Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (5) : 53509    https://doi.org/10.1007/s11467-022-1171-4
RESEARCH ARTICLE
High performance of hot-carrier generation, transport and injection in TiN/TiO2 junction
Tingting Liu1,2, Qianjun Wang3, Cheng Zhang1,2, Xiaofeng Li1,2(), Jun Hu3,4()
1. School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
2. Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
3. School of Physical Science and Technology, Soochow University, Suzhou 215006, China
4. School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
 Download: PDF(6012 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Improving the performance of generation, transport and injection of hot carriers within metal/semiconductor junctions is critical for promoting the hot-carrier applications. However, the conversion efficiency of hot carriers in the commonly used noble metals (e.g., Au) is extremely low. Herein, through a systematic study by first-principles calculation and Monte Carlo simulation, we show that TiN might be a promising plasmonic material for high-efficiency hot-carrier applications. Compared with Au, TiN shows obvious advantages in the generation (high density of low-energy hot electrons) and transport (long lifetime and mean free path) of hot carriers. We further performed a device-oriented study, which reveals that high hot-carrier injection efficiency can be achieved in core/shell cylindrical TiN/TiO2 junctions. Our findings provide a deep insight into the intrinsic processes of hot-carrier generation, transport and injection, which is helpful for the development of hot-carrier devices and applications.

Keywords metal/semiconductor junction      plasmonic material      hot-carrier generation      lifetime and mean free path      injection efficiency     
Corresponding Author(s): Xiaofeng Li,Jun Hu   
Issue Date: 04 July 2022
 Cite this article:   
Tingting Liu,Qianjun Wang,Cheng Zhang, et al. High performance of hot-carrier generation, transport and injection in TiN/TiO2 junction[J]. Front. Phys. , 2022, 17(5): 53509.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1171-4
https://academic.hep.com.cn/fop/EN/Y2022/V17/I5/53509
Fig.1  (a, b) Atomic structures of Au and TiN. (c) The Brillouin zone. The red lines denote the path for the band structure. (d) Schematic energy diagram of the hybridization between the Ti-3d and N-2p orbitals due to the crystal field splitting (CFS) in the octahedron symmetry as indicated in (b).
Fig.2  Band structures of Au (upper panels) and TiN (lower panels). The different colors and sizes of circles in (b), (c), (e) and (f) indicate the weights of different atomic orbitals. The color bar in (d) indicates the weights of Ti and N atoms.
Fig.3  (a, b) Projected densities of states of Au and TiN, respectively. The insets are the corresponding Fermi surfaces. (c) Imaginary part of dielectric function for the direct electric dipole transition. The inset highlights the areas where the peaks “A”, “B” and “C” mostly originate from.
Fig.4  Relative probability of hot-carrier generation as a function of hot-carrier energy under different incident photon energy h ν. (a/c) and (b/d) From indirect and direct transitions in Au/Ti, respectively. The Fermi level is set to zero energy. The shadow area denotes the band gap of TiO2.
Fig.5  Imaginary part of quasiparticle self-energy, lifetime and mean free path of hot carriers from electron-electron and electron−phonon scatterings in Au (upper panels) and TiN (lower panels).
Fig.6  Injection efficiency of hot electrons as a function of incident photon energy hν in Au/TiO2 and TiN/TiO2 junctions. The insets depict the structures of the junctions: planar bilayer, planar sandwich trilayer, and core/shell cylinder. t denotes the thickness or diameter of Au and TiN.
1 Clavero C.. Plasmon-induced hot-electron generation at nanoparticle/metal−oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics , 2014, 8( 2): 95
https://doi.org/10.1038/nphoton.2013.238
2 W. Knight M., Sobhani H., Nordlander P., J. Halas N.. Photodetection with active optical antennas. Science , 2011, 332( 6030): 702
https://doi.org/10.1126/science.1203056
3 Tian Y., Tatsuma T.. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. , 2004, 16( 16): 1810
https://doi.org/10.1039/b405061d
4 Scales C., Berini P.. Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron. , 2010, 46( 5): 633
https://doi.org/10.1109/JQE.2010.2046720
5 V. Naik G., M. Shalaev V., Boltasseva A.. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. , 2013, 25( 24): 3264
https://doi.org/10.1002/adma.201205076
6 J. Krayer L., J. Palm K., Gong C., Torres A., E. P. Villegas C., R. Rocha A., S. Leite M., N. Munday J.. Enhanced near-infrared photoresponse from nanoscale Ag−Au alloyed films. ACS Photonics , 2020, 7( 7): 1689
https://doi.org/10.1021/acsphotonics.0c00140
7 Tagliabue G., S. DuChene J., Abdellah M., Habib A., J. Gosztola D., Hattori Y., H. Cheng W., Zheng K., E. Canton S., Sundararaman R., Sá J., A. Atwater H.. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p−GaN heterostructures. Nat. Mater. , 2020, 19( 12): 1312
https://doi.org/10.1038/s41563-020-0737-1
8 Ortolani M., Mancini A., Budweg A., Garoli D., Brida D., de Angelis F.. Pump-probe spectroscopy study of ultrafast temperature dynamics in nanoporous gold. Phys. Rev. B , 2019, 99( 3): 035435
https://doi.org/10.1103/PhysRevB.99.035435
9 J. Chang Y., H. Shih K.. Solar energy conversion via internal photoemission in aluminum, copper, and silver: Band structure effects and theoretical efficiency estimates. J. Appl. Phys. , 2016, 119( 18): 183101
https://doi.org/10.1063/1.4948386
10 J. Leenheer A., Narang P., S. Lewis N., A. Atwater H.. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates. J. Appl. Phys. , 2014, 115( 13): 134301
https://doi.org/10.1063/1.4870040
11 P. White T., R. Catchpole K.. Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Appl. Phys. Lett. , 2012, 101( 7): 073905
https://doi.org/10.1063/1.4746425
12 T. Ross R., J. Nozik A.. Efficiency of hot-carrier solar energy converters. J. Appl. Phys. , 1982, 53( 5): 3813
https://doi.org/10.1063/1.331124
13 Sundararaman R., Narang P., S. Jermyn A., A. III Goddard W., A. Atwater H.. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. , 2014, 5( 1): 5788
https://doi.org/10.1038/ncomms6788
14 M. Brown A., Sundararaman R., Narang P., A. III Goddard W., A. Atwater H.. Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces, and geometry. ACS Nano , 2016, 10( 1): 957
https://doi.org/10.1021/acsnano.5b06199
15 Ladstädter F., Hohenester U., Puschnig P., Ambrosch-Draxl C.. First-principles calculation of hot-electron scattering in metals. Phys. Rev. B , 2004, 70( 23): 235125
https://doi.org/10.1103/PhysRevB.70.235125
16 Gong T., N. Munday J.. Materials for hot carrier plasmonics. Opt. Mater. Express , 2015, 5( 11): 2501
https://doi.org/10.1364/OME.5.002501
17 Y. Lee D., H. Park J., H. Kim Y., H. Lee M., I. Cho N.. Effect of Nb doping on morphology, crystal structure, optical band gap energy of TiO2 thin films. Curr. Appl. Phys. , 2014, 14( 3): 421
https://doi.org/10.1016/j.cap.2013.12.025
18 Guo Q., Y. Zhou C., B. Ma Z., M. Yang X.. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. , 2019, 31( 50): 1901997
https://doi.org/10.1002/adma.201901997
19 Z. Zhang D., H. Gu X., Y. Jing F., L. Gao F., G. Zhou J., B. Ruan S.. High performance ultraviolet detector based on TiO2/ZnO heterojunction. J. Alloys Compd. , 2015, 618 : 551
https://doi.org/10.1016/j.jallcom.2014.09.004
20 Bach U., Lupo D., Comte P., E. Moser J., Weissortel F., Salbeck J., Spreitzer H., Gratzel M.. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature , 1998, 395( 6702): 583
https://doi.org/10.1038/26936
21 Traver E., A. Karaballi R., E. Monfared Y., Daurie H., A. Gagnon G., Dasog M.. TiN, ZrN, and HfN nanoparticles on nanoporous Aluminum oxide membranes for solar-driven water evaporation and desalination. ACS Appl. Nano Mater. , 2020, 3( 3): 2787
https://doi.org/10.1021/acsanm.0c00107
22 Kumar M., Umezawa N., Ishii S., Nagao T.. Examining the performance of refractory conductive ceramics as plasmonic materials: A theoretical approach. ACS Photonics , 2016, 3( 1): 43
https://doi.org/10.1021/acsphotonics.5b00409
23 W. Yu M., Ishii S., L. Shinde S., K. Tanjaya N., P. Chen K., Nagao T.. Direct observation of photoinduced charge separation at transition-metal nitride−semiconductor interfaces. ACS Appl. Mater. Interfaces , 2020, 12( 50): 56562
https://doi.org/10.1021/acsami.0c14690
24 Marlo M., Milman V.. Density-funcitional study of bulk and surface properties of titanium nitride using different exchange-correlation functional. Phys. Rev. B , 2000, 62( 4): 2899
https://doi.org/10.1103/PhysRevB.62.2899
25 H. Chen X., T. Pekarek R., Gu J., Zakutayev A., E. Hurst K., R. Neale N., Yang Y., C. Beard M.. Transient evolution of the built-in field at junctions of GaAs. ACS Appl. Mater. Interfaces , 2020, 12( 36): 40339
https://doi.org/10.1021/acsami.0c11474
26 Naldoni A., Guler U., X. Wang Z., Marelli M., Malara F., G. Meng X., V. Besteiro L., O. Govorov A., V. Kildishev A., Boltasseva A., M. Shalaev V.. Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Adv. Opt. Mater. , 2017, 5( 15): 1601031
https://doi.org/10.1002/adom.201601031
27 Guler U., Boltasseva A., M. Shalaev V.. Refractory plasmonics. Science , 2014, 344( 6181): 263
https://doi.org/10.1126/science.1252722
28 V. Naik G., L. Schroeder J., J. Ni X., V. Kildishev A., D. Sands T., Boltasseva A.. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express , 2012, 2( 4): 478
https://doi.org/10.1364/OME.2.000478
29 McIntyre D., E. Greene J., Hakansson G., E. Sundgren J., D. Münz W.. Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films: Kinetics and mechanisms. J. Appl. Phys. , 1990, 67( 3): 1542
https://doi.org/10.1063/1.345664
30 Bordone P., Jacoboni C., Lugli P., Reggiani L., Kocevar P.. Monte Carlo analysis of hot-phonon effects on non-polar semiconductor transport properties. Physica B+C , 1985, 134( 1−3): 169
https://doi.org/10.1016/0378-4363(85)90338-9
31 Piryatinski A., K. Huang C., J. T. Kwan T.. Theory of electron transport and emission from a semiconductor nanotip. J. Appl. Phys. , 2019, 125( 21): 214301
https://doi.org/10.1063/1.5088518
32 Blandre E., Jalas D., Y. Petrov A., Eich M.. Limit of efficiency of hot electrons in metals and their injection inside a semiconductor using a semiclassical approach. ACS Photonics , 2018, 5( 9): 3613
https://doi.org/10.1021/acsphotonics.8b00473
33 Kresse G., Furthmuller J.. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. , 1996, 6( 1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
34 Kresse G., Furthmuller J.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B , 1996, 54( 16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
35 Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B , 1999, 59( 3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
36 P. Perdew J., Ruzsinszky A., I. Csonka G., A. Vydrov O., E. Scuseria G., A. Constantin L., L. Zhou X., Burke K.. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. , 2008, 100( 13): 136406
https://doi.org/10.1103/PhysRevLett.100.136406
37 L. Dudarev S., A. Botton G., Y. Savrasov S., J. Humphreys C., P. Sutton A.. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B , 1998, 57( 3): 1505
https://doi.org/10.1103/PhysRevB.57.1505
38 Habib A., Florio F., Sundararaman R.. Hot carrier dynamics in plasmonic transition metal nitrides. J. Opt. , 2018, 20( 6): 064001
https://doi.org/10.1088/2040-8986/aac1d8
39 A. Mills K., F. Davis R., D. Kevan S., Thornton G., A. Shirley D.. Angle-resolved photoemission determination of Λ-line valence bands in Pt and Au using synchrotron radiation. Phys. Rev. B , 1980, 22( 2): 581
https://doi.org/10.1103/PhysRevB.22.581
40 W. Ashcroft N. D. Mermin N. Dan W., Solid State Physics, revised edition, Cengage Leaning Asia PTe Ltd, 2016
41 Gall D., Petrov I., Hellgren N., Hultman L., E. Sundgren J., E. Greene J.. Growth of poly- and single-crystal ScN on MgO (001): Role of low-energy N2+ irradiation in determining texture, microstructure evolution, and mechanical properties. J. Appl. Phys. , 1998, 84( 11): 6034
https://doi.org/10.1063/1.368913
42 Sundararaman R., Letchworth-Weaver K., A. Schwarz K., Gunceler D., Ozhabes Y., A. Arias T.. JDFTx: Software for joint density-functional theory. SoftwareX , 2017, 6 : 278
https://doi.org/10.1016/j.softx.2017.10.006
43 Schlipf M., Gygi F.. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. , 2015, 196 : 36
https://doi.org/10.1016/j.cpc.2015.05.011
44 Marzari N., Vanderbilt D.. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B , 1997, 56( 20): 12847
https://doi.org/10.1103/PhysRevB.56.12847
45 Xu X., Dutta A., Khurgin J., Wei A., M. Shalaev W., Boltasseva A.. TiN@TiO2 core-shell nanoparticles as plasmon-enhanced photosensitizers: The role of hot electron injection. Laser Photonics Rev. , 2020, 14( 5): 1900376
https://doi.org/10.1002/lpor.201900376
46 C. Ratchford D., D. Dunkelberger A., Vurgaftman I., C. Owrutsky J., E. Pehrsson P.. Quantification of efficient plasmonic hot-electron injection in gold nanoparticle-TiO2 films. Nano Lett. , 2017, 17( 10): 6047
https://doi.org/10.1021/acs.nanolett.7b02366
47 Tagliabue G., S. Jermyn A., Sundararaman R., J. Welch A., S. Duchene J., Pala R., R. Davoyan A., Narang P., A. Atwater H.. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. Nat. Commun. , 2018, 9( 1): 3394
https://doi.org/10.1038/s41467-018-05968-x
48 Zhang C., Wu K., Giannini V., F. Li X.. Planar hot-electron photodetection with Tamm plasmons. ACS Nano , 2017, 11( 2): 1719
https://doi.org/10.1021/acsnano.6b07578
49 A. Mostofi A., R. Yates J., S. Lee Y., Souza I., Vanderbilt D., Marzari N.. Wannier90: A tool for obtaining maximally-localized Wannier functions. Comput. Phys. Commun. , 2008, 178( 9): 685
https://doi.org/10.1016/j.cpc.2007.11.016
50 Marzari N., A. Mostofi A., R. Yates J., Souza I., Vanderbilt D.. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. , 2012, 84( 4): 1419
https://doi.org/10.1103/RevModPhys.84.1419
51 Gerbert D., Tegeder P.. Absorbate-mediated relaxation dynamics of hot electrons at metal/organic interfaces. Phys. Rev. B , 2017, 96( 14): 144304
https://doi.org/10.1103/PhysRevB.96.144304
52 Stair S., G. Johnston R., C. Bagg T.. Spectral distribution of energy from the sun. J. Res. Natl. Bur. Stand. , 1954, 53( 2): 113
https://doi.org/10.6028/jres.053.014
53 R. Condit H., Grum F.. Spectral energy distribution of daylight. J. Opt. Soc. Am. , 1964, 54( 7): 937
https://doi.org/10.1364/JOSA.54.000937
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed