Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (5) : 53510    https://doi.org/10.1007/s11467-022-1184-z
RESEARCH ARTICLE
High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2)
Xiaolin Zhang1, Pengwei Gong1, Fangqi Liu1, Kailun Yao2, Jian Wu3, Sicong Zhu1()
1. The State Key Laboratory for Refractories and Metallurgy, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081, China
2. Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
3. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
 Download: PDF(14633 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Due to the unique electronic structure of half-metals, characterized by the conductivity of majority-spin and the band gap of minority-spin, these materials have emerged as suitable alternatives for the design of efficient giant magnetoresistive (GMR) devices. Based on the first-principles calculations, an excellent GMR device has been designed by using two-dimensional (2D) half-metal Mn2NO2. The results show that Mn2NO2 has sandwiched between the Au/nMn2NO2 (n = 1, 2, 3)/Au heterojunction and maintains its half-metallic properties. Due to the half-metallic characteristics of Mn2NO2, the total current of the monolayer device can reach up to 1500 nA in the ferromagnetic state. At low voltage, the maximum GMR is observed to be 1.15 × 1031 %. Further, by increasing the number of layers, the ultra-high GMR at low voltage is still maintained. The developed device is a spintronic device exhibiting the highest magnetoresistive ratio reported theoretically so far. Simultaneously, a significant negative differential resistance (NDR) effect is also observed in the heterojunction. Owing to its excellent half-metallic properties and 2D structure, Mn2NO2 is an ideal energy-saving GMR material.

Keywords half-metals      Mn2NO2      giant magnetoresistive     
Corresponding Author(s): Sicong Zhu   
Issue Date: 26 July 2022
 Cite this article:   
Xiaolin Zhang,Pengwei Gong,Fangqi Liu, et al. High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2)[J]. Front. Phys. , 2022, 17(5): 53510.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1184-z
https://academic.hep.com.cn/fop/EN/Y2022/V17/I5/53510
Fig.1  The principle of MR effect, (a) ferromagnetic state electron transport of half-metal. (b) Anti-ferromagnetic state electron transport of half-metal.
Fig.2  (a) A top and (b) a side views of Mn2NO2, (c) band structure of Mn2NO2 and (d) density of states of Mn2NO2.
Fig.3  Au/nMn2NO2 (n=1, 2, 3)/Au device structure diagram, after relaxation (a), (b), (c) configuration is for n=1, 2, 3 configuration, respectively. The transport direction is along the z-axis, as shown by the left/right arrows, and the two electrodes extend to z=±∞.
Fig.4  DOS of Mn2NO2 in (a) monolayer, (b) bilayer, and (c) trilayer between heterojunctions changes, and the dotted line corresponds to the Fermi level. (d) The charge density between the middle region of the device and the adjacent Au atoms is different. Blue indicates charge transfer and red indicates charge accumulation. The isosurface value sets to 0.03.
Fig.5  (a, b) are the monolayer Mn2NO2 heterojunction spin sub-current and total current, (c, d) are the double-layer spin sub-current and total current, and (e, f) are the three-layers spin sub-current and total current.
Fig.6  (a) The trend of GMR with the number of layers under different bias voltages and the specific values of GMR is inserted in the table. Monolayer device spin-resolved NDC (b) FM state and (c) AFM state, bilayer device spin-resolved NDC (d) FM state (e) AFM state, trilayer device spin-resolved NDC (f) FM state (g) AFM state.
Tab.1  Electron density of FM and AFM at the threshold, peak, and off voltages for monolayer, bilayer, and trilayer devices.
Fig.7  (a) DOS of original Mn2NO2 in the FM state, (b) DOS of Mn2NO2 in the FM device, (c) DOS of original Mn2NO2 in the AFM state, and (d) DOS of Mn2NO2 in the AFM device.
Fig.8  The relationship between the transmission spectrum of Au/nMn2NO2 (n=1, 2, 3)/Au in the FM or AFM configuration and the bias voltage. (a, b) show monolayer device, (c, d) show bilayer device, and (e, f) show trilayer device.
Fig.9  Spin-resolved projected LDOS of Au/1Mn2NO2/Au MTJ. FM state (a) majority-spin and (b) minority-spin projected LDOS, and (c, d) are AFM state majority-spin and minority-spin projected LDOS, respectively.
Fig.10  The spin-dependent transmission coefficient of Au/1Mn2NO2/Au MTJ in (a, b) FM and (c, d) AFM under zero bias.
Fig.11  The spatial distribution of the MPSH eigenstates of the Au/1Mn2NO2/Au at 0.4 V. (a, b) MPSH of LUMO, LUMO+1. (c, d) MPSH of HOMO-1 and HOMO-2. The isosurface value sets to 0.03.
1 Wang Z., Gutiérrez-Lezama I., Ubrig N., Kroner M., Gibertini M., Taniguchi T., Watanabe K., Imamoğlu A., Giannini E., F. Morpurgo A.. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. , 2018, 9( 1): 2516
https://doi.org/10.1038/s41467-018-04953-8
2 Ni Y., L. Yao K., Q. Tang C., Y. Gao G., H. Fu H., C. Zhu S.. Perfect spin-filter, spin-valve, switching and negative differential resistance in an organic molecular device with graphene leads. RSC Adv. , 2014, 4( 36): 18522
https://doi.org/10.1039/C3RA48069K
3 N. Du L., C. Wang Z., Z. Zhao G.. Novel intelligent devices: Two-dimensional materials based memristors. Front. Phys. , 2022, 17( 2): 23602
https://doi.org/10.1007/s11467-022-1152-7
4 C. Zhou Z., Y. Yang F., Wang S., Wang L., F. Wang X., Wang C., Xie Y., Liu Q.. Emerging of two-dimensional materials in novel memristor. Front. Phys. , 2022, 17( 2): 23204
https://doi.org/10.1007/s11467-021-1114-5
5 Y. Luo G., Y. Lv X., Wen L., Q. Li Z., B. Dai Z.. Strain induced topological transitions in twisted double bilayer graphene. Front. Phys. , 2022, 17( 2): 23502
https://doi.org/10.1007/s11467-021-1146-x
6 Yin L., C. Wang X., B. Mi W.. Ferromagnetic, ferroelectric and optical modulated multiple resistance states in multiferroic tunnel junctions. ACS Appl. Mater. Interfaces , 2019, 11( 1): 1057
https://doi.org/10.1021/acsami.8b18727
7 Yuasa S., Nagahama T., Suzuki Y.. Spin-polarized resonant tunneling in magnetic tunnel junctions. Science , 2002, 297( 5579): 234
https://doi.org/10.1126/science.1071300
8 F. Sun M., C. Wang X., B. Mi W.. Large magnetoresistance in Fe3O4/4, 4'-bipyridine/Fe3O4 organic magnetic tunnel junctions. J. Phys. Chem. C , 2018, 122( 5): 3115
https://doi.org/10.1021/acs.jpcc.7b11583
9 Wijethunge D., Zhang L., Tang C., J. Du A.. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys. , 2020, 15( 6): 63504
https://doi.org/10.1007/s11467-020-0987-z
10 L. Yu H., G. Shao Z., M. Tao Y., F. Jiang X., J. Dong Y., Zhang J., S. Liu Y., F. Yang X., J. Chen D.. Tunable tunneling magnetoresistance in in-plane double barrier magnetic tunnel junctions based on B vacancy h-NB nanoribbons. Phys. Chem. Chem. Phys , 2022, 24 : 3451
https://doi.org/10.1039/d1cp04895c
11 W. Yan J., Z. Wang S., Xia K., Q. Ke Y.. Anomalous spin-dependent tunneling statistics in Fe/MgO/Fe junctions induced by disorder at the interface. Phys. Rev. B , 2018, 97( 1): 014404
https://doi.org/10.1103/PhysRevB.97.014404
12 Taniguchi Y., Miura Y., Abe K., Shirai M.. Theoretical studies on spin-dependent conductance in FePt/MgO/FePt(001) magnetic tunnel junctions. IEEE Trans. Magn. , 2008, 44( 11): 2585
https://doi.org/10.1109/TMAG.2008.2002515
13 Yan Z., Q. Zhang R., L. Dong X., F. Qi S., H. Xu X.. Significant tunneling magnetoresistance and excellent spin filtering effect in CrI3-based van der Waals magnetic tunnel junctions. Phys. Chem. Chem. Phys. , 2020, 22( 26): 14773
https://doi.org/10.1039/D0CP02534H
14 L. Feng Y., M. Xu X., Y. Gao G.. High tunnel magnetoresistance based on 2D Dirac spin gapless semiconductor VCl3. Appl. Phys. Lett. , 2020, 116( 2): 022402
https://doi.org/10.1063/1.5128204
15 F. Li F., S. Yang B., Zhu Y., F. Han X., Yan Y.. Ultrahigh tunneling magnetoresistance in van der Waals and lateral magnetic tunnel junctions formed by intrinsic ferromagnets Li0.5CrI3 and CrI3. Appl. Phys. Lett. , 2020, 117( 2): 022412
https://doi.org/10.1063/5.0013951
16 L. Zhang X., W. Gong P., Q. Liu F., L. Yao K., C. Zhu S., Lu Y.. Half-metallic of non-metal-adsorbed AsP and multifunctional two-dimensional spintronic device of impure AsP from first-principles calculations. Physica E , 2022, 137 : 115016
https://doi.org/10.1016/j.physe.2021.115016
17 D. Zheng C., Jiang K., L. Yao K., C. Zhu S., M. Wu K.. The electromagnetic performance of transition metal-substituted monolayer black arsenic-phosphorus. Phys. Chem. Chem. Phys. , 2021, 23( 43): 24570
https://doi.org/10.1039/D1CP02583J
18 C. Zhu S., J. Peng S., M. Wu K., T. Yip C., L. Yao K., H. Lam C.. Negative differential resistance, perfect spin-filtering effect and tunnel magnetoresistance in vanadium-doped zigzag blue phosphorus nanoribbons. Phys. Chem. Chem. Phys. , 2018, 20( 32): 21105
https://doi.org/10.1039/C8CP02935K
19 Balcı E., Ö. Akkus Ü., Berber S.. Controlling topological electronic structure of multifunctional MXene layer. Appl. Phys. Lett. , 2018, 113( 8): 083107
https://doi.org/10.1063/1.5042828
20 Balcı E., Ö. Akkus Ü., Berber S.. Band gap modification in doped MXene: Sc2CF2. J. Mater. Chem. C , 2017, 5( 24): 5956
https://doi.org/10.1039/C7TC01765K
21 Wang G., Liao Y.. Theoretical prediction of robust and intrinsic half-metallicity in Ni2N MXene with different types of surface terminations. Appl. Surf. Sci. , 2017, 07 : 249
22 Chen S., Zhou J., M. Sun Z.. Half-metallic ferromagnetism and surface functionalization-induced metal-insulator transition in graphene-like two-dimensional Cr2C crystals. ACS Appl. Mater. Interfaces , 2015, 7( 31): 17510
https://doi.org/10.1021/acsami.5b05401
23 Wang G.. Theoretical prediction of the intrinsic half-metallicity in surface-oxygen-passivated Cr2N MXene. J. Phys. Chem. C , 2016, 120( 33): 18850
https://doi.org/10.1021/acs.jpcc.6b05224
24 Naguib M., Mashtalir O., Carle J., Presser V., Lu J., Hultman L., Gogotsi Y., W. Barsoum M.. Two-dimensional transition metal carbides. ACS Nano , 2012, 6( 2): 1322
https://doi.org/10.1021/nn204153h
25 Khazaei M., Ranjbar A., Arai M., Sasaki T., Yunoki S.. Electronic properties and applications of MXenes: A theoretical review. J. Mater. Chem. C , 2017, 5( 10): 2488
https://doi.org/10.1039/C7TC00140A
26 Qin R., Shan G., Hu M., Huang W.. Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. Mater. Today Phys. , 2021, 21 : 100527
https://doi.org/10.1016/j.mtphys.2021.100527
27 Z. Qin R., Li X., J. Hu M., C. Shan G., Seeram R., Yin M.. Preparation of high-performance MXene/PVA-based flexible pressure sensors with adjustable sensitivity and sensing range. Sens. Actuators A Phys. , 2022, 338 : 113458
https://doi.org/10.1016/j.sna.2022.113458
28 Q. Kong Q. G. An X. Huang L. L. Wang X. Feng W. Y. Qiu S. Y. Wang Q. H. Sun C., A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance , Front. Phys. 16(5), 53506 ( 2021)
29 Wang G., Liao Y.. Theoretical prediction of robust and intrinsic half-metallicity in Ni2N MXene with different types of surface terminations. Appl. Surf. Sci. , 2017, 426 : 804
https://doi.org/10.1016/j.apsusc.2017.07.249
30 Kumar H., C. Frey N., Dong L., Anasori B., Gogotsi Y., B. Shenoy V.. Tunable magnetism and transport properties in nitride MXenes. ACS Nano , 2017, 11( 8): 7648
https://doi.org/10.1021/acsnano.7b02578
31 Y. Gao G., Q. Ding G., Li J., L. Yao K., H. Wu M., C. Qian M.. Monolayer MXenes: Promising half-metals and spin gapless semiconductors. Nanoscale , 2016, 8( 16): 8986
https://doi.org/10.1039/C6NR01333C
32 W. Son Y., L. Cohen M., G. Louie S.. Half-metallic graphene nanoribbons. Nature , 2006, 444( 7117): 347
https://doi.org/10.1038/nature05180
33 X. Li X., J. Wu X., L. Yang J.. Room-temperature half-metallicity in La (Mn,Zn)AsO alloy via element substitutions. J. Am. Chem. Soc. , 2014, 136( 15): 5664
https://doi.org/10.1021/ja412317s
34 J. He J., Lyu P., Nachtigall P.. New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity. J. Mater. Chem. C , 2016, 4( 47): 11143
https://doi.org/10.1039/C6TC03917K
35 H. Yang J., Z. Zhang S., P. Wang A., N. Wang R., K. Wang C., P. Zhang G., Chen L.. High magnetoresistance in ultra-thin two-dimensional Cr-based MXenes. Nanoscale , 2018, 10( 41): 19492
https://doi.org/10.1039/C8NR04978E
36 Yang J., Fang S., Peng Y., Liu S., Wu B., Quhe R., Ding S., Yang C., Ma J., Shi B., Xu L., Sun X., Tian G., Wang C., Shi J., Lu J., Yang J.. Layer-dependent giant magnetoresistance in two-dimensional CrPS4 magnetic tunnel junctions. Phys. Rev. Appl. , 2021, 16( 2): 024011
https://doi.org/10.1103/PhysRevApplied.16.024011
37 F. Pan L., Huang L., Z. Zhong M., W. Jiang X., X. Deng H., B. Li J., B. Xia J., M. Wei Z.. Large tunneling magnetoresistance in magnetic tunneling junctions based on two-dimensional CrX3 (X=Br, I) monolayers. Nanoscale , 2018, 10( 47): 22196
https://doi.org/10.1039/C8NR06255B
38 Taylor J., Guo H., Wang J.. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B , 2001, 63( 24): 245407
https://doi.org/10.1103/PhysRevB.63.245407
39 Balcı E., Ö. Akkus Ü., Berber S.. High TMR in MXene-based Mn2CF2/Ti2CO2/Mn2CF2 magnetic tunneling junction. ACS Appl. Mater. Interfaces , 2019, 11( 3): 3609
https://doi.org/10.1021/acsami.8b20202
[1] fop-21184-OF-zhusicong_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed