Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (5) : 41502    https://doi.org/10.1007/s11467-022-1168-z
RESEARCH ARTICLE
Deterministic and complete hyperentangled Bell states analysis assisted by frequency and time interval degrees of freedom
Xin-Jie Zhou1, Wen-Qiang Liu1,2, Hai-Rui Wei1(), Yan-Bei Zheng1, Fang-Fang Du3
1. School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
2. Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
3. Science and Technology on Electronic Test and Measurement Laboratory, North University of China, Taiyuan 030051, China
 Download: PDF(2478 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hyperentangled Bell states analysis (HBSA) is an essential building block for certain hyper-parallel quantum information processing. We propose a complete and deterministic HBSA scheme encoded in spatial and polarization degrees of freedom (DOFs) of two-photon system assisted by a fixed frequency-based entanglement and a time interval DOF. The parity information the spatial-based and polarization-based hyper-entanglement can be distinguished by the distinct time intervals of the photon pairs, and the phase information can be distinguished by the detection signature. Compared with previous schemes, the number of the auxiliary entanglements is reduced from two to one by introducing time interval DOF. Moreover, the additional frequency and time interval DOFs suffer less from the collective channel noise.

Keywords hyperentangled Bell states analysis      multiple degrees of freedom      time interval     
Corresponding Author(s): Hai-Rui Wei   
Issue Date: 17 June 2022
 Cite this article:   
Xin-Jie Zhou,Wen-Qiang Liu,Hai-Rui Wei, et al. Deterministic and complete hyperentangled Bell states analysis assisted by frequency and time interval degrees of freedom[J]. Front. Phys. , 2022, 17(5): 41502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1168-z
https://academic.hep.com.cn/fop/EN/Y2022/V17/I5/41502
Fig.1  Schematic diagram of the complete hyper-Bell state analysis. The frequency beam splitter (FBS) leads the photon with ω1 and ω2 into the spatial modes x1 and x2, respectively. The frequency shifter (FS) completes the bit-flip operation on frequency DOF Xf=|ω2??ω1|+|ω1??ω2|. UI is an unbalanced interferometer [45]. The circles “circle” on the path c1 and d2 introduce time intervals t0 and t1, respectively. HWP22.5° represents a half-wave plate oriented at 22.5° of the horizontal direction, which completes the transformations Hp=12[(|H?+|V?)?H|+(|H??|V?)?V|] on the incident photon. BS is a 50:50 beam splitter. PBS is a polarization beam splitter, which transmits the horizontally polarized component |H? and reflects the vertically polarized component |V? of photons.
Input Detection Time
states signatures intervals
|?s+??|?p+? a11H(V)b22V(H), a12H(V)b21V(H), b11H(V)a22V(H), b12H(V)a21V(H) 0
|?s+??|?p?? a11H(V)b21H(V), a12H(V)b22H(V), b11H(V)a21H(V), b12H(V)a22H(V)
|?s???|?p+? a11H(V)a12H(V), a12H(V)a11H(V), a21H(V)a22H(V), a22H(V)a21H(V), b11H(V)b12H(V), b12H(V)b11H(V), b21H(V)b22H(V), b22H(V)b21H(V)
|?s???|?p?? a11H(V)a11V(H), a12H(V)a12V(H), a21H(V)a21V(H), a22H(V)a22V(H), b11H(V)b11V(H), b12H(V)b12V(H), b21H(V)b21V(H), b22H(V)b22V(H)
|ψs+??|ψp+? a11H(V)b12H(V), a12H(V)b11H(V), a21H(V)b22H(V), a22H(V)b21H(V), a11H(V)a22V(H), a12H(V)a21V(H), b11H(V)b22V(H), b12H(V)b21V(H) t0
|ψs+??|ψp?? a11H(V)b11V(H), a12H(V)b12V(H), a21H(V)b21V(H), a22H(V)b22V(H), a11H(V)a21H(V), a12H(V)a22H(V), b11H(V)b21H(V), b12H(V)b22H(V)
|ψs???|ψp+? a11H(V)a12H(V), a12H(V)a11H(V), a21H(V)a22H(V), a22H(V)a21H(V),
b11H(V)b12H(V), b12H(V)b11H(V), b21H(V)b22H(V), b22H(V)b21H(V), a11H(V)b22V(H), a12H(V)b21V(H), a21H(V)b12V(H), a22H(V)b11V(H)
|ψs???|ψp?? a11H(V)a11V(H), a12H(V)a12V(H), a21H(V)a21V(H), a22H(V)a22V(H),
b11H(V)b11V(H), b12H(V)b12V(H), b21H(V)b21V(H), b22H(V)b22V(H), a11H(V)b21H(V), a12H(V)b22H(V), a21H(V)b11H(V), a22H(V)b12H(V)
|?s+??|ψp+? a11H(V)a12V(H), a12H(V)a11V(H), a21H(V)a22V(H), a22H(V)a21V(H),
b11H(V)b12V(H), b12H(V)b11V(H), b21H(V)b22V(H), b22H(V)b21V(H), a11H(V)b22V(H), a12H(V)b21V(H), a21H(V)b12V(H), a22H(V)b11V(H) t1
|?s+??|ψp?? a11H(V)a11H(V), a12H(V)a12H(V), a21H(V)a21H(V), a22H(V)a22H(V),
b11H(V)b11H(V), b12H(V)b12H(V), b21H(V)b21H(V), b22H(V)b22H(V), a11H(V)b21H(V), a12H(V)b22H(V), a21H(V)b11H(V), a22H(V)b12H(V)
|?s???|ψp+? a11H(V)a12H(V), a12H(V)a11H(V), a21H(V)a22H(V), a22H(V)a21H(V),
b11H(V)b12H(V), b12H(V)b11H(V), b21H(V)b22H(V), b22H(V)b21H(V), a11H(V)b22H(V), a12H(V)b21H(V), a21H(V)b12H(V), a22H(V)b11H(V)
|?s???|ψp?? a11H(V)a11V(H), a12H(V)a12V(H), a21H(V)a21V(H), a22H(V)a22V(H),
b11H(V)b11V(H), b12H(V)b12V(H), b21H(V)b21V(H), b22H(V)b22V(H), a11H(V)b21V(H), a12H(V)b22V(H), a21H(V)b11V(H), a22H(V)b12V(H)
|ψs+??|?p+? a11H(V)a22H(V), a11H(V)a22V(H), a12H(V)a21H(V), a12H(V)a21V(H), b11H(V)b22H(V), b11H(V)b22V(H), b12H(V)b21H(V), b12H(V)b21V(H),
a11H(V)b12H(V), a11H(V)b12V(H), a12H(V)b11H(V), a12H(V)b11V(H), a21H(V)b22H(V), a21H(V)b22V(H), a22H(V)b21H(V), a22H(V)b21V(H) t1±t0
|ψs+??|?p?? a11H(V)a21H(V), a11H(V)a21V(H), a12H(V)a22H(V), a12H(V)a22V(H), b11H(V)b21H(V), b12H(V)b22H(V), b11H(V)b21V(H), b12H(V)b22V(H),
a11H(V)b11H(V), a11H(V)b11V(H), a12H(V)b12H(V), a12H(V)b12V(H), a21H(V)b21H(V), a21H(V)b21V(H), a22H(V)b22H(V), a22H(V)b22V(H)
|ψs???|?p+? a11H(V)a12H(V), a12H(V)a11H(V), a21H(V)a22H(V), a22H(V)a21H(V), b11H(V)b12H(V), b12H(V)b11H(V), b21H(V)b22H(V), b22H(V)b21H(V),
a11H(V)b22H(V), a12H(V)b21H(V), a11H(V)b22V(H), a12H(V)b21V(H), a21H(V)b12H(V), a22H(V)b11H(V), a21H(V)b12V(H), a22H(V)b11V(H),
a11H(V)a12V(H), a12H(V)a11V(H), a21H(V)a22V(H), a22H(V)a21V(H), b11H(V)b12V(H), b12H(V)b11V(H), b21H(V)b22V(H), b22H(V)b21V(H)
|ψs???|?p?? a11H(V)a11H(V), a11H(V)a11V(H), a12H(V)a12H(V), a12H(V)a12V(H), a21H(V)a21H(V), a21H(V)a21V(H), a22H(V)a22H(V), a22H(V)a22V(H),
b11H(V)b11H(V), b11H(V)b11V(H), b12H(V)b12H(V), b12H(V)b12V(H), b21H(V)b21H(V), b21H(V)b21V(H), b22H(V)b22H(V), b22H(V)b22V(H),
a11H(V)b21H(V), a12H(V)b22H(V), a11H(V)b21V(H), a12H(V)b22V(H), a21H(V)b11H(V), a21H(V)b11V(H), a22H(V)b12H(V), a22H(V)b12V(H)
Tab.1  Relations between the 16 hyperentangled Bell states, the detection signatures, and the time intervals. 0, t0, t1, and t1±t0 are the time intervals of the two outing photons.
1 A. Nielsen M. L. Chuang I., Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000
2 Raussendorf R. , J. Briegel H. . A one-way quantum computer. Phys. Rev. Lett., 2001, 86( 22): 5188
https://doi.org/10.1103/PhysRevLett.86.5188
3 Raussendorf R. , E. Browne D. , J. Briegel H. . Measurement-based quantum computation on cluster states. Phys. Rev. A, 2003, 68( 2): 022312
https://doi.org/10.1103/PhysRevA.68.022312
4 Liu S. , Lou Y. , Jing J. . Orbital angular momentum multiplexed deterministic all-optical quantum teleportation. Nat. Commun., 2020, 11( 1): 3875
https://doi.org/10.1038/s41467-020-17616-4
5 Langenfeld S. , Welte S. , Hartung L. , Daiss S. , Thomas P. , Morin O. , Distante E. , Rempe G. . Quantum teleportation between remote qubit memories with only a single photon as a resource. Phys. Rev. Lett., 2021, 126( 13): 130502
https://doi.org/10.1103/PhysRevLett.126.130502
6 Ning W. , J. Huang X. , R. Han P. , Li H. , Deng H. , B. Yang Z. , Xia Y. , Xu K. , N. Zheng D. , B. Zheng S. . Deterministic entanglement swapping in a superconducting circuit. Phys. Rev. Lett., 2019, 123( 6): 060502
https://doi.org/10.1103/PhysRevLett.123.060502
7 X. Ji Z. , R. Fan P. , G. Zhang H. . Entanglement swapping for Bell states and Greenberger−Horne− Zeilinger states in qubit systems. Physica A, 2022, 585 : 126400
https://doi.org/10.1016/j.physa.2021.126400
8 H. Bennett C. , J. Wiesner S. . Communication via one- and two-particle operators on Einstein−Podolsky−Rosen states. Phys. Rev. Lett., 1992, 69( 20): 2881
https://doi.org/10.1103/PhysRevLett.69.2881
9 Guo Y. , H. Liu B. , F. Li C. , C. Guo G. . Advances in quantum dense coding. Adv. Quantum Technol., 2019, 2( 5−6): 1900011
https://doi.org/10.1002/qute.201900011
10 Wang P. , Q. Yu C. , X. Wang Z. , Y. Yuan R. , F. Du F. , C. Ren B. . Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system. Front. Phys., 2022, 17 : 31501
https://doi.org/10.1007/s11467-021-1120-7
11 L. Long G. , S. Liu X. . Theoretically efficient highcapacity quantum-key-distribution scheme. Phys. Rev. A, 2002, 65( 3): 032302
https://doi.org/10.1103/PhysRevA.65.032302
12 H. Li X. , G. Deng F. , Y. Zhou H. . Efficient quantum key distribution over a collective noise channel. Phys. Rev. A, 2008, 78( 2): 022321
https://doi.org/10.1103/PhysRevA.78.022321
13 M. Liang L. , H. Sun S. , S. Jiang M. , Y. Li C. . Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices. Front. Phys., 2014, 9 : 613
https://doi.org/10.1007/s11467-014-0420-6
14 C. W. Lim C. , Xu F. , W. Pan J. , Ekert A. . Security analysis of quantum key distribution with small block length and its application to quantum space communications. Phys. Rev. Lett., 2021, 126( 10): 100501
https://doi.org/10.1103/PhysRevLett.126.100501
15 C. Kwek L. , Cao L. , Luo W. , X. Wang Y. , H. Sun S. , B. Wang X. , Q. Liu A. . Chip-based quantum key distribution. AAPPS Bull., 2021, 31( 1): 15
https://doi.org/10.1007/s43673-021-00017-0
16 Y. Gao C. , L. Guo P. , C. Ren B. . Efficient quantum secure direct communication with complete Bell state measurement. Quantum Eng., 2021, 3( 4): e83
https://doi.org/10.1002/que2.83
17 Z. Tang G. , Y. Li C. , Wang M. . Polarization discriminated time-bin phase-encoding measurement device-independent quantum key distribution. Quantum Eng., 2021, 3( 4): e79
https://doi.org/10.1002/que2.79
18 Yan X. , F. Yu Y. , M. Zhang Z. . Entanglement concentration for a non-maximally entangled four-photon cluster state. Front. Phys., 2014, 9 : 640
https://doi.org/10.1007/s11467-014-0435-z
19 Wang H. , C. Ren B. , H. Wang A. , Alsaedi A. , Hayat T. , G. Deng F. . General hyperentanglement concentration for polarization-spatial-time-bin multi-photon systems with linear optics. Front. Phys., 2018, 13 : 130315
https://doi.org/10.1007/s11467-018-0801-3
20 Liu J. , Zhou L. , Zhong W. , B. Sheng Y. . Logic Bell state concentration with parity check measurement. Front. Phys., 2019, 14( 2): 21601
https://doi.org/10.1007/s11467-018-0866-z
21 G. Deng F. , L. Long G. , S. Liu X. . Two-step quantum direct communication protocol using the Einstein−Podolsky−Rosen pair block. Phys. Rev. A, 2003, 68( 4): 042317
https://doi.org/10.1103/PhysRevA.68.042317
22 R. Zhou Z. , B. Sheng Y. , H. Niu P. , G. Yin L. , L. Long G. , Hanzo L. . Measurement-device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron., 2020, 63( 3): 230362
https://doi.org/10.1007/s11433-019-1450-8
23 L. Long G. , Zhang H. . Drastic increase of channel capacity in quantum secure direct communication using masking. Sci. Bull. (Beijing), 2021, 66( 13): 1267
https://doi.org/10.1016/j.scib.2021.04.016
24 B. Sheng Y. , Zhou L. , L. Long G. . One-step quantum secure direct communication. Sci. Bull. (Beijing), 2022, 67( 4): 367
https://doi.org/10.1016/j.scib.2021.11.002
25 Zhou L. , B. Sheng Y. . One-step device-independent quantum secure direct communication. Sci. China Phys. Mech. Astron., 2022, 65( 5): 250311
https://doi.org/10.1007/s11433-021-1863-9
26 Wang C. . Quantum secure direct communication: Intersection of communication and cryptography. Funda. Res., 2021, 1( 1): 91
https://doi.org/10.1016/j.fmre.2021.01.002
27 D. Ye Z. , Pan D. , Sun Z. , G. Du C. , G. Yin L. , L. Long G. . Generic security analysis framework for quantum secure direct communication. Front. Phys., 2021, 16 : 21503
https://doi.org/10.1007/s11467-020-1025-x
28 Lütkenhaus N. , Calsamiglia J. , A. Suominen K. . Bell measurements for teleportation. Phys. Rev. A, 1999, 59( 5): 3295
https://doi.org/10.1103/PhysRevA.59.3295
29 Vaidman L. , Yoran N. . Methods for reliable teleportation. Phys. Rev. A, 1999, 59( 1): 116
https://doi.org/10.1103/PhysRevA.59.116
30 A. Nielsen M. , Knill E. , Laflamme R. . Complete quantum teleportation using nuclear magnetic resonance. Nature, 1998, 396( 6706): 52
https://doi.org/10.1038/23891
31 D. Barrett M. , Chiaverini J. , Schaetz T. , Britton J. , M. Itano W. , D. Jost J. , Knill E. , Langer C. , Leibfried D. , Ozeri R. , J. Wineland D. . Deterministic quantum teleportation of atomic qubits. Nature, 2004, 429( 6993): 737
https://doi.org/10.1038/nature02608
32 Ye L. , C. Guo G. . Scheme for teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A, 2004, 70( 5): 054303
https://doi.org/10.1103/PhysRevA.70.054303
33 P. Williams B. , J. Sadlier R. , S. Humble T. . Superdense coding over optical fiber links with complete Bell-state measurements. Phys. Rev. Lett., 2017, 118( 5): 050501
https://doi.org/10.1103/PhysRevLett.118.050501
34 G. Kwiat P. , Weinfurter H. . Embedded Bell-state analysis. Phys. Rev. A, 1998, 58( 4): R2623
https://doi.org/10.1103/PhysRevA.58.R2623
35 Vallone G. , Ceccarelli R. , De Martini F. , Mataloni P. . Hyperentanglement of two photons in three degrees of freedom. Phys. Rev. A, 2009, 79( 3): 030301
https://doi.org/10.1103/PhysRevA.79.030301
36 L. Wang X. , H. Luo Y. , L. Huang H. , C. Chen M. , E. Su Z. , Liu C. , Chen C. , Li W. , Q. Fang Y. , Jiang X. , Zhang J. , Li L. , L. Liu N. , Y. Lu C. , W. Pan J. . 18-qubit entanglement with six photons’ three degrees of freedom. Phys. Rev. Lett., 2018, 120( 26): 260502
https://doi.org/10.1103/PhysRevLett.120.260502
37 Pile D. . How many bits can a photon carry. Nat. Photonics, 2012, 6( 1): 14
https://doi.org/10.1038/nphoton.2011.330
38 Flamini F. , Spagnolo N. , Sciarrino F. . Photonic quantum information processing: A review. Rep. Prog. Phys., 2019, 82( 1): 016001
https://doi.org/10.1088/1361-6633/aad5b2
39 Y. Wang G. , Ai Q. , C. Ren B. , Li T. , G. Deng F. . Error-detected generation and complete analysis of hyperentangled Bell states for photons assisted by quantum-dot spins in double-sided optical microcavities. Opt. Express, 2016, 24( 25): 28444
https://doi.org/10.1364/OE.24.028444
40 G. Deng F. , C. Ren B. , H. Li X. . Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. (Beijing), 2017, 62( 1): 46
https://doi.org/10.1016/j.scib.2016.11.007
41 C. Wei T. , T. Barreiro J. , G. Kwiat P. . Hyperentangled Bell-state analysis. Phys. Rev. A, 2007, 75 : 060305(R)
https://doi.org/10.1103/PhysRevA.75.060305
42 Pisenti N. , P. E. Gaebler C. , W. Lynn T. . Distinguishability of hyperentangled Bell states by linear evolution and local projective measurement. Phys. Rev. A, 2011, 84( 2): 022340
https://doi.org/10.1103/PhysRevA.84.022340
43 H. Li X. , Ghose S. . Hyperentangled Bell-state analysis and hyperdense coding assisted by auxiliary entanglement. Phys. Rev. A, 2017, 96 : 020303(R)
https://doi.org/10.1103/PhysRevA.96.020303
44 Y. Gao C. , C. Ren B. , X. Zhang Y. , Ai Q. , G. Deng F. . The linear optical unambiguous discrimination of hyperentangled Bell states assisted by time bin. Ann. Phys., 2019, 531( 10): 1900201
https://doi.org/10.1002/andp.201900201
45 Y. Gao C. , C. Ren B. , X. Zhang Y. , Ai Q. , G. Deng F. . Universal linear-optical hyperentangled Bell-state measurement. Appl. Phys. Express, 2020, 13 : 027004
46 B. Sheng Y. , G. Deng F. , L. Long G. . Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A, 2010, 82( 3): 032318
https://doi.org/10.1103/PhysRevA.82.032318
47 B. Sheng Y. , Zhou L. . Two-step complete polarization logic Bell-state analysis. Sci. Rep., 2015, 5( 1): 13453
https://doi.org/10.1038/srep13453
48 H. Li X. , Ghose S. . Self-assisted complete maximally hyperentangled state analysis via the cross-Kerr nonlinearity. Phys. Rev. A, 2016, 93( 2): 022302
https://doi.org/10.1103/PhysRevA.93.022302
49 R. Zhang H. , Wang P. , Q. Yu C. , C. Ren B. . Deterministic nondestructive state analysis for polarization spatial-time-bin hyperentanglement with cross-Kerr nonlinearity. Chin. Phys. B, 2021, 30( 3): 030304
https://doi.org/10.1088/1674-1056/abd7d5
50 C. Ren B. , R. Wei H. , Hua M. , Li T. , G. Deng F. . Complete hyperentangled-Bell-state analysis for photon systems assisted by quantum-dot spins in optical microcavities. Opt. Express, 2012, 20( 22): 24664
https://doi.org/10.1364/OE.20.024664
51 J. Wang T. , Lu Y. , L. Long G. . Generation and complete analysis of the hyperentangled Bell state for photons assisted by quantum-dot spins in optical microcavities. Phys. Rev. A, 2012, 86( 4): 042337
https://doi.org/10.1103/PhysRevA.86.042337
52 Liu Q. , Zhang M. . Generation and complete nondestructive analysis of hyperentanglement assisted by nitrogen-vacancy centers in resonators. Phys. Rev. A, 2015, 91( 6): 062321
https://doi.org/10.1103/PhysRevA.91.062321
53 Sabag E. , Bouscher S. , Marjieh R. , Hayat A. . Photonic Bell-state analysis based on semiconductor superconductor structures. Phys. Rev. B, 2017, 95( 9): 094503
https://doi.org/10.1103/PhysRevB.95.094503
54 Y. Zheng Y. , X. Liang L. , Zhang M. . Error-heralded generation and self-assisted complete analysis of two photon hyperentangled Bell states through single-sided quantum-dot-cavity systems. Sci. China Phys. Mech. Astron., 2019, 62( 7): 970312
https://doi.org/10.1007/s11433-018-9338-8
55 Cao C. , Zhang L. , H. Han Y. , P. Yin P. , Fan L. , W. Duan Y. , Zhang R. . Complete and faithful hyperentangled-Bell-state analysis of photon systems using a failure-heralded and fidelity-robust quantum gate. Opt. Express, 2020, 28( 3): 2857
https://doi.org/10.1364/OE.384360
56 Y. Wang G. , C. Ren B. , G. Deng F. , L. Long G. . Complete analysis of hyperentangled Bell states assisted with auxiliary hyperentanglement. Opt. Express, 2019, 27( 6): 8994
https://doi.org/10.1364/OE.27.008994
57 Zeng Z. , D. Zhu K. . Complete hyperentangled Bell state analysis assisted by hyperentanglement. Laser Phys. Lett., 2020, 17( 7): 075203
https://doi.org/10.1088/1612-202X/ab9117
58 Li T. , Y. Wang G. , G. Deng F. , L. Long G. . Deterministic error correction for nonlocal spatial-polarization hyperentanglement. Sci. Rep., 2016, 6( 1): 20677
https://doi.org/10.1038/srep20677
59 G. Kwiat P. , Waks E. , G. White A. , Appelbaum I. , H. Eberhard P. . Ultrabright source of polarizationentangled photons. Phys. Rev. A, 1999, 60( 2): R773
https://doi.org/10.1103/PhysRevA.60.R773
60 Ceccarelli R. , Vallone G. , De Martini F. , Mataloni P. , Cabello A. . Experimental entanglement and nonlocality of a two-photon six-qubit cluster state. Phys. Rev. Lett., 2009, 103( 16): 160401
https://doi.org/10.1103/PhysRevLett.103.160401
61 Yabushita A. , Kobayashi T. . Spectroscopy by frequency-entangled photon pairs. Phys. Rev. A, 2004, 69( 1): 013806
https://doi.org/10.1103/PhysRevA.69.013806
62 Yabushita A. , Kobayashi T. . Generation of frequency tunable polarization entangled photon pairs. J. Appl. Phys., 2006, 99( 6): 063101
https://doi.org/10.1063/1.2183355
63 Shu C. , X. Guo X. , Chen P. , M. T. Loy M. , W. Du S. . Narrowband biphotons with polarization-frequencycoupled entanglement. Phys. Rev. A, 2015, 91( 4): 043820
https://doi.org/10.1103/PhysRevA.91.043820
64 Ueno W. , Kaneda F. , Suzuki H. , Nagano S. , Syouji A. , Shimizu R. , Suizu K. , Edamatsu K. . Entangled photon generation in two-period quasi-phase-matched parametric down-conversion. Opt. Express, 2012, 20( 5): 5508
https://doi.org/10.1364/OE.20.005508
65 Kaneda F. , Suzuki H. , Shimizu R. , Edamatsu K. . Direct generation of frequency-bin entangled photons via two-period quasi-phase-matched parametric downconversion. Opt. Express, 2019, 27( 2): 1416
https://doi.org/10.1364/OE.27.001416
66 V. Burlakov A. , P. Kulik S. , O. Rytikov G. , V. Chekhova M. . Biphoton light generation in polarization frequency Bell states. J. Exp. Theor. Phys., 2002, 95( 4): 639
https://doi.org/10.1134/1.1520596
67 H. Huntington E. , C. Ralph T. . Components for optical qubits encoded in sideband modes. Phys. Rev. A, 2004, 69( 4): 042318
https://doi.org/10.1103/PhysRevA.69.042318
68 Bloch M. , W. McLaughlin S. , M. Merolla J. , Patois F. . Frequency-coded quantum key distribution. Opt. Lett., 2007, 32( 3): 301
https://doi.org/10.1364/OL.32.000301
69 Zhang T. , Q. Yin Z. , F. Han Z. , C. Guo G. . A frequency-coded quantum key distribution scheme. Opt. Commun., 2008, 281( 18): 4800
https://doi.org/10.1016/j.optcom.2008.06.009
70 Langrock C. , Diamanti E. , V. Roussev R. , Yamamoto Y. , M. Fejer M. , Takesue H. . Highly efficient singlephoton detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. Opt. Lett., 2005, 30( 13): 1725
https://doi.org/10.1364/OL.30.001725
71 Takesue H. . Erasing distinguishability using quantum frequency up-conversion. Phys. Rev. Lett., 2008, 101( 17): 173901
https://doi.org/10.1103/PhysRevLett.101.173901
72 Ikuta R. , Kusaka Y. , Kitano T. , Kato H. , Yamamoto T. , Koashi M. , Imoto N. . Wide-band quantum interface for visible-to-telecommunication wavelength conversion. Nat. Commun., 2011, 2( 1): 537
https://doi.org/10.1038/ncomms1544
73 M. Merolla J. , Duraffourg L. , P. Goedgebuer J. , Soujaeff A. , Patois F. , T. Rhodes W. . Integrated quantum key distribution system using single sideband detection. Eur. Phys. J. D, 2002, 18( 2): 141
https://doi.org/10.1140/epjd/e20020017
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed