. Skryabin, Two-dimensional topological polariton laser, Phys. Rev. Lett. 122(8), 083902 (2019)
https://doi.org/10.1103/PhysRevLett.122.083902
35 S. K. Ivanov, Y. Q. Zhang, Y. V. Kartashov, and D. V. Skryabin, Floquet topological insulator laser, APL Photonics 4(12), 126101 (2019)
https://doi.org/10.1063/1.5121414
36 Y. Zeng, U. Chattopadhyay, B. Zhu, B. Qiang, J. Li, Y. Jin, L. Li, A. G. Davies, E. H. Linfield, B. Zhang, Y. Chong, and Q. J. Wang, Electrically pumped topological laser with valley edge modes, Nature 578(7794), 246 (2020)
https://doi.org/10.1038/s41586-020-1981-x
37 H. Zhong, Y. D. Li, D. H. Song, Y. V. Kartashov, Y. Q. Zhang, Y. P. Zhang, and Z. Chen, Topological valley Hall edge state lasing, Laser Photonics Rev. 14(7), 2000001 (2020)
https://doi.org/10.1002/lpor.202000001
38 Y. Gong, S. Wong, A. J. Bennett, D. L. Huffaker, and S. S. Oh, Topological insulator laser using valley-Hall photonic crystals, ACS Photonics 7(8), 2089 (2020)
https://doi.org/10.1021/acsphotonics.0c00521
39 D. Smirnova, A. Tripathi, S. Kruk, M. S. Hwang, H. R. Kim, H. G. Park, and Y. Kivshar, Room-temperature lasing from nanophotonic topological cavities, Light Sci. Appl. 9(1), 127 (2020)
https://doi.org/10.1038/s41377-020-00350-3
40 W. Noh, H. Nasari, H. M. Kim, Q. Le-Van, Z. Jia, C. H. Huang, and B. Kanté, Experimental demonstration of single-mode topological valley-Hall lasing at telecommunication wavelength controlled by the degree of asymmetry, Opt. Lett. 45(15), 4108 (2020)
https://doi.org/10.1364/OL.399053
41 L. J. Maczewsky, M. Heinrich, M. Kremer, S. K. Ivanov, M. Ehrhardt, F. Martinez, Y. V. Kartashov, V. V. Konotop, L. Torner, D. Bauer, and A. Szameit, Nonlinearity-induced photonic topological insulator, Science 370(6517), 701 (2020)
https://doi.org/10.1126/science.abd2033
42 Y. V. Kartashov and D. V. Skryabin, Bistable topological insulator with exciton-polaritons, Phys. Rev. Lett. 119(25), 253904 (2017)
https://doi.org/10.1103/PhysRevLett.119.253904
43 W. Zhang, X. Chen, Y. V. Kartashov, D. V. Skryabin, and F. Ye, Finite-dimensional bistable topological insulators: From small to large, Laser Photonics Rev. 13(11), 1900198 (2019)
https://doi.org/10.1002/lpor.201900198
44 Y. Lumer, Y. Plotnik, M. C. Rechtsman, and M. Segev, Self-localized states in photonic topological insulators, Phys. Rev. Lett. 111(24), 243905 (2013)
https://doi.org/10.1103/PhysRevLett.111.243905
45 S. Mukherjee and M. C. Rechtsman, Observation of Floquet solitons in a topological bandgap, Science 368(6493), 856 (2020)
https://doi.org/10.1126/science.aba8725
46 M. J. Ablowitz, C. W. Curtis, and Y. P. Ma, Linear and nonlinear traveling edge waves in optical honeycomb lattices, Phys. Rev. A 90(2), 023813 (2014)
https://doi.org/10.1103/PhysRevA.90.023813
47 M. J. Ablowitz and J. T. Cole, Tight-binding methods for general longitudinally driven photonic lattices: Edge states and solitons, Phys. Rev. A 96(4), 043868 (2017)
https://doi.org/10.1103/PhysRevA.96.043868
48 M. J. Ablowitz and Y. P. Ma, Strong transmission and reflection of edge modes in bounded photonic graphene, Opt. Lett. 40(20), 4635 (2015)
https://doi.org/10.1364/OL.40.004635
49 D. Leykam and Y. D. Chong, Edge solitons in nonlinear photonic topological insulators, Phys. Rev. Lett. 117(14), 143901 (2016)
https://doi.org/10.1103/PhysRevLett.117.143901
50 S. K. Ivanov, Y. V. Kartashov, L. J. Maczewsky, A. Szameit, and V. V. Konotop, Edge solitons in Lieb topological Floquet insulator, Opt. Lett. 45(6), 1459 (2020)
https://doi.org/10.1364/OL.385494
51 S. K. Ivanov, Y. V. Kartashov, L. J. Maczewsky, A. Szameit, and V. V. Konotop, Bragg solitons in topological Floquet insulators, Opt. Lett. 45(8), 2271 (2020)
https://doi.org/10.1364/OL.390694
52 S. K. Ivanov, Y. V. Kartashov, A. Szameit, L. Torner, and V. V. Konotop, Vector topological edge solitons in Floquet insulators, ACS Photonics 7(3), 735 (2020)
https://doi.org/10.1021/acsphotonics.9b01589
53 S. K. Ivanov, Y. V. Kartashov, M. Heinrich, A. Szameit, L. Torner, and V. V. Konotop, Topological dipole Floquet solitons, Phys. Rev. A 103(5), 053507 (2021)
https://doi.org/10.1103/PhysRevA.103.053507
54 S. K. Ivanov, Y. V. Kartashov, and V. V. Konotop, Four-wave mixing Floquet topological solitons, Opt. Lett. 46(19), 4710 (2021)
https://doi.org/10.1364/OL.438952
55 S. K. Ivanov, Y. V. Kartashov, and V. V. Konotop, Floquet defect solitons, Opt. Lett. 46(21), 5364 (2021)
https://doi.org/10.1364/OL.441124
56 Y. V. Kartashov and D. V. Skryabin, Modulational instability and solitary waves in polariton topological insulators, Optica 3(11), 1228 (2016)
https://doi.org/10.1364/OPTICA.3.001228
57 D. R. Gulevich, D. Yudin, D. V. Skryabin, I. V. Iorsh, and I. A. Shelykh, Exploring nonlinear topological states of matter with exciton-polaritons: Edge solitons in kagome lattice, Sci. Rep. 7(1), 1780 (2017)
https://doi.org/10.1038/s41598-017-01646-y
58 C. Li, F. Ye, X. Chen, Y. V. Kartashov, A. Ferrando, L. Torner, and D. V. Skryabin, Lieb polariton topological insulators, Phys. Rev. B 97(8), 081103 (2018)
https://doi.org/10.1103/PhysRevB.97.081103
59 Y. Q. Zhang, Y. V. Kartashov, and A. Ferrando, Interface states in polariton topological insulators, Phys. Rev. A 99(5), 053836 (2019)
https://doi.org/10.1103/PhysRevA.99.053836
60 D. A. Smirnova, L. A. Smirnov, D. Leykam, and Y. S. Kivshar, Topological edge states and gap solitons in the nonlinear Dirac model, Laser Photonics Rev. 13(12), 1900223 (2019)
https://doi.org/10.1002/lpor.201900223
61 W. Zhang, X. Chen, Y. V. Kartashov, V. V. Konotop, and F. Ye, Coupling of edge states and topological Bragg solitons, Phys. Rev. Lett. 123(25), 254103 (2019)
https://doi.org/10.1103/PhysRevLett.123.254103
62 H. Zhong, S. Xia, Y. Zhang, Y. Li, D. Song, C. Liu, and Z. Chen, Nonlinear topological valley Hall edge states arising from type-II Dirac cones, Adv. Photonics 3(05), 056001 (2021)
https://doi.org/10.1117/1.AP.3.5.056001
63 Q. Tang, B. Ren, V. O. Kompanets, Y. V. Kartashov, Y. Li, and Y. Zhang, Valley Hall edge solitons in a photonic graphene, Opt. Express 29(24), 39755 (2021)
https://doi.org/10.1364/OE.442338
64 B. Ren, H. Wang, V. O. Kompanets, Y. V. Kartashov, Y. Li, and Y. Zhang, Dark topological valley Hall edge solitons, Nanophoton. 10(13), 3559 (2021)
https://doi.org/10.1515/nanoph-2021-0385
65 Z. Y. Zhang, R. Wang, Y. Q. Zhang, Y. V. Kartashov, F. Li, H. Zhong, H. Guan, K. Gao, F. L. Li, Y. P. Zhang, and M. Xiao, Observation of edge solitons in photonic graphene, Nat. Commun. 11(1), 1902 (2020)
https://doi.org/10.1038/s41467-020-15635-9
66 J. W. Liu, F. L. Shi, X. T. He, G. J. Tang, W. J. Chen, X. D. Chen, and J. W. Dong, Valley photonic crystals, Adv. Phys. X 6(1), 1905546 (2021)
https://doi.org/10.1080/23746149.2021.1905546
67 K. C. Jin, H. Zhong, Y. D. Li, F. W. Ye, Y. P. Zhang, F. L. Li, C. L. Liu, and Y. Q. Zhang, Parametric type-II Dirac photonic lattices, Adv. Quantum Technol. 3(7), 2000015 (2020)
https://doi.org/10.1002/qute.202000015
68 K. T. Wang, F. Xu, B. Wang, Y. Yu, and Y. Wei, Transport features of topological corner states in honeycomb lattice with multihollow structure, Front. Phys. (Beijing.) 17(4), 43501 (2021)
https://doi.org/10.1007/s11467-021-1136-z
69 S. Li, Z. M. Yu, Y. Yao, and S. A. Yang, Type-II topological metals, Front. Phys. (Beijing.) 15(4), 43201 (2020)
https://doi.org/10.1007/s11467-020-0963-7
70 S. Stützer, Y. Plotnik, Y. Lumer, P. Titum, N. H. Lindner, M. Segev, M. C. Rechtsman, and A. Szameit, Photonic topological Anderson insulators, Nature 560(7719), 461 (2018)
https://doi.org/10.1038/s41586-018-0418-2
71 M. S. Kirsch, Y. Zhang, M. Kremer, L. J. Maczewsky, S. K. Ivanov, Y. V. Kartashov, L. Torner, D. Bauer, A. Szameit, and M. Heinrich, Nonlinear second-order photonic topological insulators, Nat. Phys. 17(9), 995 (2021)
https://doi.org/10.1038/s41567-021-01275-3
72 D. Tan, Z. Wang, B. Xu, and J. Qiu, Photonic circuits written by femtosecond laser in glass: Improved fabrication and recent progress in photonic devices, Adv. Photonics 3(02), 024002 (2021)
https://doi.org/10.1117/1.AP.3.2.024002
73 Y. V. Kartashov, G. E. Astrakharchik, B. A. Malomed, and L. Torner, Frontiers in multidimensional self-trapping of nonlinear fields and matter, Nat. Rev. Phys. 1(3), 185 (2019)
https://doi.org/10.1038/s42254-019-0025-7
74 B. A. Malomed and D. Mihalache, Nonlinear waves in optical and matter-wave media: A topical survey of recent theoretical and experimental results, Rom. J. Phys. 64, 106 (2019)
75 D. Mihalache, Localized structures in optical and matter-wave media: A selection of recent studies, Rom. Rep. Phys. 73, 403 (2021)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed