Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (5) : 51501    https://doi.org/10.1007/s11467-022-1157-2
RESEARCH ARTICLE
Reconstructing unknown quantum states using variational layerwise method
Junxiang Xiao1, Jingwei Wen1, Shijie Wei2(), Guilu Long1,3,4,2()
1. State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
2. Beijing Academy of Quantum Information Sciences, Beijing 100193, China
3. Frontier Science Center for Quantum Information, Beijing 100084, China
4. Beijing National Research Center for Information Science and Technology, Beijing 100084, China
 Download: PDF(1122 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In order to gain comprehensive knowledge of an arbitrary unknown quantum state, one feasible way is to reconstruct it, which can be realized by finding a series of quantum operations that can refactor the unitary evolution producing the unknown state. We design an adaptive framework that can reconstruct unknown quantum states at high fidelities, which utilizes SWAP test, parameterized quantum circuits (PQCs) and layerwise learning strategy. We conduct benchmarking on the framework using numerical simulations and reproduce states of up to six qubits at more than 96% overlaps with original states on average using PQCs trained by our framework, revealing its high applicability to quantum systems of different scales theoretically. Moreover, we perform experiments on a five-qubit IBM Quantum hardware to reconstruct random unknown single qubit states, illustrating the practical performance of our framework. For a certain reconstructing fidelity, our method can effectively construct a PQC of suitable length, avoiding barren plateaus of shadow circuits and overuse of quantum resources by deep circuits, which is of much significance when the scale of the target state is large and there is no a priori information on it. This advantage indicates that it can learn credible information of unknown states with limited quantum resources, giving a boost to quantum algorithms based on parameterized circuits on near-term quantum processors.

Keywords variational quantum algorithm      layerwise learning      quantum state reconstructing     
Corresponding Author(s): Shijie Wei,Guilu Long   
Issue Date: 28 March 2022
 Cite this article:   
Junxiang Xiao,Jingwei Wen,Shijie Wei, et al. Reconstructing unknown quantum states using variational layerwise method[J]. Front. Phys. , 2022, 17(5): 51501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1157-2
https://academic.hep.com.cn/fop/EN/Y2022/V17/I5/51501
1 S. Lloyd, Universal quantum simulators, Science 273(5278), 1073 (1996)
https://doi.org/10.1126/science.273.5278.1073
2 X. Qiang, T. Loke, A. Montanaro, K. Aungskunsiri, X. Zhou, J. L. O’Brien, J. B. Wang, and J. C. F. Matthews, Efficient quantum walk on a quantum processor, Nat. Commun. 7(1), 11511 (2016)
https://doi.org/10.1038/ncomms11511
3 N. N. Zhang, M. J. Tao, W. T. He, X. Y. Chen, X. Y. Kong, F. G. Deng, N. Lambert, and Q. Ai, Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities, Front. Phys. 16(5), 51501 (2021)
https://doi.org/10.1007/s11467-021-1064-y
4 P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26(5), 1484 (1997)
https://doi.org/10.1137/S0097539795293172
5 L. K. Grover, Quantum computers can search arbitrarily large databases by a single query, Phys. Rev. Lett. 79(23), 4709 (1997)
https://doi.org/10.1103/PhysRevLett.79.4709
6 G. L. Long, General quantum interference principle and duality computer, Commum. Theor. Phys. 45(5), 825 (2006)
https://doi.org/10.1088/0253-6102/45/5/013
7 G. L. Long, Duality quantum computing and duality quantum information processing, Int. J. Theor. Phys. 50(4), 1305 (2011)
https://doi.org/10.1007/s10773-010-0603-z
8 A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103(15), 150502 (2009)
https://doi.org/10.1103/PhysRevLett.103.150502
9 C. H. Bennett and G. Brassard, in: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, (1984), pp 175–179
10 A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
https://doi.org/10.1103/PhysRevLett.67.661
11 C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68(21), 3121 (1992)
https://doi.org/10.1103/PhysRevLett.68.3121
12 G. L. Long and X. S. Liu, Theoretically efficient high-capacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
https://doi.org/10.1103/PhysRevA.65.032302
13 Z. D. Ye, D. Pan, Z. Sun, C. G. Du, L. G. Yin, and G. L. Long, Generic security analysis framework for quantum secure direct communication, Front. Phys. 16(2), 21503 (2021)
https://doi.org/10.1007/s11467-020-1025-x
14 Z. X. Cui, W. Zhong, L. Zhou, and Y. B. Sheng, Measurement-device-independent quantum key distribution with hyper-encoding, Sci. China Phys. Mech. Astron. 62(11), 110311 (2019)
https://doi.org/10.1007/s11433-019-1438-6
15 Z. Qi, Y. Li, Y. Huang, J. Feng, Y. Zheng, and X. Chen, A 15-user quantum secure direct communication network, Light Sci. Appl. 10(1), 183 (2021)
https://doi.org/10.1038/s41377-021-00634-2
16 G. L. Long and H. Zhang, Drastic increase of channel capacity in quantum secure direct communication using masking, Sci. Bull. (Beijing.) 66(13), 1267 (2021)
https://doi.org/10.1016/j.scib.2021.04.016
17 X. Liu, Z. Li, D. Luo, C. Huang, D. Ma, M. Geng, J. Wang, Z. Zhang, and K. Wei, Practical decoy-state quantum secure direct communication, Sci. China Phys. Mech. Astron. 64(12), 120311 (2021)
https://doi.org/10.1007/s11433-021-1775-4
18 Y. B. Sheng, L. Zhou, and G. L. Long, One-step quantum secure direct communication, Sci. Bull. (Beijing.) 67(4), 367 (2022)
https://doi.org/10.1016/j.scib.2021.11.002
19 G. M. D’Ariano, M. D. Laurentis, M. G. A. Paris, A. Porzio, and S. Solimeno, Quantum tomography as a tool for the characterization of optical devices, J. Opt. B 4(3), S127 (2002)
https://doi.org/10.1088/1464-4266/4/3/366
20 F. Albarrán-Arriagada, J. C. Retamal, E. Solano, and L. Lamata, Measurement-based adaptation protocol with quantum reinforcement learning, Phys. Rev. A 98(4), 042315 (2018)
https://doi.org/10.1103/PhysRevA.98.042315
21 X. Xu, J. Sun, S. Endo, Y. Li, S. C. Benjamin, and X. Yuan, Variational algorithms for linear algebra, arXiv: 1909.03898 [quant-ph] (2019)
22 C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, and P. J. Coles, Variational quantum linear solver, arXiv: 1909.05820 [quant-ph] (2019)
23 X. Wang, Z. Song, and Y. Wang, Variational quantum singular value decomposition, arXiv: 2006.02336 [quant49 ph] (2020)
24 M. Cerezo, K. Sharma, A. Arrasmith, and P. J. Coles, Variational quantum state eigensolver, arXiv: 2004.01372 [quant-ph] (2020)
25 S. McArdle, S. Endo, A. Aspuru-Guzik, S. Benjamin, and X. Yuan, Quantum computational chemistry, arXiv: 1808.10402 [quant-ph] (2018)
26 A. Peruzzo, J. McClean, P. Shadbolt, M. H. Yung, X. Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien,, A variational eigenvalue solver on a photonic quantum processor, Nat. Commun. 5(1), 4213 (2014)
https://doi.org/10.1038/ncomms5213
27 J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, The theory of variational hybrid quantum–classical algorithms, New J. Phys. 18(2), 023023 (2016)
https://doi.org/10.1088/1367-2630/18/2/023023
28 A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets, Nature 549(7671), 242 (2017)
https://doi.org/10.1038/nature23879
29 I. G. Ryabinkin, T. C. Yen, S. N. Genin, and A. F. Izmaylov, Qubit coupled cluster method: A systematic approach to quantum chemistry on a quantum computer, J. Chem. Theory Comput. 14(12), 6317 (2018)
https://doi.org/10.1021/acs.jctc.8b00932
30 I. G. Ryabinkin, R. A. Lang, S. N. Genin, and A. F. Izmaylov, Iterative qubit coupled cluster approach with efficient screening of generators, arXiv: 1906.11192 [quant-ph] (2019)
31 D. B. Zhang, Z. H. Yuan, and T. Yin, Variational quantum eigensolvers by variance minimization, arXiv: 2006.15781 [quant-ph] (2020)
32 E. Farhi and H. Neven, Classification with quantum neural networks on near term processors, arXiv: 1802.06002 [quant-ph] (2018)
33 A. Skolik, J. R. McClean, M. Mohseni, P. van der Smagt, and M. Leib, Layerwise learning for quantum neural networks, arXiv: 2006.14904 [quant-ph] (2020)
https://doi.org/10.1007/s42484-020-00036-4
34 K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Quantum circuit learning, Phys. Rev. A 98(3), 032309 (2018)
https://doi.org/10.1103/PhysRevA.98.032309
35 J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018)
https://doi.org/10.22331/q-2018-08-06-79
36 J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Quantum machine learning, Nature 549(7671), 195 (2017)
https://doi.org/10.1038/nature23474
37 M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, Parameterized quantum circuits as machine learning models, Quantum Sci. Technol. 4(4), 043001 (2019)
https://doi.org/10.1088/2058-9565/ab4eb5
38 S. Wei, Y. Chen, Z. Zhou, and G. Long, A quantum convolutional neural network on NISQ devices, arXiv: 2104.06918 [quant-ph] (2021)
39 F. Hu, B. N. Wang, N. Wang, and C. Wang, Quantum machine learning with D-wave quantum computer, Quantum Engineering 1(2), e12 (2019)
https://doi.org/10.1002/que2.12
40 J. Li, X. Yang, X. Peng, and C. P. Sun, Hybrid quantum-classical approach to quantum optimal control, Phys. Rev. Lett. 118(15), 150503 (2017)
https://doi.org/10.1103/PhysRevLett.118.150503
41 M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, Evaluating analytic gradients on quantum hardware, Phys. Rev. A 99(3), 032331 (2019)
https://doi.org/10.1103/PhysRevA.99.032331
42 IBM quantum, 2021
43 A. Mari, T. R. Bromley, and N. Killoran, Estimating the gradient and higher-order derivatives on quantum hardware, Phys. Rev. A 103(1), 012405 (2021)
https://doi.org/10.1103/PhysRevA.103.012405
44 T. Xin, X. Nie, X. Kong, J. Wen, D. Lu, and J. Li, Quantum pure state tomography via variational hybrid quantum-classical method, Phys. Rev. Appl. 13(2), 024013 (2020)
https://doi.org/10.1103/PhysRevApplied.13.024013
45 J. Xiao, Paulicirq, 2020
46 Quantum AI Team and Collaborators, Cirq, 2020
47 M. Broughton, G. Verdon, T. McCourt, A. J. Martinez, J. H. Yoo, S. V. Isakov, P. Massey, M. Y. Niu, R. Halavati, E. Peters, M. Leib, A. Skolik, M. Streif, D. V. Dollen, J. R. McClean, S. Boixo, D. Bacon, A. K. Ho, H. Neven, and M. Mohseni, Tensorflow quantum: A software framework for quantum machine learning, arXiv: 2003.02989 [quant-ph] (2020)
48 Qiskit: An open-source framework for quantum computing, 2019
49 J. C. Garcia-Escartin and P. Chamorro-Posada, SWAP test and Hong–Ou–Mandel effect are equivalent, Phys. Rev. A 87(5), 052330 (2013)
https://doi.org/10.1103/PhysRevA.87.052330
50 F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, et al., Quantum supremacy using a programmable superconducting processor, Nature 574(7779), 505 (2019)
51 X. Z. Luo, J. G. Liu, P. Zhang, and L. Wang, Yao.jl: Extensible, efficient framework for quantum algorithm design, Quantum 4, 341 (2020)
https://doi.org/10.22331/q-2020-10-11-341
52 R. E. Plessix, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophys. J. Int. 167(2), 495 (2006)
https://doi.org/10.1111/j.1365-246X.2006.02978.x
53 T. Dozat, in: ICLR (2016)
54 D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv: 1412.6980 [cs.LG] (2014)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed