|
|
High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2) |
Xiaolin Zhang1, Pengwei Gong1, Fangqi Liu1, Kailun Yao2, Jian Wu3, Sicong Zhu1( ) |
1. The State Key Laboratory for Refractories and Metallurgy, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081, China 2. Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China 3. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract Due to the unique electronic structure of half-metals, characterized by the conductivity of majority-spin and the band gap of minority-spin, these materials have emerged as suitable alternatives for the design of efficient giant magnetoresistive (GMR) devices. Based on the first-principles calculations, an excellent GMR device has been designed by using two-dimensional (2D) half-metal Mn2NO2. The results show that Mn2NO2 has sandwiched between the Au/nMn2NO2 (n = 1, 2, 3)/Au heterojunction and maintains its half-metallic properties. Due to the half-metallic characteristics of Mn2NO2, the total current of the monolayer device can reach up to 1500 nA in the ferromagnetic state. At low voltage, the maximum GMR is observed to be 1.15 × 1031 %. Further, by increasing the number of layers, the ultra-high GMR at low voltage is still maintained. The developed device is a spintronic device exhibiting the highest magnetoresistive ratio reported theoretically so far. Simultaneously, a significant negative differential resistance (NDR) effect is also observed in the heterojunction. Owing to its excellent half-metallic properties and 2D structure, Mn2NO2 is an ideal energy-saving GMR material.
|
Keywords
half-metals
Mn2NO2
giant magnetoresistive
|
Corresponding Author(s):
Sicong Zhu
|
Issue Date: 26 July 2022
|
|
1 |
Wang Z., Gutiérrez-Lezama I., Ubrig N., Kroner M., Gibertini M., Taniguchi T., Watanabe K., Imamoğlu A., Giannini E., F. Morpurgo A.. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. , 2018, 9( 1): 2516
https://doi.org/10.1038/s41467-018-04953-8
|
2 |
Ni Y., L. Yao K., Q. Tang C., Y. Gao G., H. Fu H., C. Zhu S.. Perfect spin-filter, spin-valve, switching and negative differential resistance in an organic molecular device with graphene leads. RSC Adv. , 2014, 4( 36): 18522
https://doi.org/10.1039/C3RA48069K
|
3 |
N. Du L., C. Wang Z., Z. Zhao G.. Novel intelligent devices: Two-dimensional materials based memristors. Front. Phys. , 2022, 17( 2): 23602
https://doi.org/10.1007/s11467-022-1152-7
|
4 |
C. Zhou Z., Y. Yang F., Wang S., Wang L., F. Wang X., Wang C., Xie Y., Liu Q.. Emerging of two-dimensional materials in novel memristor. Front. Phys. , 2022, 17( 2): 23204
https://doi.org/10.1007/s11467-021-1114-5
|
5 |
Y. Luo G., Y. Lv X., Wen L., Q. Li Z., B. Dai Z.. Strain induced topological transitions in twisted double bilayer graphene. Front. Phys. , 2022, 17( 2): 23502
https://doi.org/10.1007/s11467-021-1146-x
|
6 |
Yin L., C. Wang X., B. Mi W.. Ferromagnetic, ferroelectric and optical modulated multiple resistance states in multiferroic tunnel junctions. ACS Appl. Mater. Interfaces , 2019, 11( 1): 1057
https://doi.org/10.1021/acsami.8b18727
|
7 |
Yuasa S., Nagahama T., Suzuki Y.. Spin-polarized resonant tunneling in magnetic tunnel junctions. Science , 2002, 297( 5579): 234
https://doi.org/10.1126/science.1071300
|
8 |
F. Sun M., C. Wang X., B. Mi W.. Large magnetoresistance in Fe3O4/4, 4'-bipyridine/Fe3O4 organic magnetic tunnel junctions. J. Phys. Chem. C , 2018, 122( 5): 3115
https://doi.org/10.1021/acs.jpcc.7b11583
|
9 |
Wijethunge D., Zhang L., Tang C., J. Du A.. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys. , 2020, 15( 6): 63504
https://doi.org/10.1007/s11467-020-0987-z
|
10 |
L. Yu H., G. Shao Z., M. Tao Y., F. Jiang X., J. Dong Y., Zhang J., S. Liu Y., F. Yang X., J. Chen D.. Tunable tunneling magnetoresistance in in-plane double barrier magnetic tunnel junctions based on B vacancy h-NB nanoribbons. Phys. Chem. Chem. Phys , 2022, 24 : 3451
https://doi.org/10.1039/d1cp04895c
|
11 |
W. Yan J., Z. Wang S., Xia K., Q. Ke Y.. Anomalous spin-dependent tunneling statistics in Fe/MgO/Fe junctions induced by disorder at the interface. Phys. Rev. B , 2018, 97( 1): 014404
https://doi.org/10.1103/PhysRevB.97.014404
|
12 |
Taniguchi Y., Miura Y., Abe K., Shirai M.. Theoretical studies on spin-dependent conductance in FePt/MgO/FePt(001) magnetic tunnel junctions. IEEE Trans. Magn. , 2008, 44( 11): 2585
https://doi.org/10.1109/TMAG.2008.2002515
|
13 |
Yan Z., Q. Zhang R., L. Dong X., F. Qi S., H. Xu X.. Significant tunneling magnetoresistance and excellent spin filtering effect in CrI3-based van der Waals magnetic tunnel junctions. Phys. Chem. Chem. Phys. , 2020, 22( 26): 14773
https://doi.org/10.1039/D0CP02534H
|
14 |
L. Feng Y., M. Xu X., Y. Gao G.. High tunnel magnetoresistance based on 2D Dirac spin gapless semiconductor VCl3. Appl. Phys. Lett. , 2020, 116( 2): 022402
https://doi.org/10.1063/1.5128204
|
15 |
F. Li F., S. Yang B., Zhu Y., F. Han X., Yan Y.. Ultrahigh tunneling magnetoresistance in van der Waals and lateral magnetic tunnel junctions formed by intrinsic ferromagnets Li0.5CrI3 and CrI3. Appl. Phys. Lett. , 2020, 117( 2): 022412
https://doi.org/10.1063/5.0013951
|
16 |
L. Zhang X., W. Gong P., Q. Liu F., L. Yao K., C. Zhu S., Lu Y.. Half-metallic of non-metal-adsorbed AsP and multifunctional two-dimensional spintronic device of impure AsP from first-principles calculations. Physica E , 2022, 137 : 115016
https://doi.org/10.1016/j.physe.2021.115016
|
17 |
D. Zheng C., Jiang K., L. Yao K., C. Zhu S., M. Wu K.. The electromagnetic performance of transition metal-substituted monolayer black arsenic-phosphorus. Phys. Chem. Chem. Phys. , 2021, 23( 43): 24570
https://doi.org/10.1039/D1CP02583J
|
18 |
C. Zhu S., J. Peng S., M. Wu K., T. Yip C., L. Yao K., H. Lam C.. Negative differential resistance, perfect spin-filtering effect and tunnel magnetoresistance in vanadium-doped zigzag blue phosphorus nanoribbons. Phys. Chem. Chem. Phys. , 2018, 20( 32): 21105
https://doi.org/10.1039/C8CP02935K
|
19 |
Balcı E., Ö. Akkus Ü., Berber S.. Controlling topological electronic structure of multifunctional MXene layer. Appl. Phys. Lett. , 2018, 113( 8): 083107
https://doi.org/10.1063/1.5042828
|
20 |
Balcı E., Ö. Akkus Ü., Berber S.. Band gap modification in doped MXene: Sc2CF2. J. Mater. Chem. C , 2017, 5( 24): 5956
https://doi.org/10.1039/C7TC01765K
|
21 |
Wang G., Liao Y.. Theoretical prediction of robust and intrinsic half-metallicity in Ni2N MXene with different types of surface terminations. Appl. Surf. Sci. , 2017, 07 : 249
|
22 |
Chen S., Zhou J., M. Sun Z.. Half-metallic ferromagnetism and surface functionalization-induced metal-insulator transition in graphene-like two-dimensional Cr2C crystals. ACS Appl. Mater. Interfaces , 2015, 7( 31): 17510
https://doi.org/10.1021/acsami.5b05401
|
23 |
Wang G.. Theoretical prediction of the intrinsic half-metallicity in surface-oxygen-passivated Cr2N MXene. J. Phys. Chem. C , 2016, 120( 33): 18850
https://doi.org/10.1021/acs.jpcc.6b05224
|
24 |
Naguib M., Mashtalir O., Carle J., Presser V., Lu J., Hultman L., Gogotsi Y., W. Barsoum M.. Two-dimensional transition metal carbides. ACS Nano , 2012, 6( 2): 1322
https://doi.org/10.1021/nn204153h
|
25 |
Khazaei M., Ranjbar A., Arai M., Sasaki T., Yunoki S.. Electronic properties and applications of MXenes: A theoretical review. J. Mater. Chem. C , 2017, 5( 10): 2488
https://doi.org/10.1039/C7TC00140A
|
26 |
Qin R., Shan G., Hu M., Huang W.. Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. Mater. Today Phys. , 2021, 21 : 100527
https://doi.org/10.1016/j.mtphys.2021.100527
|
27 |
Z. Qin R., Li X., J. Hu M., C. Shan G., Seeram R., Yin M.. Preparation of high-performance MXene/PVA-based flexible pressure sensors with adjustable sensitivity and sensing range. Sens. Actuators A Phys. , 2022, 338 : 113458
https://doi.org/10.1016/j.sna.2022.113458
|
28 |
Q. Kong Q. G. An X. Huang L. L. Wang X. Feng W. Y. Qiu S. Y. Wang Q. H. Sun C., A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance , Front. Phys. 16(5), 53506 ( 2021)
|
29 |
Wang G., Liao Y.. Theoretical prediction of robust and intrinsic half-metallicity in Ni2N MXene with different types of surface terminations. Appl. Surf. Sci. , 2017, 426 : 804
https://doi.org/10.1016/j.apsusc.2017.07.249
|
30 |
Kumar H., C. Frey N., Dong L., Anasori B., Gogotsi Y., B. Shenoy V.. Tunable magnetism and transport properties in nitride MXenes. ACS Nano , 2017, 11( 8): 7648
https://doi.org/10.1021/acsnano.7b02578
|
31 |
Y. Gao G., Q. Ding G., Li J., L. Yao K., H. Wu M., C. Qian M.. Monolayer MXenes: Promising half-metals and spin gapless semiconductors. Nanoscale , 2016, 8( 16): 8986
https://doi.org/10.1039/C6NR01333C
|
32 |
W. Son Y., L. Cohen M., G. Louie S.. Half-metallic graphene nanoribbons. Nature , 2006, 444( 7117): 347
https://doi.org/10.1038/nature05180
|
33 |
X. Li X., J. Wu X., L. Yang J.. Room-temperature half-metallicity in La (Mn,Zn)AsO alloy via element substitutions. J. Am. Chem. Soc. , 2014, 136( 15): 5664
https://doi.org/10.1021/ja412317s
|
34 |
J. He J., Lyu P., Nachtigall P.. New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity. J. Mater. Chem. C , 2016, 4( 47): 11143
https://doi.org/10.1039/C6TC03917K
|
35 |
H. Yang J., Z. Zhang S., P. Wang A., N. Wang R., K. Wang C., P. Zhang G., Chen L.. High magnetoresistance in ultra-thin two-dimensional Cr-based MXenes. Nanoscale , 2018, 10( 41): 19492
https://doi.org/10.1039/C8NR04978E
|
36 |
Yang J., Fang S., Peng Y., Liu S., Wu B., Quhe R., Ding S., Yang C., Ma J., Shi B., Xu L., Sun X., Tian G., Wang C., Shi J., Lu J., Yang J.. Layer-dependent giant magnetoresistance in two-dimensional CrPS4 magnetic tunnel junctions. Phys. Rev. Appl. , 2021, 16( 2): 024011
https://doi.org/10.1103/PhysRevApplied.16.024011
|
37 |
F. Pan L., Huang L., Z. Zhong M., W. Jiang X., X. Deng H., B. Li J., B. Xia J., M. Wei Z.. Large tunneling magnetoresistance in magnetic tunneling junctions based on two-dimensional CrX3 (X=Br, I) monolayers. Nanoscale , 2018, 10( 47): 22196
https://doi.org/10.1039/C8NR06255B
|
38 |
Taylor J., Guo H., Wang J.. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B , 2001, 63( 24): 245407
https://doi.org/10.1103/PhysRevB.63.245407
|
39 |
Balcı E., Ö. Akkus Ü., Berber S.. High TMR in MXene-based Mn2CF2/Ti2CO2/Mn2CF2 magnetic tunneling junction. ACS Appl. Mater. Interfaces , 2019, 11( 3): 3609
https://doi.org/10.1021/acsami.8b20202
|
[1] |
fop-21184-OF-zhusicong_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|