Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (6) : 64501    https://doi.org/10.1007/s11467-022-1188-8
RESEARCH ARTICLE
Galactic cosmic ray propagation: sub-PeV diffuse gamma-ray and neutrino emission
Bing-Qiang Qiao1, Wei Liu1(), Meng-Jie Zhao1,2(), Xiao-Jun Bi1, Yi-Qing Guo1,2
1. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(4653 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Tibet ASγ experiment just reported their measurement of sub-PeV diffuse gamma-ray emission from the Galactic disk, with the highest energy up to 957 TeV. These diffuse gamma rays are most likely the hadronic origin by cosmic ray (CR) interaction with interstellar gas in the galaxy. This measurement provides direct evidence to the hypothesis that the Galactic Cosmic Rays (GCRs) can be accelerated beyond PeV energies. In this work, we try to explain the sub-PeV diffuse gamma-ray spectrum with different CR propagation models. We find that there is a tension between the sub-PeV diffuse gamma-ray and the local CR spectrum. To describe the sub-PeV diffuse gamma-ray flux, it generally requires larger local CR flux than measurement in the knee region. We further calculate the PeV neutrino flux from the CR propagation model. Even all of these sub-PeV diffuse gamma rays originate from the propagation, the Galactic Neutrinos (GNs) only account for less than ~15% of observed flux, most of which are still from extragalactic sources.

Keywords galactic cosmic ray      diffuse gamma ray      neutrino     
Corresponding Author(s): Wei Liu,Meng-Jie Zhao   
Issue Date: 27 July 2022
 Cite this article:   
Bing-Qiang Qiao,Wei Liu,Meng-Jie Zhao, et al. Galactic cosmic ray propagation: sub-PeV diffuse gamma-ray and neutrino emission[J]. Front. Phys. , 2022, 17(6): 64501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1188-8
https://academic.hep.com.cn/fop/EN/Y2022/V17/I6/64501
Fig.1  Calculation of B/C ratio to obtain the propagation parameters in HD, SDP-A and SDP-B models, with B/C data taken from the AMS-02 measurement [47].
Model D 0 ( cm2?s 1) δ 0 N m ξ n v A (km?s 1) L (kpc)
HD 4.75 × 1028 0.46 22 5
SDP-A 5.64 × 1028 0.56 0.51 0.1 3.5 6 5
SDP-B 5.84 × 1028 0.55 0.49 0.1 3.5 6 5
Tab.1  Diffusion parameters of three propagation models.
Fig.2  Calculated proton and helium energy spectra in propagation models of HD, SDP-A and SDP-B. The proton and helium data are taken from AMS-02 [50, 51], CREAM-II [48], NUCLEON [52], DAMPE [49] and KASCADE [53], IceTop [54] and HAWC [55].
Model Parameters p He C N O Ne Mg Si Fe
HD Normalization* 4420 401 16.8 2.26 19.3 2.24 2.78 4.20 2.92
105[(m2?sr? s?GeV)1]
ν 2.32 2.26 2.31 2.37 2.32 2.31 2.31 2.41 2.27
R c(PV) 7 7 7 7 7 7 7 7 7
SDP-A background Normalization 4090 259 1.40 13.3 1.50 1.86 2.05 2.21
105[(m2?sr? s?GeV)1]
ν 2.37 2.29 2.32 2.37 2.34 2.32 2.33 2.45 2.32
R c(PV) 7 7 7 7 7 7 7 7 7
SDP-A local q0 2800 1400 36 5.2 40 6.2 6.6 5.7 5.2
1049(GeV1)
α 2.10 2.10 2.05 2.05 2.05 2.05 2.05 2.05 2.05
Rc(TV) 28 28 28 28 28 28 28 28 28
SDP-B Normalization 4500 282 12.8 1.84 15.8 1.93 2.59 2.64 2.89
105[(m2?sr? s?GeV)1]
ν 2.34 2.26 2.33 2.39 2.34 2.35 2.37 2.41 2.35
R c(PV) 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
Tab.2  Injection parameters of the background and local sources in three propagation models.
Fig.3  Calculated all-particle spectra in three propagation models. The all-particle data are taken from Horandel [56], IceTop [54, 57], Tibet [5], HAWC [58], ARGO [59], ATIC [60], NUCLEON [61] and KASCADE [4].
Fig.4  Calculated diffuse gamma-ray spectra in three propagation models. The gamma ray data are taken from ARGO-YBJ [64] and Tibet AS+MD [19] experiments.
Fig.5  Diffuse neutrino flux calculated by the three propagation models. The data are taken from the ICECUBE 7.5 years’ observation [66]. The violet line is the power-law fitting to the data, with normalization Φ=6.37×10 18 GeV−1·cm−2·s−1·sr−1 at 100 TeV and power index γ=2.87. The orange bar with arrows exhibits the 90% C.L. upper limit for the neutrino flux of the Galactic plane using the ANTARES neutrino telescope[67], while the gray bar with arrows is the same as above except for using the IceCube 7 years data [68].
1 Nagano M., Hara T., Hatano Y., Hayashida N., Kawaguchi S., Kamata K., Kifune T., Mizumoto Y.. Energy spectrum of primary cosmic rays between 1014.5 and 1018 eV. J. Phys. G Nucl. Phys., 1984, 10(9): 1295
https://doi.org/10.1088/0305-4616/10/9/016
2 A. K. Glasmacher M., A. Catanese M., C. Chantell M.. et al.. The cosmic ray energy spectrum between 1014 and 1016 eV. Astropart. Phys., 1999, 10(4): 291
https://doi.org/10.1016/S0927-6505(98)00070-X
3 Aglietta M., Alessandro B., Antonioli P., Arneodo F., Bergamasco L.. et al.. The cosmic ray primary composition in the “knee” region through the EAS electromagnetic and muon measurements at EAS-TOP. Astropart. Phys., 2004, 21(6): 583
https://doi.org/10.1016/j.astropartphys.2004.04.005
4 Antoni T.D. Apel W.F. Badea A.Bekk K.Bercuci A., et al.., KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems, Astropart. Phys. 24(1–2), 1 (2005)
5 Amenomori M., J. Bi X., Chen D., W. Cui S.. et al.. The all-particle spectrum of primary cosmic rays in the wide energy range from 1014 to 1017 eV observed with the Tibet-III air-shower array. Astrophys. J., 2008, 678(2): 1165
https://doi.org/10.1086/529514
6 H. Kampert K., Unger M.. Measurements of the cosmic ray composition with air shower experiments. Astropart. Phys., 2012, 35(10): 660
https://doi.org/10.1016/j.astropartphys.2012.02.004
7 Aloisio R.Blasi P.De Mitri I.Petrera S., Selected Topics in Cosmic Ray Physics, page 1, 2018
8 Baade W., Zwicky F.. Cosmic rays from supernovae. Contributions from the Mount Wilson Observatory, 1934, 3: 79
9 Abbasi R., Abdou Y., Abu-Zayyad T., Ackermann M., Adams J.. et al.. Observation of anisotropy in the galactic cosmic-ray arrival directions at 400 TeV with IceCube. Astrophys. J., 2012, 746(1): 33
https://doi.org/10.1088/0004-637X/746/1/33
10 G. Aartsen M., Abraham K., Ackermann M., Adams J., A. Aguilar J.. et al.. Anisotropy in cosmic-ray arrival directions in the southern hemisphere based on six years of data from the IceCube detector. Astrophys. J., 2016, 826(2): 220
https://doi.org/10.3847/0004-637X/826/2/220
11 Amenomori M., J. Bi X., Chen D., L. Chen T., Y. Chen W.. et al.. Northern sky galactic cosmic ray anisotropy between 10 and 1000 TeV with the Tibet air shower array. Astrophys. J., 2017, 836(2): 153
https://doi.org/10.3847/1538-4357/836/2/153
12 Collaboration HESS. Acceleration of petaelectronvolt protons in the Galactic Centre. Nature, 2016, 531(7595): 476
https://doi.org/10.1038/nature17147
13 ASγ Collaboration TibetAmenomori M.W. Bao Y., et al.., Potential PeVatron supernova remnant G106.3+2.7 seen in the highest-energy gamma rays, Nat. Astron. (2021)
14 U. Abeysekara A.Albert A.Alfaro R., et al.., HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon, arXiv: 2103.06820 (2021)
15 Collaboration DAMPE. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons. Nature, 2017, 552(7683): 63
https://doi.org/10.1038/nature24475
16 D. Kerszberg for the H.E.S.S. Collaboration, The cosmic-ray electron spectrum measured with H.E.S.S. 2017
17 Borione A., A. Catanese M., C. Chantell M., E. Covault C., W. Cronin J., E. Fick B., F. Fortson L., Fowler J., A. K. Glasmacher M., D. Green K., B. Kieda D., Matthews J., J. Newport B., Nitz D., A. Ong R., Oser S., Sinclair D., C. van der Velde J.. Constraints on gamma-ray emission from the galactic plane at 300 TeV. Astrophys. J., 1998, 493(1): 175
https://doi.org/10.1086/305096
18 D. Apel W.C. Arteaga-Velázquez J.Bekk K., et al.., KASCADE-Grande limits on the isotropic diffuse gamma-ray flux between 100 TeV and 1 EeV, arXiv: 1710.02889 (2017)
19 Amenomori M., W. Bao Y., J. Bi X., Chen D., L. Chen T.. et al.. First detection of sub-PeV diffuse gamma rays from the galactic disk: Evidence for ubiquitous galactic cosmic rays beyond PeV energies. Phys. Rev. Lett., 2021, 126(14): 141101
https://doi.org/10.1103/PhysRevLett.126.141101
20 Liu R.-Y.Wang X.-Y., Origin of galactic sub-PeV diffuse gamma-ray emission: Constraints from high-energy neutrino observations, arXiv: 2104.05609 (2021)
21 Vecchiotti V.Zuccarini F.L. Villante F.Pagliaroli G., Unresolved sources naturally contribute to PeV γ-ray diffuse emission observed by Tibet ASγ, arXiv: 2107.14584 (2021)
22 Koldobskiy S., Neronov A., Semikoz D.. Pion decay model of the Tibet-AS γ PeV gamma-ray signal. Phys. Rev. D, 2021, 104(4): 043010
https://doi.org/10.1103/PhysRevD.104.043010
23 Zhang P., Qiao B., Yuan Q., Cui S., Guo Y.. Ultrahigh-energy diffuse gamma ray emission from cosmic-ray interactions with the medium surrounding acceleration sources. Phys. Rev. D, 2022, 105(2): 023002
https://doi.org/10.1103/PhysRevD.105.023002
24 Collaboration IceCube. Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. Science, 2013, 342(6161): 1242856
https://doi.org/10.1126/science.1242856
25 G. Aartsen M., Abbasi R., Abdou Y., Ackermann M., Adams J.. et al.. First observation of PeV-energy neutrinos with IceCube. Phys. Rev. Lett., 2013, 111(2): 021103
https://doi.org/10.1103/PhysRevLett.111.021103
26 G. Aartsen M., Ackermann M., Adams J., A. Aguilar J., Ahlers M.. et al.. Observation of high-energy astrophysical neutrinos in three years of IceCube data. Phys. Rev. Lett., 2014, 113(10): 101101
https://doi.org/10.1103/PhysRevLett.113.101101
27 G. Aartsen M., Ackermann M., Adams J., A. Aguilar J., Ahlers M.. et al.. Time-integrated neutrino source searches with 10 years of IceCube data. Phys. Rev. Lett., 2020, 124(5): 051103
https://doi.org/10.1103/PhysRevLett.124.051103
28 Aartsen M., Ackermann M., Adams J., A. Aguilar J., Ahlers M.. et al.. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science, 2018, 361(6398): eaat1378
https://doi.org/10.1126/science.aat1378
29 Aartsen M., Ackermann M., Adams J., A. Aguilar J., Ahlers M.. et al.. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science, 2018, 361(6398): 147
https://doi.org/10.1126/science.aat2890
30 G. Aartsen M.Abraham K.Ackermann M., et al.., A combined maximum-likelihood analysis of the high energy astrophysical neutrino flux measured with IceCube, arXiv: 1507.03991 (2015)
31 Q. Guo Y., B. Hu H., Yuan Q., Tian Z., J. Gao X.. Pinpointing the knee of cosmic rays with diffuse PeV γ-rays and neutrinos. Astrophys. J., 2014, 795(1): 100
https://doi.org/10.1088/0004-637X/795/1/100
32 Lipari P., Vernetto S.. Diffuse galactic gamma-ray flux at very high energy. Phys. Rev. D, 2018, 98(4): 043003
https://doi.org/10.1103/PhysRevD.98.043003
33 Yuan Q., J. Lin S., Fang K., J. Bi X.. Propagation of cosmic rays in the AMS-02 era. Phys. Rev. D, 2017, 95(8): 083007
https://doi.org/10.1103/PhysRevD.95.083007
34 Adriani O.C. Barbarino G.A. Bazilevskaya G.Bellotti R.Boezio M., et al.., PAMELA measurements of cosmic-ray proton and helium spectra, Science 332(6025), 69 (2011)
35 Blasi P.Amato E., Diffusive propagation of cosmic rays from supernova remnants in the Galaxy (II): anisotropy, arXiv: 1105.4529 (2011)
36 Liu W., J. Bi X., J. Lin S., B. Wang B., F. Yin P.. Excesses of cosmic ray spectra from a single nearby source. Phys. Rev. D, 2017, 96(2): 023006
https://doi.org/10.1103/PhysRevD.96.023006
37 Tomassetti N.. Origin of the cosmic-ray spectral hardening. Astrophys. J. Lett., 2012, 752(1): L13
https://doi.org/10.1088/2041-8205/752/1/L13
38 Liu W., Guo Y.-Q., Yuan Q.. Indication of nearby source signatures of cosmic rays from energy spectra and anisotropies. J. Cosmol. Astropart. Phys., 2019, 10: 010
https://doi.org/10.1088/1475-7516/2019/10/010
39 Qiao B.-Q., Liu W., Guo Y.-Q., Yuan Q.. Anisotropies of different mass compositions of cosmic rays. J. Cosmol. Astropart. Phys., 2019, 12: 007
40 Q. Guo Y., Yuan Q.. Understanding the spectral hardenings and radial distribution of Galactic cosmic rays and Fermi diffuse γ rays with spatially-dependent propagation. Phys. Rev. D, 2018, 97(6): 063008
https://doi.org/10.1103/PhysRevD.97.063008
41 Q. Guo Y., Tian Z., Jin C.. Spatial-dependent propagation of cosmic rays results in the spectrum of proton, ratios of P/P, and B/C, and anisotropy of nuclei. ApJ, 2016, 819: 54
https://doi.org/10.3847/0004-637X/819/1/54
42 Liu W., Yao Y., Q. Guo Y.. Revisiting the spatially dependent propagation model with the latest observations of cosmic-ray nuclei. Astrophys. J., 2018, 869(2): 176
https://doi.org/10.3847/1538-4357/aaef39
43 Blasi P., Amato E., D. Serpico P.. Spectral breaks as a signature of cosmic ray induced turbulence in the galaxy. Phys. Rev. Lett., 2012, 109(6): 061101
https://doi.org/10.1103/PhysRevLett.109.061101
44 S. Seo E., S. Ptuskin V.. Stochastic reacceleration of cosmic rays in the interstellar medium. Astrophys. J., 1994, 431: 705
https://doi.org/10.1086/174520
45 Case G., Bhattacharya D.. Revisiting the galactic supernova remnant distribution. Astron. Astrophys. Suppl. Ser., 1996, 120: 437
46 Ahlers M.. Deciphering the dipole anisotropy of galactic cosmic rays. Phys. Rev. Lett., 2016, 117(15): 151103
https://doi.org/10.1103/PhysRevLett.117.151103
47 Aguilar M., Ali Cavasonza L., Ambrosi G., Arruda L., Attig N.. et al.. Precision measurement of the boron to carbon flux ratio in cosmic rays from 1.9 GV to 2.6 TV with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett., 2016, 117(23): 231102
https://doi.org/10.1103/PhysRevLett.117.231102
48 S. Yoon Y., Anderson T., Barrau A., B. Conklin N., Coutu S.. et al.. Proton and helium spectra from the CREAM-III flight. Astrophys. J., 2017, 839(1): 5
https://doi.org/10.3847/1538-4357/aa68e4
49 An Q., Asfandiyarov R., Azzarello P., Bernardini P., J. Bi X.. et al.. Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite. Sci. Adv., 2019, 5(9): eaax3793
https://doi.org/10.1126/sciadv.aax3793
50 Aguilar M., Aisa D., Alpat B., Alvino A., Ambrosi G.. et al.. Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett., 2015, 114(17): 171103
https://doi.org/10.1103/PhysRevLett.114.171103
51 Aguilar M., Ali Cavasonza L., Alpat B., Ambrosi G., Arruda L.. et al.. Observation of the identical rigidity dependence of He, C, and O cosmic rays at high rigidities by the alpha magnetic spectrometer on the international space station. Phys. Rev. Lett., 2017, 119(25): 251101
https://doi.org/10.1103/PhysRevLett.119.251101
52 Atkin E., Bulatov V., Dorokhov V.. et al.. First results of the cosmic ray NUCLEON experiment. J. Cosmol. Astropart. Phys., 2017, 07: 020
https://doi.org/10.1088/1475-7516/2017/07/020
53 D. Apel W.C. Arteaga-Velázquez J.Bekk K. Bertaina M.Blümer J., et al.., KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays, Astropart. Phys. 47, 54 (2013)
54 G. Aartsen M., Ackermann M., Adams J., A. Aguilar J., Ahlers M.. et al.. Cosmic ray spectrum and composition from PeV to EeV using 3 years of data from IceTop and IceCube. Phys. Rev. D, 2019, 100(8): 082002
https://doi.org/10.1103/PhysRevD.100.082002
55 J. C. Arteaga-Velázquez, HAWC measurements of the energy spectra of cosmic ray protons, helium and heavy nuclei in the TeV range, arXiv: 2108.03208 (2021)
56 R. Hörandel J.. On the knee in the energy spectrum of cosmic rays. Astropart. Phys., 2003, 19(2): 193
https://doi.org/10.1016/S0927-6505(02)00198-6
57 G. Aartsen M., Abbasi R., Ackermann M., Adams J., A. Aguilar J.. et al.. Cosmic ray spectrum from 250 TeV to 10 PeV using IceTop. Phys. Rev. D, 2020, 102(12): 122001
https://doi.org/10.1103/PhysRevD.102.122001
58 Alfaro R., Alvarez C., D. Álvarez J., Arceo R., C. Arteaga-Velázquez J.. et al.. All particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV. Phys. Rev. D, 2017, 96(12): 122001
https://doi.org/10.1103/PhysRevD.96.122001
59 Di Sciascio G., Measurement of the cosmic ray energy spectrum with ARGO-YBJ, arXiv: 1408.6739 (2014)
60 D. Panov A., H. Jr Adams J., S. Ahn H., L. Bashinzhagyan G., W. Watts J., P. Wefel J., Wu J., Ganel O., G. Guzik T., I. Zatsepin V., Isbert I., C. Kim K., Christl M., N. Kouznetsov E., I. Panasyuk M., S. Seo E., V. Sokolskaya N., Chang J., K. H. Schmidt W., R. Fazely A.. Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results. Bull. Russ. Acad. Sci. Phys., 2009, 73(5): 564
https://doi.org/10.3103/S1062873809050098
61 V. Atkin E., L. Bulatov V., A. Vasiliev O., G. Voronin A., V. Gorbunov N.. et al.. Energy spectra of cosmic-ray protons and nuclei measured in the NUCLEON experiment using a new method. Astron. Rep., 2019, 63(1): 66
https://doi.org/10.1134/S1063772919010013
62 Zhang J.-L., Bi X.-J., Hu H.-B.. Very high energy γ ray absorption by the galactic interstellar radiation field. Astron. Astrophys., 2006, 449(2): 641
https://doi.org/10.1051/0004-6361:20054422
63 V. Moskalenko I., A. Porter T., W. Strong A.. Attenuation of very high energy gamma rays by the Milky way interstellar radiation field. Astrophys. J., 2006, 640(2): L155
https://doi.org/10.1086/503524
64 Bartoli B., Bernardini P., J. Bi X., Branchini P., Budano A.. et al.. Study of the diffuse gamma-ray emission from the galactic plane with ARGO-YBJ. Astrophys. J., 2015, 806(1): 20
https://doi.org/10.1088/0004-637X/806/1/20
65 D. Kistler M., F. Beacom J.. Guaranteed and prospective galactic TeV neutrino sources. Phys. Rev. D, 2006, 74(6): 063007
https://doi.org/10.1103/PhysRevD.74.063007
66 Abbasi R.Ackermann M.Adams J., et al.., The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data, arXiv: 2011.03545 (2020)
67 Adrián-Martínez S., Albert A., André M., Anghinolfi M., Anton G.. et al.. Constraints on the neutrino emission from the galactic ridge with the ANTARES telescope. Phys. Lett. B, 2016, 760: 143
https://doi.org/10.1016/j.physletb.2016.06.051
68 G. Aartsen M., Ackermann M., Adams J., A. Aguilar J., Ahlers M.. et al.. Constraints on galactic neutrino emission with seven years of IceCube data. Astrophys. J., 2017, 849(1): 67
https://doi.org/10.3847/1538-4357/aa8dfb
69 Aharonian F., Yang R., de Oña Wilhelmi E.. Massive stars as major factories of galactic cosmic rays. Nat. Astron., 2019, 3(6): 561
https://doi.org/10.1038/s41550-019-0724-0
70 Cristofari P.. The hunt for pevatrons: The case of supernova remnants. Universe, 2021, 7(9): 324
https://doi.org/10.3390/universe7090324
71 M. Bykov A., C. Ellison D., E. Gladilin P., M. Osipov S.. Ultrahard spectra of PeV neutrinos from super novae in compact star clusters. Mon. Not. R. Astron. Soc., 2015, 453(1): 113
https://doi.org/10.1093/mnras/stv1606
72 M. Bykov A., E. Petrov A., E. Kalyashova M., V. Troitsky S.. PeV photon and neutrino flares from galactic gamma-ray binaries. Astrophys. J. Lett., 2021, 921(1): L10
https://doi.org/10.3847/2041-8213/ac2f3d
73 Yang R., Aharonian F., Evoli C.. Radial distribution of the diffuse γ-ray emissivity in the galactic disk. Phys. Rev. D, 2016, 93(12): 123007
https://doi.org/10.1103/PhysRevD.93.123007
74 W. Strong A., V. Moskalenko I.. Propagation of cosmic-ray nucleons in the galaxy. Astrophys. J., 1998, 509(1): 212
https://doi.org/10.1086/306470
75 W. Strong A., V. Moskalenko I., Reimer O.. Diffuse continuum gamma rays from the galaxy. Astrophys. J., 2000, 537(2): 763
https://doi.org/10.1086/309038
76 Evoli C., Gaggero D., Grasso D., Maccione L.. Cosmic ray nuclei, antiprotons and gamma rays in the galaxy: A new diffusion model. J. Cosmol. Astropart. Phys., 2008, 10: 018
https://doi.org/10.1088/1475-7516/2008/10/018
77 Evoli C., Gaggero D., Vittino A.. et al.. Cosmic-ray propagation with DRAGON2 (I): Numerical solver and as trophysical ingredients. J. Cosmol. Astropart. Phys., 2017, 02: 015
https://doi.org/10.1088/1475-7516/2017/02/015
[1] Bing-Qiang Qiao, Wei Liu, Meng-Jie Zhao, Xiao-Jun Bi, Yi-Qing Guo. Galactic cosmic ray propagation: sub-PeV diffuse gamma-ray and neutrino emission[J]. Front. Phys. , 2022, 17(4): 44501-.
[2] Miao He. Overview on neutrinos and the Daya Bay experiment[J]. Front. Phys. , 2013, 8(3): 242-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed