|
|
High performance of hot-carrier generation, transport and injection in TiN/TiO2 junction |
Tingting Liu1,2, Qianjun Wang3, Cheng Zhang1,2, Xiaofeng Li1,2( ), Jun Hu3,4( ) |
1. School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China 2. Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China 3. School of Physical Science and Technology, Soochow University, Suzhou 215006, China 4. School of Physical Science and Technology, Ningbo University, Ningbo 315211, China |
|
|
Abstract Improving the performance of generation, transport and injection of hot carriers within metal/semiconductor junctions is critical for promoting the hot-carrier applications. However, the conversion efficiency of hot carriers in the commonly used noble metals (e.g., Au) is extremely low. Herein, through a systematic study by first-principles calculation and Monte Carlo simulation, we show that TiN might be a promising plasmonic material for high-efficiency hot-carrier applications. Compared with Au, TiN shows obvious advantages in the generation (high density of low-energy hot electrons) and transport (long lifetime and mean free path) of hot carriers. We further performed a device-oriented study, which reveals that high hot-carrier injection efficiency can be achieved in core/shell cylindrical TiN/TiO2 junctions. Our findings provide a deep insight into the intrinsic processes of hot-carrier generation, transport and injection, which is helpful for the development of hot-carrier devices and applications.
|
Keywords
metal/semiconductor junction
plasmonic material
hot-carrier generation
lifetime and mean free path
injection efficiency
|
Corresponding Author(s):
Xiaofeng Li,Jun Hu
|
Issue Date: 04 July 2022
|
|
1 |
Clavero C.. Plasmon-induced hot-electron generation at nanoparticle/metal−oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics , 2014, 8( 2): 95
https://doi.org/10.1038/nphoton.2013.238
|
2 |
W. Knight M., Sobhani H., Nordlander P., J. Halas N.. Photodetection with active optical antennas. Science , 2011, 332( 6030): 702
https://doi.org/10.1126/science.1203056
|
3 |
Tian Y., Tatsuma T.. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. , 2004, 16( 16): 1810
https://doi.org/10.1039/b405061d
|
4 |
Scales C., Berini P.. Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron. , 2010, 46( 5): 633
https://doi.org/10.1109/JQE.2010.2046720
|
5 |
V. Naik G., M. Shalaev V., Boltasseva A.. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. , 2013, 25( 24): 3264
https://doi.org/10.1002/adma.201205076
|
6 |
J. Krayer L., J. Palm K., Gong C., Torres A., E. P. Villegas C., R. Rocha A., S. Leite M., N. Munday J.. Enhanced near-infrared photoresponse from nanoscale Ag−Au alloyed films. ACS Photonics , 2020, 7( 7): 1689
https://doi.org/10.1021/acsphotonics.0c00140
|
7 |
Tagliabue G., S. DuChene J., Abdellah M., Habib A., J. Gosztola D., Hattori Y., H. Cheng W., Zheng K., E. Canton S., Sundararaman R., Sá J., A. Atwater H.. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p−GaN heterostructures. Nat. Mater. , 2020, 19( 12): 1312
https://doi.org/10.1038/s41563-020-0737-1
|
8 |
Ortolani M., Mancini A., Budweg A., Garoli D., Brida D., de Angelis F.. Pump-probe spectroscopy study of ultrafast temperature dynamics in nanoporous gold. Phys. Rev. B , 2019, 99( 3): 035435
https://doi.org/10.1103/PhysRevB.99.035435
|
9 |
J. Chang Y., H. Shih K.. Solar energy conversion via internal photoemission in aluminum, copper, and silver: Band structure effects and theoretical efficiency estimates. J. Appl. Phys. , 2016, 119( 18): 183101
https://doi.org/10.1063/1.4948386
|
10 |
J. Leenheer A., Narang P., S. Lewis N., A. Atwater H.. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates. J. Appl. Phys. , 2014, 115( 13): 134301
https://doi.org/10.1063/1.4870040
|
11 |
P. White T., R. Catchpole K.. Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Appl. Phys. Lett. , 2012, 101( 7): 073905
https://doi.org/10.1063/1.4746425
|
12 |
T. Ross R., J. Nozik A.. Efficiency of hot-carrier solar energy converters. J. Appl. Phys. , 1982, 53( 5): 3813
https://doi.org/10.1063/1.331124
|
13 |
Sundararaman R., Narang P., S. Jermyn A., A. III Goddard W., A. Atwater H.. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. , 2014, 5( 1): 5788
https://doi.org/10.1038/ncomms6788
|
14 |
M. Brown A., Sundararaman R., Narang P., A. III Goddard W., A. Atwater H.. Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces, and geometry. ACS Nano , 2016, 10( 1): 957
https://doi.org/10.1021/acsnano.5b06199
|
15 |
Ladstädter F., Hohenester U., Puschnig P., Ambrosch-Draxl C.. First-principles calculation of hot-electron scattering in metals. Phys. Rev. B , 2004, 70( 23): 235125
https://doi.org/10.1103/PhysRevB.70.235125
|
16 |
Gong T., N. Munday J.. Materials for hot carrier plasmonics. Opt. Mater. Express , 2015, 5( 11): 2501
https://doi.org/10.1364/OME.5.002501
|
17 |
Y. Lee D., H. Park J., H. Kim Y., H. Lee M., I. Cho N.. Effect of Nb doping on morphology, crystal structure, optical band gap energy of TiO2 thin films. Curr. Appl. Phys. , 2014, 14( 3): 421
https://doi.org/10.1016/j.cap.2013.12.025
|
18 |
Guo Q., Y. Zhou C., B. Ma Z., M. Yang X.. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. , 2019, 31( 50): 1901997
https://doi.org/10.1002/adma.201901997
|
19 |
Z. Zhang D., H. Gu X., Y. Jing F., L. Gao F., G. Zhou J., B. Ruan S.. High performance ultraviolet detector based on TiO2/ZnO heterojunction. J. Alloys Compd. , 2015, 618 : 551
https://doi.org/10.1016/j.jallcom.2014.09.004
|
20 |
Bach U., Lupo D., Comte P., E. Moser J., Weissortel F., Salbeck J., Spreitzer H., Gratzel M.. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature , 1998, 395( 6702): 583
https://doi.org/10.1038/26936
|
21 |
Traver E., A. Karaballi R., E. Monfared Y., Daurie H., A. Gagnon G., Dasog M.. TiN, ZrN, and HfN nanoparticles on nanoporous Aluminum oxide membranes for solar-driven water evaporation and desalination. ACS Appl. Nano Mater. , 2020, 3( 3): 2787
https://doi.org/10.1021/acsanm.0c00107
|
22 |
Kumar M., Umezawa N., Ishii S., Nagao T.. Examining the performance of refractory conductive ceramics as plasmonic materials: A theoretical approach. ACS Photonics , 2016, 3( 1): 43
https://doi.org/10.1021/acsphotonics.5b00409
|
23 |
W. Yu M., Ishii S., L. Shinde S., K. Tanjaya N., P. Chen K., Nagao T.. Direct observation of photoinduced charge separation at transition-metal nitride−semiconductor interfaces. ACS Appl. Mater. Interfaces , 2020, 12( 50): 56562
https://doi.org/10.1021/acsami.0c14690
|
24 |
Marlo M., Milman V.. Density-funcitional study of bulk and surface properties of titanium nitride using different exchange-correlation functional. Phys. Rev. B , 2000, 62( 4): 2899
https://doi.org/10.1103/PhysRevB.62.2899
|
25 |
H. Chen X., T. Pekarek R., Gu J., Zakutayev A., E. Hurst K., R. Neale N., Yang Y., C. Beard M.. Transient evolution of the built-in field at junctions of GaAs. ACS Appl. Mater. Interfaces , 2020, 12( 36): 40339
https://doi.org/10.1021/acsami.0c11474
|
26 |
Naldoni A., Guler U., X. Wang Z., Marelli M., Malara F., G. Meng X., V. Besteiro L., O. Govorov A., V. Kildishev A., Boltasseva A., M. Shalaev V.. Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Adv. Opt. Mater. , 2017, 5( 15): 1601031
https://doi.org/10.1002/adom.201601031
|
27 |
Guler U., Boltasseva A., M. Shalaev V.. Refractory plasmonics. Science , 2014, 344( 6181): 263
https://doi.org/10.1126/science.1252722
|
28 |
V. Naik G., L. Schroeder J., J. Ni X., V. Kildishev A., D. Sands T., Boltasseva A.. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express , 2012, 2( 4): 478
https://doi.org/10.1364/OME.2.000478
|
29 |
McIntyre D., E. Greene J., Hakansson G., E. Sundgren J., D. Münz W.. Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films: Kinetics and mechanisms. J. Appl. Phys. , 1990, 67( 3): 1542
https://doi.org/10.1063/1.345664
|
30 |
Bordone P., Jacoboni C., Lugli P., Reggiani L., Kocevar P.. Monte Carlo analysis of hot-phonon effects on non-polar semiconductor transport properties. Physica B+C , 1985, 134( 1−3): 169
https://doi.org/10.1016/0378-4363(85)90338-9
|
31 |
Piryatinski A., K. Huang C., J. T. Kwan T.. Theory of electron transport and emission from a semiconductor nanotip. J. Appl. Phys. , 2019, 125( 21): 214301
https://doi.org/10.1063/1.5088518
|
32 |
Blandre E., Jalas D., Y. Petrov A., Eich M.. Limit of efficiency of hot electrons in metals and their injection inside a semiconductor using a semiclassical approach. ACS Photonics , 2018, 5( 9): 3613
https://doi.org/10.1021/acsphotonics.8b00473
|
33 |
Kresse G., Furthmuller J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. , 1996, 6( 1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
|
34 |
Kresse G., Furthmuller J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B , 1996, 54( 16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
|
35 |
Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B , 1999, 59( 3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
|
36 |
P. Perdew J., Ruzsinszky A., I. Csonka G., A. Vydrov O., E. Scuseria G., A. Constantin L., L. Zhou X., Burke K.. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. , 2008, 100( 13): 136406
https://doi.org/10.1103/PhysRevLett.100.136406
|
37 |
L. Dudarev S., A. Botton G., Y. Savrasov S., J. Humphreys C., P. Sutton A.. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B , 1998, 57( 3): 1505
https://doi.org/10.1103/PhysRevB.57.1505
|
38 |
Habib A., Florio F., Sundararaman R.. Hot carrier dynamics in plasmonic transition metal nitrides. J. Opt. , 2018, 20( 6): 064001
https://doi.org/10.1088/2040-8986/aac1d8
|
39 |
A. Mills K., F. Davis R., D. Kevan S., Thornton G., A. Shirley D.. Angle-resolved photoemission determination of Λ-line valence bands in Pt and Au using synchrotron radiation. Phys. Rev. B , 1980, 22( 2): 581
https://doi.org/10.1103/PhysRevB.22.581
|
40 |
W. Ashcroft N. D. Mermin N. Dan W., Solid State Physics, revised edition, Cengage Leaning Asia PTe Ltd, 2016
|
41 |
Gall D., Petrov I., Hellgren N., Hultman L., E. Sundgren J., E. Greene J.. Growth of poly- and single-crystal ScN on MgO (001): Role of low-energy N2+ irradiation in determining texture, microstructure evolution, and mechanical properties. J. Appl. Phys. , 1998, 84( 11): 6034
https://doi.org/10.1063/1.368913
|
42 |
Sundararaman R., Letchworth-Weaver K., A. Schwarz K., Gunceler D., Ozhabes Y., A. Arias T.. JDFTx: Software for joint density-functional theory. SoftwareX , 2017, 6 : 278
https://doi.org/10.1016/j.softx.2017.10.006
|
43 |
Schlipf M., Gygi F.. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. , 2015, 196 : 36
https://doi.org/10.1016/j.cpc.2015.05.011
|
44 |
Marzari N., Vanderbilt D.. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B , 1997, 56( 20): 12847
https://doi.org/10.1103/PhysRevB.56.12847
|
45 |
Xu X., Dutta A., Khurgin J., Wei A., M. Shalaev W., Boltasseva A.. TiN@TiO2 core-shell nanoparticles as plasmon-enhanced photosensitizers: The role of hot electron injection. Laser Photonics Rev. , 2020, 14( 5): 1900376
https://doi.org/10.1002/lpor.201900376
|
46 |
C. Ratchford D., D. Dunkelberger A., Vurgaftman I., C. Owrutsky J., E. Pehrsson P.. Quantification of efficient plasmonic hot-electron injection in gold nanoparticle-TiO2 films. Nano Lett. , 2017, 17( 10): 6047
https://doi.org/10.1021/acs.nanolett.7b02366
|
47 |
Tagliabue G., S. Jermyn A., Sundararaman R., J. Welch A., S. Duchene J., Pala R., R. Davoyan A., Narang P., A. Atwater H.. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. Nat. Commun. , 2018, 9( 1): 3394
https://doi.org/10.1038/s41467-018-05968-x
|
48 |
Zhang C., Wu K., Giannini V., F. Li X.. Planar hot-electron photodetection with Tamm plasmons. ACS Nano , 2017, 11( 2): 1719
https://doi.org/10.1021/acsnano.6b07578
|
49 |
A. Mostofi A., R. Yates J., S. Lee Y., Souza I., Vanderbilt D., Marzari N.. Wannier90: A tool for obtaining maximally-localized Wannier functions. Comput. Phys. Commun. , 2008, 178( 9): 685
https://doi.org/10.1016/j.cpc.2007.11.016
|
50 |
Marzari N., A. Mostofi A., R. Yates J., Souza I., Vanderbilt D.. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. , 2012, 84( 4): 1419
https://doi.org/10.1103/RevModPhys.84.1419
|
51 |
Gerbert D., Tegeder P.. Absorbate-mediated relaxation dynamics of hot electrons at metal/organic interfaces. Phys. Rev. B , 2017, 96( 14): 144304
https://doi.org/10.1103/PhysRevB.96.144304
|
52 |
Stair S., G. Johnston R., C. Bagg T.. Spectral distribution of energy from the sun. J. Res. Natl. Bur. Stand. , 1954, 53( 2): 113
https://doi.org/10.6028/jres.053.014
|
53 |
R. Condit H., Grum F.. Spectral energy distribution of daylight. J. Opt. Soc. Am. , 1964, 54( 7): 937
https://doi.org/10.1364/JOSA.54.000937
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|