Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (1) : 12501    https://doi.org/10.1007/s11467-022-1203-0
RESEARCH ARTICLE
Nonreciprocal microwave transmission under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect
Cui Kong1, Jibing Liu1(), Hao Xiong2()
1. College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China
2. School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
 Download: PDF(13174 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Nonreciprocal microwave devices, in which the transmission of waves is non-symmetric between two ports, are indispensable for the manipulation of information processing and communication. In this work, we show the nonreciprocal microwave transmission in a cavity magnonic system under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect. In contrast to the schemes based on the standard phase modulation or magnon Kerr nonlinearity, we find that the joint mechanism enables the nonreciprocal transmission even at low power and makes us obtain a high nonreciprocal isolation ratio. Moreover, when two microwave modes are coupled to the magnon mode via a different coupling strength, the presented strong nonreciprocal response occurs, and it makes the nonreciprocal transmission manipulating by the magnetic field within a large adjustable range possible, which overcomes narrow operating bandwidths. This study may provide promising opportunities to realize nonreciprocal structures for wave transmission.

Keywords nonreciprocal microwave transmission      phase modulation      magnon Kerr nonlinearity effect     
Corresponding Author(s): Jibing Liu,Hao Xiong   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 20 October 2022
 Cite this article:   
Cui Kong,Jibing Liu,Hao Xiong. Nonreciprocal microwave transmission under the joint mechanism of phase modulation and magnon Kerr nonlinearity effect[J]. Front. Phys. , 2023, 18(1): 12501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1203-0
https://academic.hep.com.cn/fop/EN/Y2023/V18/I1/12501
Fig.1  (a) Schematic diagram of a superconducting ring resonator which supports two clockwise (acw) and counterclockwise (accw) rotating microwave modes, and a YIG sphere which is placed in the middle of the ring resonator. (b) Schematic diagram of the linear coupling among the magnon and two microwave modes with the coupling strengths J and g1,2 respectively. κ1, κ2, γm are respectively dissipation rates of two microwave and magnon modes.
Fig.2  (a) The calculation results of the isolation ratio I (dB) vary with the phase ? and the power Pd of the control field, where Δm=Ω1,2=γm. (b) The calculation results of the isolation ratio I (dB) vary with the frequency detuning Ω and the external magnetic field H, where ?=π/2, Pd=100 mW. The other parameters are ωm/(2π)=10.1 GHz, κ1/(2π)=3.8 MHz, κ2=κ1, γm/(2π)=17.5 MHz, J/(2π)=20 MHz, g1/(2π)=41 MHz, g2=g1, K/κ1=10?10, κ1,e=0.5κ1, κ2,e=0.5κ2, γm,e=0.5γm, Δ0=γm, which are based on the latest experimental parameters [21, 33].
Fig.3  (a?c) Transmission coefficients T21 (blue solid curve) and T12 (red dashed curve) are plotted as functions of the frequency detuning Ω for different g2 and the powers Pd of the control field. (d) The calculation results of the isolation ratio I vary with the frequency detuning Ω under different powers Pd of the control field. We use ?=π/2, and the other parameters are the same as in Fig.2.
Fig.4  Transmission coefficients T21 (blue solid curve) and T12 (red dashed curve) are plotted as functions of the frequency detuning Ω under different powers Pd of the control field. From (a) to (d), Pd is 0 mW, 4 mW, 10 mW, 100 mW respectively. We use ?=π/4, and the other parameters are the same as in Fig.2.
Fig.5  Transmission coefficients T21 (greed solid curve) and T12 (purple dashed curve) are plotted as functions of the external magnetic field H under different powers Pd of the control field. From (a) to (d), Pd is 0 mW, 7 mW, 10 mW, 12 mW respectively. We use ?=π/4, and the other parameters are the same as in Fig.2.
Fig.6  The isolation ratios I of the nonreciprocal microwave transmission are plotted as functions of the external magnetic field H under different powers Pd of the control field and g2. We use ?=π/4, and the other parameters are the same as in Fig.2.
1 Walther H. , T. H. Varcoe B. , G. Englert B. , Becker T. . Cavity quantum electrodynamics. Rep. Prog. Phys., 2006, 69(5): 1325
https://doi.org/10.1088/0034-4885/69/5/R02
2 P. Su Q. , Zhang Y. , Bin L. , P. Yang C. . Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics. Front. Phys., 2022, 17(5): 53505
https://doi.org/10.1007/s11467-022-1163-4
3 D. Stancil D.Prabhakar A., Spin Waves, Springer, New York, 2009
4 O. Soykal Ö. , E. Flatté M. . Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett., 2010, 104(7): 077202
https://doi.org/10.1103/PhysRevLett.104.077202
5 Zare Rameshti B. , Cao Y. , E. W. Bauer G. . Magnetic spheres in microwave cavities. Phys. Rev. B, 2015, 91(21): 214430
https://doi.org/10.1103/PhysRevB.91.214430
6 Tabuchi Y. , Ishino S. , Noguchi A. , Ishikawa T. , Yamazaki R. , Usami K. , Nakamura Y. . Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science, 2015, 349(6246): 405
https://doi.org/10.1126/science.aaa3693
7 Shim J. , J. Kim S. , K. Kim S. , J. Lee K. . Enhanced magnon−photon coupling at the angular momentum compensation point of ferrimagnets. Phys. Rev. Lett., 2020, 125(2): 027205
https://doi.org/10.1103/PhysRevLett.125.027205
8 Wang K. , P. Gao Y. , Z. Jiao R. , Wang C. . Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Front. Phys., 2022, 17(4): 42201
https://doi.org/10.1007/s11467-022-1165-2
9 J. Kimble H. . The quantum internet. Nature, 2008, 453(7198): 1023
https://doi.org/10.1038/nature07127
10 Aspelmeyer M. , J. Kippenberg T. , Marquardt F. . Cavity optomechanics. Rev. Mod. Phys., 2014, 86(4): 1391
https://doi.org/10.1103/RevModPhys.86.1391
11 W. Zhou J. , F. Wang P. , Z. Shi F. , Huang P. , Kong X. , K. Xu X. , Zhang Q. , X. Wang Z. , Rong X. , F. Du J. . Quantum information processing and metrology with color centers in diamonds. Front. Phys., 2014, 9(5): 587
https://doi.org/10.1007/s11467-014-0421-5
12 Zhang X. , L. Zou C. , Jiang L. , X. Tang H. . Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett., 2014, 113(15): 156401
https://doi.org/10.1103/PhysRevLett.113.156401
13 Goryachev M. , G. Farr W. , L. Creedon D. , Fan Y. , Kostylev M. , E. Tobar M. . High-cooperativity cavity QED with magnons at microwave frequencies. Phys. Rev. Appl., 2014, 2(5): 054002
https://doi.org/10.1103/PhysRevApplied.2.054002
14 Zhang D. , Wang X.-M. , Li T.-F. , Luo X.-Q. , Wu W. , Nori F. , Q. You J. . Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere. npj Quantum Inf., 2015, 1: 15014
https://doi.org/10.1038/npjqi.2015.14
15 Yao B. , Gui Y. , Rao J. , Kaur S. , Chen X. , Lu W. , Xiao Y. , Guo H. , P. Marzlin K. , M. Hu C. . Cooperative polariton dynamics in feedback-coupled cavities. Nat. Commun., 2017, 8(1): 1437
https://doi.org/10.1038/s41467-017-01796-7
16 Tabuchi Y. , Ishino S. , Ishikawa T. , Yamazaki R. , Usami K. , Nakamura Y. . Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett., 2014, 113(8): 083603
https://doi.org/10.1103/PhysRevLett.113.083603
17 Kostylev N. , Goryachev M. , E. Tobar M. . Superstrong coupling of a microwave cavity to yttrium iron garnet magnons. Appl. Phys. Lett., 2016, 108(6): 062402
https://doi.org/10.1063/1.4941730
18 Bourhill J. , Kostylev N. , Goryachev M. , Creedon D. , Tobar M. . Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere. Phys. Rev. B, 2016, 93(14): 144420
https://doi.org/10.1103/PhysRevB.93.144420
19 Flower G. , Goryachev M. , Bourhill J. , E. Tobar M. . Experimental implementations of cavity-magnon systems: From ultra strong coupling to applications in precision measurement. New J. Phys., 2019, 21(9): 095004
https://doi.org/10.1088/1367-2630/ab3e1c
20 Bai L. , Harder M. , P. Chen Y. , Fan X. , Q. Xiao J. , M. Hu C. . Spin pumping in electrodynamically coupled magnon−photon systems. Phys. Rev. Lett., 2015, 114(22): 227201
https://doi.org/10.1103/PhysRevLett.114.227201
21 P. Wang Y. , Q. Zhang G. , Zhang D. , F. Li T. , M. Hu C. , Q. You J. . Bistability of cavity magnon polaritons. Phys. Rev. Lett., 2018, 120(5): 057202
https://doi.org/10.1103/PhysRevLett.120.057202
22 F. Zhang X. , L. Zou C. , Zhu N. , Marquardt F. , Jiang L. , X. Tang H. . Magnon dark modes and gradient memory. Nat. Commun., 2015, 6(1): 8914
https://doi.org/10.1038/ncomms9914
23 C. Shen R. , P. Wang Y. , Li J. , Y. Zhu S. , S. Agarwal G. , Q. You J. . Long-time memory and ternary logic gate using a multistable cavity magnonic system. Phys. Rev. Lett., 2021, 127(18): 183202
https://doi.org/10.1103/PhysRevLett.127.183202
24 P. Wang Y. , M. Hu C. . Dissipative couplings in cavity magnonics. J. Appl. Phys., 2020, 127(13): 130901
https://doi.org/10.1063/1.5144202
25 Harder M. , Yang Y. , M. Yao B. , H. Yu C. , W. Rao J. , S. Gui Y. , L. Stamps R. , M. Hu C. . Level attraction due to dissipative magnon−photon coupling. Phys. Rev. Lett., 2018, 121(13): 137203
https://doi.org/10.1103/PhysRevLett.121.137203
26 W. Rao J. , H. Yu C. , T. Zhao Y. , S. Gui Y. , Fan X. , Xue D. , M. Hu C. . Level attraction and level repulsion of magnon coupled with a cavity anti-resonance. New J. Phys., 2019, 21(6): 065001
https://doi.org/10.1088/1367-2630/ab2482
27 Cao Y. , Yan P. , Huebl H. , T. B. Goennenwein S. , E. W. Bauer G. . Exchange magnon-polaritons in microwave cavities. Phys. Rev. B, 2015, 91(9): 094423
https://doi.org/10.1103/PhysRevB.91.094423
28 Bai L. , Harder M. , Hyde P. , Zhang Z. , M. Hu C. , P. Chen Y. , Q. Xiao J. . Cavity mediated manipulation of distant spin currents using a cavity-magnon-polariton. Phys. Rev. Lett., 2017, 118(21): 217201
https://doi.org/10.1103/PhysRevLett.118.217201
29 Zhang D. , Q. Luo X. , P. Wang Y. , F. Li T. , Q. You J. . Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun., 2017, 8(1): 1368
https://doi.org/10.1038/s41467-017-01634-w
30 Q. Zhang G. , Q. You J. . Higher-order exceptional point in a cavity magnonics system. Phys. Rev. B, 2019, 99(5): 054404
https://doi.org/10.1103/PhysRevB.99.054404
31 Huang R. , K. Özdemir Ş. , Q. Liao J. , Minganti F. , M. Kuang L. , Nori F. , Jing H. . Exceptional photon blockade: engineering photon blockade with chiral exceptional points. Laser Photonics Rev., 2022, 16(7): 2100430
https://doi.org/10.1002/lpor.202100430
32 X. Yang Z. , Wang L. , M. Liu Y. , Y. Wang D. , H. Bai C. , Zhang S. , F. Wang H. . Ground state cooling of magnomechanical resonator in PT-symmetric cavity magnomechanical system at room temperature. Front. Phys., 2020, 15(5): 52504
https://doi.org/10.1007/s11467-020-0996-y
33 Q. Zhang G. , P. Wang Y. , Q. You J. . Theory of the magnon Kerr effect in cavity magnonics. Sci. China Phys. Mech. Astron., 2019, 62(8): 987511
https://doi.org/10.1007/s11433-018-9344-8
34 P. Wang Y. , Q. Zhang G. , Zhang D. , Q. Luo X. , Xiong W. , P. Wang S. , F. Li T. , M. Hu C. , Q. You J. . Magnon Kerr effect in a strongly coupled cavity-magnon system. Phys. Rev. B, 2016, 94(22): 224410
https://doi.org/10.1103/PhysRevB.94.224410
35 B. Yang Z. , Jin H. , W. Jin J. , Y. Liu J. , Y. Liu H. , C. Yang R. . Bistability of squeezing and entanglement in cavity magnonics. Phys. Rev. A, 2021, 3: 023126
36 Haghshenasfarda Z. , G. Cottam M. . Sub-Poissonian statistics and squeezing of magnons due to the Kerr effect in a hybrid coupled cavity-magnon system. J. Appl. Phys., 2020, 128(3): 033901
https://doi.org/10.1063/5.0012072
37 X. Liu Z. , Wang B. , Xiong H. , Wu Y. . Magnon-induced high-order sideband generation. Opt. Lett., 2018, 43(15): 3698
https://doi.org/10.1364/OL.43.003698
38 L. Liu Y. , Ling L. , Shui T. , Ji N. , P. Liu S. , X. Yang W. . Two-color second-order sideband generation via magnon Kerr nonlinearity in a cavity magnonical system. J. Opt. Soc. Am. B, 2022, 39: 1042
https://doi.org/10.1038/s41598-018-19556-y
39 X. Liu Z. , You C. , Wang B. , Xiong H. , Wu Y. . Phase-mediated magnon chaos-order transition in cavity optomagnonics. Opt. Lett., 2019, 44(3): 507
https://doi.org/10.1364/OL.44.000507
40 P. Wang Y. , W. Rao J. , Yang Y. , C. Xu P. , S. Gui Y. , M. Yao B. , Q. You J. , M. Hu C. . Nonreciprocity and unidirectional invisibility in cavity magnonics. Phys. Rev. Lett., 2019, 123(12): 127202
https://doi.org/10.1103/PhysRevLett.123.127202
41 B. Yang Z. , S. Liu J. , D. Zhu A. , Y. Liu H. , C. Yang R. . Nonreciprocal transmission and nonreciprocal entanglement in a spinning microwave magnomechanical system. Ann. Phys., 2020, 532(9): 2000196
https://doi.org/10.1002/andp.202000196
42 B. Yan X. , L. Lu H. , Gao F. , Yang L. . Perfect optical nonreciprocity in a double-cavity optomechanical system. Front. Phys., 2019, 14(5): 52601
https://doi.org/10.1007/s11467-019-0922-3
43 Y. Hua S. , M. Wen J. , S. Jiang X. , Hua Q. , Jiang L. , Xiao M. . Demonstration of a chip-based optical isolator with parametric amplification. Nat. Commun., 2016, 7(1): 13657
https://doi.org/10.1038/ncomms13657
44 Tokura Y. , Kawasaki M. , Nagaosa N. . Emergent functions of quantum materials. Nat. Phys., 2017, 13(11): 1056
https://doi.org/10.1038/nphys4274
45 Doyeux P. , A. H. Gangaraj S. , W. Hanson G. , Antezza M. . Giant interatomic energy-transport amplification with nonreciprocal photonic topological insulators. Phys. Rev. Lett., 2017, 119(17): 173901
https://doi.org/10.1103/PhysRevLett.119.173901
46 D. M. Haldane F. , Raghu S. . Possible realization of directional optical wave-guides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 2008, 100(1): 013904
https://doi.org/10.1103/PhysRevLett.100.013904
47 Hadad Y. , Z. Steinberg B. . Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides. Phys. Rev. Lett., 2010, 105(23): 233904
https://doi.org/10.1103/PhysRevLett.105.233904
48 X. Guo X. , M. Ding Y. , Duan Y. , J. Ni X. . Nonreciprocal metasurface with space-time phase modulation. Light Sci. Appl., 2019, 8(1): 123
https://doi.org/10.1038/s41377-019-0225-z
49 S. Kang M. , Butsch A. , S. J. Russell P. . Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nat. Photonics, 2011, 5(9): 549
https://doi.org/10.1038/nphoton.2011.180
50 Shi Y. , F. Yu Z. , H. Fan S. . Limitations of nonlinear optical isolators due to dynamic reciprocity. Nat. Photonics, 2015, 9(6): 388
https://doi.org/10.1038/nphoton.2015.79
51 B. Khanikaev A. , Alù A. . Nonlinear dynamic reciprocity. Nat. Photonics, 2015, 9(6): 359
https://doi.org/10.1038/nphoton.2015.86
52 Shui T. , X. Yang W. , T. Cheng M. , K. Lee R. . Optical nonreciprocity and nonreciprocal photonic devices with directional four-wave mixing effect. Opt. Express, 2022, 30(4): 6284
https://doi.org/10.1364/OE.446238
53 Y. Huang X. , C. Lu C. , Liang C. , G. Tao H. , C. Liu Y. . Loss-induced nonreciprocity. Light: Sci. Appl., 2021, 10(1): 30
https://doi.org/10.1038/s41377-021-00464-2
54 T. Zhao Y. , W. Rao J. , S. Gui Y. , P. Wang Y. , M. Hu C. . Broadband nonreciprocity realized by locally controlling the magnon’s radiation. Phys. Rev. Appl., 2020, 14(1): 014035
https://doi.org/10.1103/PhysRevApplied.14.014035
55 Zhu N. , Han X. , L. Zou C. , R. Xu M. , X. Tang H. . Magnon−photon strong coupling for tunable microwave circulators. Phys. Rev. A, 2020, 101(4): 043842
https://doi.org/10.1103/PhysRevA.101.043842
56 F. Zhang X. , Galda A. , Han X. , F. Jin D. , M. Vinokur V. . Broadband nonreciprocity enabled by strong coupling of magnons and microwave photons. Phys. Rev. Appl., 2020, 13(4): 044039
https://doi.org/10.1103/PhysRevApplied.13.044039
57 Kong C. , Xiong H. , Wu Y. . Magnon-induced nonreciprocity based on the magnon Kerr effect. Phys. Rev. Appl., 2019, 12(3): 034001
https://doi.org/10.1103/PhysRevApplied.12.034001
58 Kong C. , M. Bao X. , B. Liu J. , Xiong H. . Magnon-mediated nonreciprocal microwave transmission based on quantum interference. Opt. Lett., 2021, 29: 16
59 Manipatruni S. , T. Robinson J. , Lipson M. . Optical nonreciprocity in optomechanical structures. Phys. Rev. Lett., 2009, 102(21): 213903
https://doi.org/10.1103/PhysRevLett.102.213903
60 Metelmann A. , A. Clerk A. . Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X, 2015, 5(2): 021025
https://doi.org/10.1103/PhysRevX.5.021025
61 Ciuti C. , Carusotto I. . Input−output theory of cavities in the ultrastrong coupling regime: The case of time-independent cavity parameters. Phys. Rev. A, 2006, 74(3): 033811
https://doi.org/10.1103/PhysRevA.74.033811
62 W. Gardiner C.Zoller P., Quantum Noise, Springer, 2004
63 T. Hou J. , Q. Liu L. . Strong coupling between microwave photons and nanomagnet magnons. Phys. Rev. Lett., 2019, 123(10): 107702
https://doi.org/10.1103/PhysRevLett.123.107702
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed