Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (5) : 54501    https://doi.org/10.1007/s11467-021-1150-1
RESEARCH ARTICLE
Identify real gravitational wave events in the LIGO-Virgo catalog GWTC-1 and GWTC-2 with convolutional neural network
Meng-Qin Jiang1, Nan Yang2, Jin Li1()
1. College of Physics, Chongqing University, Chongqing 401331, China
2. Department of Electronical Information Science and Technology, Xingtai University, Xingtai 054001, China
 Download: PDF(2754 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In recent years, machine learning models have been introduced into the field of gravitational wave (GW) data processing. In this paper, we apply the convolutional neural network (CNN) to LIGO O1, O2, O3a data analysis to search the released 41 GW events which are emitted from binary black hole (BBH) mergers (here we exclude the events from binary neutron star (BNS) mergers, and the events that are not detected simultaneously by Hanford (H) and Livingston (L) detectors), and use time sliding method to reduce the false alarm rate (FAR). According to the results, the 41 confirmed GW events of BBH mergers can be classified successfully by our CNN model. Furthermore, through restricting the number of consecutive prewarning from sequential samples intercepted continuously in LIGO O2 real time-series and vetoing the coincidences of noise from H and L, the FAR is limited to be less than once in 2 months. It is helpful to promote LIGO real time data processing.

Keywords convolutional neural network      gravitational wave events      false alarm rate     
Corresponding Author(s): Jin Li   
Issue Date: 28 March 2022
 Cite this article:   
Meng-Qin Jiang,Nan Yang,Jin Li. Identify real gravitational wave events in the LIGO-Virgo catalog GWTC-1 and GWTC-2 with convolutional neural network[J]. Front. Phys. , 2022, 17(5): 54501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1150-1
https://academic.hep.com.cn/fop/EN/Y2022/V17/I5/54501
1 B. P. Abbott, R. Abbott, T. D. Abbott, et al., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett. 116(6), 061102 (2016)
2 J. Liu, G. Wang, Y. M. Hu, T. Zhang, Z. R. Luo, Q. L. Wang, and L. Shao, GW150914 and gravitational-wave astronomy, Chin. Sci. Bull. 61(14), 1502 (2016)
https://doi.org/10.1360/N972016-00429
3 B. P. Abbott, R. Abbott, T. D. Abbott, et al., GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, Phys. Rev. X 9(3), 031040 (2019)
4 B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW170817: Observation of gravitational waves from a binary neutron star inspiral, Phys. Rev. Lett. 119(16), 161101 (2017)
5 B. P. Abbott, R. Abbott, T. D. Abbott, et al., GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs, Phys. Rev. X 9(3), 031040 (2019)
6 A. H. Nitz, C. Capano, A. B. Nielsen, S. Reyes, R. White, D. A. Brown, and B. Krishnan, 1-OGC: The first open gravitational-wave catalog of binary mergers from analysis of public advanced LIGO data, Astrophys. J. 872(2), 195 (2019)
https://doi.org/10.3847/1538-4357/ab0108
7 R. Abbott, T. D. Abbott, S. Abraham, et al., GW190412: Observation of a binary-black-hole coalescence with asymmetric masses, Phys. Rev. D 102(4), 043015 (2020)
8 R. Abbott, T. D. Abbott, S. Abraham, et al., GW190814: Gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object, Astrophys. J. 896, L44 (2020)
9 B. P. Abbott, R. Abbott, T. D. Abbott, et al., GW190425: Observation of a compact binary coalescence with total mass ~ 3.4 M⊙, Astrophys. J. 892, L3 (2020)
10 R. Abbott, T. D. Abbott, S. Abraham, et al., GW190521: A binary black hole merger with a total mass of 150 M⊙, Phys. Rev. Lett. 125(10), 101102 (2020)
11 R. Abbott, et al., GWTC-2: Compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run, Phys. Rev. X 11, 021053 (2021)
12 L. S. Finn, Detection, measurement, and gravitational radiation, Phys. Rev. D 46(12), 5236 (1992)
https://doi.org/10.1103/PhysRevD.46.5236
13 K. Cannon, R. Cariou, A. Chapman, M. Crispin-Ortuzar, N. Fotopoulos, M. Frei, C. Hanna, E. Kara, D. Keppel, L. Liao, S. Privitera, A. Searle, L. Singer, and A. Weinstein, Toward early-warning detection of gravitational waves from compact binary coalescence, Astrophys. J. 748(2), 136 (2012)
https://doi.org/10.1088/0004-637X/748/2/136
14 S. A. Usman, A. H. Nitz, I. W. Harry, C. M. Biwer, D. A. Brown, M. Cabero, C. D. Capano, T. D. Canton, T. Dent, S. Fairhurst, M. S. Kehl, D. Keppel, B. Krishnan, A. Lenon, A. Lundgren, A. B. Nielsen, L. P. Pekowsky, H. P. Pfeiffer, P. R. Saulson, M. West, and J. L. Willis, The PyCBC search for gravitational waves from compact binary coalescence, Class. Quantum Grav. 33(21), 215004 (2016)
https://doi.org/10.1088/0264-9381/33/21/215004
15 B. P. Abbott, R. Abbott, T. D. Abbott, et al., Observing gravitational-wave transient GW150914 with minimal assumptions, Phys. Rev. D 93(12), 122004 (2016)
https://doi.org/10.1103/PhysRevD.94.069903
16 I. Harry, S. Privitera, A. Bohe, and A. Buonanno, Searching for gravitational waves from compact binaries with precessing spins, Phys. Rev. D 94(2), 024012 (2016)
https://doi.org/10.1103/PhysRevD.94.024012
17 R. Smith, S. E. Field, K. Blackburn, C. J. Haster, M. Purrer, V. Raymond, and P. Schmidt, Fast and accurate inference on gravitational waves from precessing compact binaries, Phys. Rev. D 94(4), 044031 (2016)
https://doi.org/10.1103/PhysRevD.94.044031
18 A. Krizhevsky, I. Sutskever, and G. E. Hinton, ImageNet classification with deep convolutional neural networks, Commun. ACM 60, 84C90 (2017)
https://doi.org/10.1145/3065386
19 J. Schmidhuber, Deep learning in neural networks: An overview, Neural Netw. 61, 85 (2015)
https://doi.org/10.1016/j.neunet.2014.09.003
20 I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press, 2016
21 I. Kononenko, Machine learning for medical diagnosis: History, state of the art and perspective, Artif. Intell. Med. 23(1), 89 (2001)
https://doi.org/10.1016/S0933-3657(01)00077-X
22 M. Pirooznia, J. Y. Yang, M. Q. Yang, and Y. Deng, A comparative study of different machine learning methods on microarray gene expression data, BMC Genomics 9(S1), S13 (2008)
https://doi.org/10.1186/1471-2164-9-S1-S13
23 G. Allen, et al., Deep learning for multi-messenger astrophysics: A gateway for discovery in the big data era, arXiv: 1902.00522 (2019)
24 D. George and E. Huerta, Deep neural networks to enable real-time multimessenger astrophysics, Phys. Rev. D 97(4), 044039 (2018)
https://doi.org/10.1103/PhysRevD.97.044039
25 M. Chen, Y. H. Zhong, Y. Feng, D. Li, and J. Li, Machine learning for nanohertz gravitational wave detection and parameter estimation with pulsar timing array, Sci. China Phys. Mech. Astron. 63(12), 129511 (2020)
https://doi.org/10.1007/s11433-020-1609-y
26 C. Escamilla-Rivera, M. A. C. Quintero, and S. Capozziello, A deep learning approach to cosmological dark energy models, J. Cosmol. Astropart. Phys. 03, 008(2020)
https://doi.org/10.1088/1475-7516/2020/03/008
27 D. George, H. Shen, and E. A. Huerta, Classification and unsupervised clustering of LIGO data with deep transfer learning, Phys. Rev. D 97(10), 101501 (2018)
https://doi.org/10.1103/PhysRevD.97.101501
28 M. Razzano and E. Cuoco, Image-based deep learning for classification of noise transients in gravitational wave detectors, Class. Quantum Grav. 35, 095016 (2018)
https://doi.org/10.1088/1361-6382/aab793
29 E. A. Huerta, D. George, Z. Z. Zhao, and G. Allen, Realtime regression analysis with deep convolutional neural networks, arXiv: 1805.02716(2018)
30 D. George and E. A. Huerta, Deep learning for real-time gravitational wave detection and parameter estimation: Results with advanced LIGO data, Phys. Lett. B 778, 64 (2018)
https://doi.org/10.1016/j.physletb.2017.12.053
31 G. Allen, I. Andreoni, E. Bachelet, G. B. Berriman, F. B. Bianco, et al., Deep learning for multi-messenger astrophysics: A gateway for discovery in the big data era, arXiv: 1902.00522 (2019)
32 H. Y. Shen, E. A. Huerta, Z. Z. Zhao, E. Jennings, and H. Sharma, Statistically-informed deep learning for gravitational wave parameter estimation, Mach. Learn. Sci. Tech. 3, 015007 (2022)
https://doi.org/10.1088/2632-2153/ac3843
33 C. Chatterjee, L. Wen, K. Vinsen, M. Kovalam, and A. Datta, Using deep learning to localize gravitational wave sources, Phys. Rev. D 100(10), 103025 (2019)
https://doi.org/10.1103/PhysRevD.100.103025
34 H. Wang, S. Wu, Z. Cao, X. Liu, and J. Y. Zhu, Gravitational-wave signal recognition of LIGO data by deep learning, Phys. Rev. D 101(10), 104003 (2020)
https://doi.org/10.1103/PhysRevD.101.104003
35 X. Liu, Z. Cao, and L. Shao, Validating the effective-one-body numerical-relativity waveform models for spinaligned binary black holes along eccentric orbits, Phys. Rev. D 101(4), 044049 (2020)
https://doi.org/10.1103/PhysRevD.101.044049
36 Z. J. Cao and W. B. Han, Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism, Phys. Rev. D 96(4), 044028 (2017)
https://doi.org/10.1103/PhysRevD.96.044028
37 W. Wei and E. A. Huerta, Gravitational wave denoising of binary black hole mergers with deep learning, Phys. Lett. B 800, 135081 (2020)
https://doi.org/10.1016/j.physletb.2019.135081
38 X. R. Li, W. L. Yu, X. L. Fan, and G. J. Babu, Some optimizations on detecting gravitational wave using convolutional neural network, Front. Phys. 15(5), 54501 (2020)
https://doi.org/10.1007/s11467-020-0966-4
39 J. A. González and F. S. Guzman, Characterizing the velocity of a wandering black hole and properties of the surrounding medium using convolutional neural networks, Phys. Rev. D 97(6), 063001 (2018)
https://doi.org/10.1103/PhysRevD.97.063001
40 B. J. Lin, X. R. Li, and W. L. Yu, Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks, Front. Phys. 15(2), 24602 (2020)
https://doi.org/10.1007/s11467-019-0935-y
41 M. Zevin, S. Coughlin, S. Bahaadini, E. Besler, N. Rohani, S. Allen, M. Cabero, K. Crowston, A. K. Katsaggelos, S. L. Larson, et al., Gravity spy: Integrating advanced ligo detector characterization, machine learning, and citizen science, Class. Quantum Grav. 34, 064003 (2017)
https://doi.org/10.1088/1361-6382/aa5cea
42 J. C. Driggers, S. Vitale, A. P. Lundgren, M. Evans, K. Kawabe, and E. A. Dwyer, Improving astrophysical parameter estimation via offline noise subtraction for advanced LIGO, Phys. Rev. D 99(4), 042001 (2019)
43 G. Vajente, Y. Huang, M. Isi, J. C. Driggers, J. S. Kissel, M. J. Szczepanczyk, and S. Vitale, Machine-learning nonstationary noise out of gravitational-wave detectors, Phys. Rev. D 101(4), 042003 (2020)
https://doi.org/10.1103/PhysRevD.101.042003
44 A. Torres-Forné, E. Cuoco, J. A. Font, and A. Marquina, Application of dictionary learning to denoise LIGO’s blip noise transients, Phys. Rev. D 102(2), 023011 (2020)
https://doi.org/10.1103/PhysRevD.102.023011
45 W. Wei, A. Khan, E. A. Huerta, X. Huang, and M. Tian, Deep learning ensemble for real-time gravitational wave detection of spinning binary black hole mergers, Phys. Lett. B 812, 136029 (2021)
https://doi.org/10.1016/j.physletb.2020.136029
46 J. D. Alvares, J. A. Font, F. F. Freitas, O. G. Freitas, A. P. Morais, et al., Exploring gravitational-wave detection and parameter inference using deep learning methods, Class. Quant. Grav. 38, 155010 (2021)
https://doi.org/10.1088/1361-6382/ac0455
47 P. G. Krastev, K. Gill, V. A. Villar, and E. Berger, Detection and parameter estimation of gravitational waves from binary neutron-star mergers in real LIGO data using deep learning, Phys. Lett. B 815, 136161 (2021)
https://doi.org/10.1016/j.physletb.2021.136161
48 B. Zhou, et al., Learning Deep Features for Discriminative Localization, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27–30 June, 2016, Las Vegas, NV, IEEE, 2016, pp 2921
https://doi.org/10.1109/CVPR.2016.319
49 S. Liu, A. J. Davison, and E. Johns, Self-Supervised Generalisation with Meta Auxiliary Learning, NIPS, 2019
[1] Hua-Mei Luo, Wenbin Lin, Zu-Cheng Chen, Qing-Guo Huang. Extraction of gravitational wave signals with optimized convolutional neural network[J]. Front. Phys. , 2020, 15(1): 14601-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed