Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (1) : 13302    https://doi.org/10.1007/s11467-022-1210-1
RESEARCH ARTICLE
Magnetic properties and critical behavior of quasi-2D layered Cr4Te5 thin film
Hao Liu1,2, Jiyu Fan1,2, Huan Zheng1,2, Jing Wang1,2, Chunlan Ma3, Haiyan Wang4, Lei Zhang5, Caixia Wang6, Yan Zhu1,2, Hao Yang1,2()
1. Department of Applied Physics, College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2. Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
3. Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China
4. School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
5. High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
6. College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
 Download: PDF(7213 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Quasi-2D layered Cr4Te5 thin film has attracted great attention because it possesses the high Curie temperature close to room temperature and relatively large saturation magnetization. However, the magnetic interactions and the nature of magnetic phase transition in the Cr4Te5 film have not been explored thoroughly. In this paper, we focused on the critical behavior of its magnetic phase transition through the epitaxial Cr4Te5 film fabricated by pulsed laser deposition (PLD). The final critical exponents β = 0.359(2) and γ = 1.54(2) were obtained by linear extrapolation together with Arrott-Noakes equation of state, and their accuracy was confirmed by using the Widom scaling relation and scaling hypothesis. We find that some magnetic disorders exist in the Cr4Te5 film system, which is related to Cr4Te5 critical behavior why its critical behavior is quite far from any conventional universality class. Furthermore, we also determined that the Cr4Te5 film exhibits a quasi-2D long-range magnetic interaction. Finally, the itinerant ferromagnets of Cr4Te5 films were confirmed by the Takahashi’s self-consistent renormalization theory of spin fluctuations. Our work provides a new idea for understanding the mechanism of magnetic interactions in similar 2D layered films.

Corresponding Author(s): Jiyu Fan,Hao Yang   
Issue Date: 03 November 2022
 Cite this article:   
Hao Liu,Jiyu Fan,Huan Zheng, et al. Magnetic properties and critical behavior of quasi-2D layered Cr4Te5 thin film[J]. Front. Phys. , 2023, 18(1): 13302.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1210-1
https://academic.hep.com.cn/fop/EN/Y2023/V18/I1/13302
Fig.1  (a) XRD θ−2θ pattern of Cr4Te5 film grown on Al2O3 substrate. (b) XRD ϕ-scan pattern of Cr4Te5 (222) and Al2O3 (104).
Fig.2  (a) Cross-sectional TEM image and (b) high-resolution TEM image of Cr4Te5 and Al2O3 interface. (c) AFM topographic image of Cr4Te5 film surface. (d) Height profile obtained along the red line in (c).
Fig.3  (a) HAADF-STEM image of Cr4Te5 and Al2O3 interface. (b−e) EDS mapping of Cr, Te, Al, and O element, respectively.
Fig.4  (a) Temperature dependence of magnetization under 500 Oe applied magnetic field for Cr4Te5 film samples. Left inset: The dM/dT vs. T curve. Right inset: The hysteresis loops for 5?K. (b) Typical initial isothermal magnetization curves measured around TC.
Fig.5  (a) The Arrott plot of M2 vs. H/M. (b) Normalized slope (NS) of four common theoretical models as a function of temperature. (c) Temperature dependence of the spontaneous magnetization MS (left axis) and initial inverse magnetic susceptibility χ01 (right axis), and the red solid lines are the fitting curves by using Eqs. (1) and (2). (d) The final modified Arrott plot [M1/β vs. (H/M)1/γ] at the high-field region with the critical exponents β = 0.359(2) and γ = 1.54(2).
Fig.6  (a) The coefficients A' and B' of the Arrott−Noakes equation as a function of temperature. (b) Initial isothermal magnetization curve at T = 257 K. Inset: The same curve on the log−log scale and the black solid line is the fit following Eq. (3). (c) M(H) data are plotted as renormalized magnetization (m) vs. renormalized field (h) following scaling hypothesis. Inset: The same plot on the log−log scale. (d) Effective critical exponents βeff and γeff as a function of the reduced temperature ε.
Critical exponents d = 3 d = 3 d = 3 d = 2 d = 2 d = 2
n = 1 n = 2 n = 3 n = 1 n = 2 n = 3
σ 2.2415 2.1286 2.0621 1.4736 1.4033 1.3619
α −0.0611 −0.1705 −0.2404 −0.0902 −0.1948 −0.2616
β 0.2606 0.3152 0.3502 0.2751 0.3274 0.3608
δ 6.9105 5.8853 5.3976 6.5985 5.7039 5.2683
Tab.1  Comparison of critical exponents of Cr4Te5 films with different sets of {d : n}.
Fig.7  The M4 vs. H/M plot for the Cr4Te5 film at T = 257 K.
1 Hashimoto A., Suenaga K., Gloter A., Urita K., Iijima S.. Direct evidence for atomic defects in graphene layers. Nature, 2004, 430: 870
https://doi.org/10.1038/nature02817
2 McCreary Z.LinBriggs A.Subramanian N.H. Zhang S.F. Sun K.F. Li Y. J. Borys X.T. Yuan N.K. Fullerton-Shirey H.Chernikov S.Zhao A. McDonnell H.M. Lindenberg S.Xiao A.J. LeRoy K.Drndic B. C. M. Hwang M.Park J.Chhowalla J.E. Schaak M.Javey R.C. Hersam A.Robinson M.Terrones J.M., 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications, 2D Mater. 3, 042001 (2016)
3 Bonaccorso F., Colombo L., H. Yu G., Stoller M., Tozzini V., C. Ferrari A., S. Ruoff R., Pellegrini V.. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science, 2015, 347: 1246501
https://doi.org/10.1126/science.1246501
4 Gibertini M., Koperski M., F. Morpurgo A., S. Novoselov K.. Magnetic 2D materials and heterostructures. Nat. Nanotechnol., 2019, 14: 408
https://doi.org/10.1038/s41565-019-0438-6
5 Li H., C. Ruan S., J. Zeng Y.. Intrinsic van Der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Adv. Mater., 2019, 31: 1900065
https://doi.org/10.1002/adma.201900065
6 Rahman S., F. Torres J., R. Khan A., R. Lu Y.. Recent developments in van der Waals antiferromagnetic 2D materials: Synthesis, characterization, and device implementation. ACS Nano, 2021, 15: 17175
https://doi.org/10.1021/acsnano.1c06864
7 M. Acosta C., Ogoshi E., A. Souza J., M. Dalpian G.. Machine learning study of the magnetic ordering in 2D materials. ACS Appl. Mater. Interfaces, 2022, 17: 9418
https://doi.org/10.1021/acsami.1c21558
8 S. Zhang L., Zhou J., Li H., Shen L., P. Feng Y.. Recent progress and challenges in magnetic tunnel junctions with 2D materials for spintronic applications. Appl. Phys. Rev., 2021, 8: 021308
https://doi.org/10.1063/5.0032538
9 D. Mermin N., Wagner H.. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 1966, 17: 1133
https://doi.org/10.1103/PhysRevLett.17.1133
10 M. Hu A., L. Wang L., Z. Xiao W., Xiao G., Y. Rong Q.. Electronic structures and magnetic properties in nonmetallic element substituted MoS2 monolayer. Comput. Mater. Sci., 2015, 107: 72
https://doi.org/10.1016/j.commatsci.2015.05.021
11 Ataca C., Ciraci S.. Functionalization of single-layer MoS2 honeycomb structures. J. Phys. Chem. C, 2011, 115: 13303
https://doi.org/10.1021/jp2000442
12 Zhang J., M. Soon J., P. Loh K., H. Yin J., Ding J., B. Sullivian M., Wu P.. Magnetic molybdenum disulfide nanosheet films. Nano Lett., 2007, 7: 2370
https://doi.org/10.1021/nl071016r
13 Huang B., Clark G., Navarro-Moratalla E., R. Klein D., Cheng R., L. Seyler K., Zhong D., Schmidgall E., A. McGuire M., H. Cobden D., Yao W., Xiao D., Jarillo-Herrero P., D. Xu X.. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546: 270
https://doi.org/10.1038/nature22391
14 Gong C., Li L., L. Li Z., W. Ji H., Stern A., Xia Y., Cao T., Bao W., Z. Wang C., A. Wang Y., Q. Qiu Z., J. Cava R., G. Louie S., Xia J., Zhang X.. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546: 265
https://doi.org/10.1038/nature22060
15 Liu Y., Petrovic C.. Critical behavior of quasi-two-dimensional semiconducting ferromagnet Cr2Ge2Te6. Phys. Rev. B, 2017, 96: 054406
https://doi.org/10.1103/PhysRevB.96.054406
16 Liu Y., Petrovic C.. Three-dimensional magnetic critical behavior in CrI3. Phys. Rev. B, 2018, 97: 014420
https://doi.org/10.1103/PhysRevB.97.014420
17 Zhang X., L. Yu T., Y. Xue Q., Lei M., Z. Jiao R.. Critical behavior and magnetocaloric effect in monoclinic Cr5Te8. J. Alloys Compd., 2018, 750: 798
https://doi.org/10.1016/j.jallcom.2018.03.318
18 Zhu Y., H. Kong X., D. Rhone T., Guo H.. Systematic search for two-dimensional ferromagnetic materials. Phys. Rev. Mater., 2018, 2: 081001
https://doi.org/10.1103/PhysRevMaterials.2.081001
19 W. Zhang X., Wang B., L. Guo Y., H. Zhang Y., F. Chen Y., L. Wang J., High Curie temperature, intrinsic ferromagnetic half-metallicity in two-dimensional Cr3X4 (X = S. Te) nanosheets. Nanoscale Horiz., 2019, 4: 859
https://doi.org/10.1039/c9nh00038k
20 Z. Zhang L., L. Zhang A., D. He X., W. Ben X., L. Xiao Q., L. Lu W., Chen F., J. Feng Z., X. Cao S., C. Zhang J., Y. Ge J.. Critical behavior and magnetocaloric effect of the quasi-two-dimensional room-temperature ferromagnet Cr4Te5. Phys. Rev. B, 2020, 101: 214413
https://doi.org/10.1103/PhysRevB.101.214413
21 Xian J.-J., Wang C., Nie J.-H., Li R., Han M., Lin J., Zhang W.-H., Liu Z.-Y., Zhang Z.-M., Miao M.-P., Yi Y., Wu S., Chen X., Han J., Xia Z., Ji W., Fu Y.-S.. Spin mapping of intralayer antiferromagnetism and field-induced spin reorientation in monolayer CrTe2. Nat. Commun., 2022, 13: 257
https://doi.org/10.1038/s41467-021-27834-z
22 Gao P., Li X., Yang J.. Thickness Dependent magnetic transition in few layer 1T phase CrTe2. J. Phys. Chem. Lett., 2021, 12: 6847
https://doi.org/10.1021/acs.jpclett.1c01901
23 Y. Lv H., J. Lu W., F. Shao D., Liu Y., P. Sun Y., Strain-controlled switch between ferromagnetism, antiferromagnetism in 1T-CrX2 (X = Se. Te) monolayers. Phys. Rev. B, 2015, 92: 214419
https://doi.org/10.1103/PhysRevB.92.214419
24 Yang X., Zhou X., Feng W., Yao Y.. Tunable magneto-optical effect, anomalous Hall effect, and anomalous Nernst effect in the two-dimensional room-temperature ferromagnet 1T-CrTe2. Phys. Rev. B, 2021, 103: 024436
https://doi.org/10.1103/PhysRevB.103.024436
25 X. Li H., J. Wang L., S. Chen J., Yu T., Zhou L., Qiu Y., T. He H., Ye F., K. Sou T., Wang G.. Molecular beam epitaxy grown Cr2Te3 thin films with tunable Curie temperatures for spintronic devices. ACS Appl. Nano Mater., 2019, 2: 6809
https://doi.org/10.1021/acsanm.9b01179
26 Wen Y., H. Liu Z., Zhang Y., X. Xia C., X. Zhai B., H. Zhang X., H. Zhai G., Shen C., He P., Q. Cheng R., Yin L., Y. Yao Y., G. Sendeku M., X. Wang Z., B. Ye X., S. Liu C., Jiang C., X. Shan C., W. Long Y., He J.. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett., 2020, 20: 3130
https://doi.org/10.1021/acs.nanolett.9b05128
27 Bian M., N. Kamenskii A., Han M., Li W., Wei S., Tian X., B. Eason D., Sun F., He K., Hui H., Yao F., Sabirianov R., P. Bird J., Yang C., Miao J., Lin J., A. Crooker S., Hou Y., Zeng H.. Covalent 2D Cr2Te3 ferromagnet. Mater. Res. Lett, 2021, 9: 205
https://doi.org/10.1080/21663831.2020.1865469
28 Yao J., Wang H., Yuan B., Hu Z., Wu C., Zhao A.. Ultrathin van der Waals antiferromagnet CrTe3 for fabrication of in-plane CrTe3/CrTe2 monolayer magnetic heterostructures. Adv. Mater., 2022, 34: 2200236
https://doi.org/10.1002/adma.202200236
29 Li R., Nie J.-H., Xian J.-J., Zhou J.-W., Lu Y., Miao M.-P., Zhang W.-H., Fu Y.-S.. Planar heterojunction of ultrathin CrTe3 and CrTe2 van der Waals magnet. ACS Nano, 2022, 16: 4348
https://doi.org/10.1021/acsnano.1c10555
30 Y. Wang W., Y. Fan J., Liu H., Zheng H., L. Ma C., Zhang L., B. Sun Y., X. Wang C., Zhu Y., Yang H.. Fabrication and magnetic-electronic properties of van der Waals Cr4Te5 ferromagnetic films. Crystengcomm, 2022, 24: 674
https://doi.org/10.1039/d1ce01200b
31 Wang J., Y. Wang W., Y. Fan J., Zheng H., Liu H., L. Ma C., Zhang L., Tong W., S. Ling L., Zhu Y., Yang H.. Epitaxial growth and room-temperature ferromagnetism of quasi-2D layered Cr4Te5 thin film. J. Phys. D: Appl. Phys., 2022, 55: 165001
https://doi.org/10.1088/1361-6463/ac47c2
32 Liu Y., J. Wu L., Tong X., Li J., Tao J., M. Zhu Y., Petrovic C.. Thickness-dependent magnetic order in CrI3 single crystals. Sci. Rep., 2019, 9: 13599
https://doi.org/10.1038/s41598-019-50000-x
33 E. Fisher M.. The theory of equilibrium critical phenomena. Rep. Prog. Phys., 1967, 30: 615
https://doi.org/10.1088/0034-4885/30/2/306
34 H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, London and New York, 1971
35 Arrott A.. Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev., 1957, 108: 1394
https://doi.org/10.1103/PhysRev.108.1394
36 K. Banerjee B.. On a generalised approach to first and second order magnetic transitions. Phys. Lett., 1964, 12: 16
https://doi.org/10.1016/0031-9163(64)91158-8
37 Arrott A., E. Noakes J.. Approximate equation of state for nickel near its critical temperature. Phys. Rev. Lett., 1967, 19: 786
https://doi.org/10.1103/PhysRevLett.19.786
38 H. Phan M., Franco V., Chaturvedi A., Stefanoski S., S. Nolas G., Srikanth H.. Origin of the magnetic anomaly and tunneling effect of europium on the ferromagnetic ordering in Eu8−xSrxGa16Ge30 (x=0, 4) type-I clathrates. Phys. Rev. B, 2011, 84: 054436
https://doi.org/10.1103/PhysRevB.84.054436
39 Lin S., Y. Lv H., C. Lin J., A. Huang Y., Zhang L., H. Song W., Tong P., J. Lu W., P. Sun Y.. Critical behavior in the itinerant ferromagnet AsNCr3 with tetragonal-antiperovskite structure. Phys. Rev. B, 2018, 98: 014412
https://doi.org/10.1103/PhysRevB.98.014412
40 Rahman A., U. Rehman M., C. Zhang D., Zhang M., Q. Wang X., C. Dai R., P. Wang Z., P. Tao X., Zhang L., M. Zhang Z.. Critical behavior in the half-metallic Hensler alloy Co2TiSn. Phys. Rev. B, 2019, 100: 214419
https://doi.org/10.1103/PhysRevB.100.214419
41 Widom B.. Degree of the critical isotherm. J. Chem. Phys., 1964, 41: 1633
https://doi.org/10.1063/1.1726135
42 Widom B.. Equation of state in the neighborhood of the critical point. J. Chem. Phys., 1965, 43: 3898
https://doi.org/10.1063/1.1696618
43 Y. Fan J., S. Ling L., Hong B., Zhang L., Pi L., H. Zhang Y.. Critical properties of the perovskite manganite La0.1Nd0.6Sr0.3MnO3. Phys. Rev. B, 2010, 81: 144426
https://doi.org/10.1103/PhysRevB.81.144426
44 Perumal A., Srinivas V., V. Rao V., A. Dunlap R.. Quenched disorder and the critical behavior of a partially frustrated system. Phys. Rev. Lett., 2003, 91: 137202
https://doi.org/10.1103/PhysRevLett.91.137202
45 K. Pramanik A., Banerjee A.. Critical behavior at paramagnetic to ferromagnetic phase transition in Pr0.5Sr0.5MnO3: A bulk magnetization study. Phys. Rev. B, 2009, 79: 214426
https://doi.org/10.1103/PhysRevB.79.214426
46 Mira J., Rivas J., Vazquez M., M. Garcia-Beneytez J., Arcas J., D. Sanchez R., A. Senaris-Rodriguez M.. Critical exponents of the ferromagnetic-paramagnetic phase transition of La1−xSrxCoO3 (0.20 ≤ x ≤ 0.30). Phys. Rev. B, 1999, 59: 123
https://doi.org/10.1103/PhysRevB.59.123
47 P. Kadanoff L., Götze W., Hamblen D., Hecht R., A. S. Lewis E., V. Palciauskas V., Rayl M., Swift J., Aspnes D., Kane J.. Static phenomena near critical points: Theory and experiment. Rev. Mod. Phys., 1967, 39: 395
https://doi.org/10.1103/RevModPhys.39.395
48 Thaljaoui R., M. Nofal M., M'Nassri R.. Thermomagnetic properties and critical behaviour studies in the ferromagnetic-Paramagnetic phase transition in Pr0.6Sr0.35Ag0.05MnO3 and Pr0.6Sr0.3Ag0.1MnO3 ceramics. Chem. Phys., 2021, 547: 111205
https://doi.org/10.1016/j.chemphys.2021.111205
49 F. Fischer S., N. Kaul S., Kronmuller H.. Critical magnetic properties of disordered polyerystalline Cr75Fe25 and Cr70Fe30 alloys. Phys. Rev. B, 2002, 65: 064443
https://doi.org/10.1103/PhysRevB.65.064443
50 E. Fisher M., Ma S.-K., G. Nickel B.. Critical exponents for long-range interactions. Phys. Rev. Lett., 1972, 29: 917–920
https://doi.org/10.1103/PhysRevLett.29.917
51 J. Yang X., X. Pan J., Z. Gai W., P. Tao Y., Jia H., M. Cao L., Cao Y.. Three-dimensional critical behavior and anisotropic magnetic entropy change in quasi-two-dimensional LaCrSb3. Phys. Rev. B, 2022, 105: 024419
https://doi.org/10.1103/PhysRevB.105.024419
52 J. Liu B., M. Zou Y., M. Zhou S., Zhang L., Wang Z., X. Li H., Qu Z., H. Zhang Y.. Critical behavior of the van der Waals bonded high TC ferromagnet Fe3GeTe2. Sci. Rep., 2017, 7: 6184
https://doi.org/10.1038/s41598-017-06671-5
53 Liu W., H. Dai Y., E. Yang Y., Y. Fan J., Pi L., Zhang L., H. Zhang Y.. Critical behavior of the single-crystalline van der Waals bonded ferromagnet Cr2Ge2Te6. Phys. Rev. B, 2018, 98: 214420
https://doi.org/10.1103/PhysRevB.98.214420
54 F. Li Z., Li X., Ding B., Li H., Yao Y., K. Xi X., H. Wang W.. Magnetic anisotropy and critical behavior of the quaternary van der Waals ferromagnetic material Cr0.96Ge0.17Si0.82Te3. J. Phys.: Condens. Matter, 2021, 33: 425803
https://doi.org/10.1088/1361-648X/ac1882
55 Mondal S., Khan N., M. Mishra S., Satpati B., Mandal P.. Critical behavior in the van derWaals itinerant ferromagnet Fe4GeTe2. Phys. Rev. B, 2021, 104: 094405
https://doi.org/10.1103/PhysRevB.104.094405
56 Liu Y., Petrovic C.. Anisotropic magnetocaloric effect and critical behavior in CrCl3. Phys. Rev. B, 2020, 102: 014424
https://doi.org/10.1103/PhysRevB.102.014424
57 Bedoya-Pinto A., R. Ji J., K. Pandeya A., Gargiani P., Valvidares M., Sessi P., M. Taylor J., Radu F., Chang K., S. P. Parkin S.. Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer. Science, 2021, 374: 616
https://doi.org/10.1126/science.abd5146
58 T. Lin G., Luo X., C. Chen F., Yan J., J. Gao J., Sun Y., Tong W., Tong P., J. Lu W., G. Sheng Z., H. Song W., B. Zhu X., P. Sun Y.. Critical behavior of two-dimensional intrinsically ferromagnetic semiconductor CrI3. Appl. Phys. Lett., 2018, 112: 072405
https://doi.org/10.1063/1.5019286
59 Taroni A., T. Bramwell S., C. W. Holdsworth P.. Universal window for two-dimensional critical exponents. J. Phys.: Condens. Matter, 2008, 20: 275233
https://doi.org/10.1088/0953-8984/20/27/275233
60 Moriya T., Takahashi Y.. Spin fluctuation theory of itinerant electron ferromagnetism − A unified picture. J. Phys. Soc. Jpn., 1978, 45: 397
https://doi.org/10.1143/jpsj.45.397
61 Takahashi Y.. On the origin of the Curie−Weiss law of the magnetic susceptibility in itinerant electron ferromagnetism. J. Phys. Soc. Jpn., 1986, 55: 3553
https://doi.org/10.1143/jpsj.55.3553
62 K. Chattopadhyay M., Arora P., B. Roy S.. Magnetic properties of the field-induced ferromagnetic state in MnSi. J. Phys.: Condens. Matter, 2009, 21: 296003
https://doi.org/10.1088/0953-8984/21/29/296003
63 Imai M., Michioka C., Ueda H., Yoshimura K.. Static and dynamical magnetic properties of the itinerant ferromagnet LaCo2P2. Phys. Rev. B, 2015, 91: 184414
https://doi.org/10.1103/PhysRevB.91.184414
[1] fop-21210-OF-liuhao_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed