Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (1) : 12303    https://doi.org/10.1007/s11467-022-1214-x
RESEARCH ARTICLE
Dynamic polarization rotation and vector field steering based on phase change metasurface
Hairong He, Hui Yang, Zhenwei Xie(), Xiaocong Yuan
Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-scale Optical Information Technology, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
 Download: PDF(4179 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Polarization rotation and vector field steering of electromagnetic wave are of great significance in modern optical applications. However, conventional polarization devices are bulky, monofunctional and lack of tunability, which pose great challenges to the miniaturized and multifunctional applications. Herein, we propose a meta-device that is capable of multi-state polarization rotation and vector field steering based on phase change metasurface. The supercell of the meta-device consists of four Ge2Sb2Te5 (GST) elliptic cylinders located on a SiO2 substrate. By independently controlling the phase state (amorphous or crystalline) of each GST elliptic cylinder, the meta-device can rotate the polarization plane of the linearly polarized incident light to different angles that cover from 19.8° to 154.9° at a wavelength of 1550 nm. Furthermore, by merely altering the phase transition state of GST elliptic cylinders, we successfully demonstrated a vector field steering by generating optical vortices carrying orbital angular momentums (OAMs) with topological charges of 0, 1 and −1, respectively. The proposed method provides a new platform for investigating dynamically tunable optical devices and has potential applications in many fields such as optical communications and information processing.

Keywords polarization rotation      vector field steering      phase change metasurface     
Corresponding Author(s): Zhenwei Xie   
Issue Date: 30 November 2022
 Cite this article:   
Hairong He,Hui Yang,Zhenwei Xie, et al. Dynamic polarization rotation and vector field steering based on phase change metasurface[J]. Front. Phys. , 2023, 18(1): 12303.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1214-x
https://academic.hep.com.cn/fop/EN/Y2023/V18/I1/12303
Fig.1  Schematics of (a) the designed metasurface for polarization rotation and vector field steering, (b) the configuration of the supercell, and (c) top view of a unit cell.
Fig.2  Calculated phase of the coefficient of transmission txx in the A-state (a) and C-state (b), and of tyx in the A-state (c) and C-state (d) for a periodic unit-cell array at wavelength 1550 nm.
Fig.3  Calculated PCR in (a) the A-state and (b) C-state, and transmittance in (c) the A-state and (d) C-state for a periodic unit cell array at wavelength 1550 nm.
Parameters Values
[a ,b] (nm) [70 , 200] [70, 205] [65, 220] [65, 225]
PCR_A 90.06% 93.81% 96.59% 97.57%
PCR_C 2.3% 2.48% 0.40% 0.69%
φyx_Aφxx_C (rad) −0.057 0.026 −0.05 0.006
T_A 74.05% 73.28% 73.52% 73.21%
T_C 22.34% 20.57% 18.26% 17.17%
Tab.1  Selected settings of the structural and optical-response parameters.
Fig.4  (a) Configuration of GST states, (b) the polarization angle, (c) DoLP, (d) ellipticity angle and (e) transmittance of the transmitted light of the metasurface for each of the eight combination of unit cell from four elliptic cylinders (wavelength: 1550 nm).
Fig.5  (a) Procedure to obtain the required phase arrangement to generate optical vortex beam. (b) Schematic diagram for obtaining optical vortex beam with OAMs using GST metasurface. The calculated distributions of (c) intensity and (d) phase of the diffraction beam at a transverse plane of z = 400 mm (wavelength: 1550 nm).
1 Rhee H., G. June Y., S. Lee J., K. Lee K., H. Ha J., H. Kim Z., J. Jeon S., Cho M.. Femtosecond characterization of vibrational optical activity of chiral molecules. Nature, 2009, 458(7236): 310
https://doi.org/10.1038/nature07846
2 Bahar E.. Road maps for the use of Mueller matrix measurements to detect and identify biological and chemical materials through their optical activity: Potential applications in biomedicine, biochemistry, security, and industry. J. Opt. Soc. Am. B, 2009, 26(2): 364
https://doi.org/10.1364/JOSAB.26.000364
3 He Y., Bo W., K. Dukor R., A. Nafie L.. Determination of absolute configuration of chiral molecules using vibrational optical activity: A review. Appl. Spectrosc., 2011, 65(7): 699
https://doi.org/10.1366/11-06321
4 Lian Y.Qi X.Wang Y.Bai Z.Wang Y. Lu Z., OAM beam generation in space and its applications: A review, Opt. Lasers Eng. 151, 106923 (2022)
5 Arbabi E., Arbabi A., M. Kamali S., Horie Y., Faraon A.. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules. Optica, 2016, 3(6): 628
https://doi.org/10.1364/OPTICA.3.000628
6 Sharma V., Crne M., O. Park J., Srinivasarao M.. Structural origin of circularly polarized iridescence in jeweled beetles. Science, 2009, 325(5939): 449
https://doi.org/10.1126/science.1172051
7 Cardano F., Karimi E., Slussarenko S., Marrucci L., de Lisio C., Santamato E.. Polarization pattern of vector vortex beams generated by q-plates with different topological charges. Appl. Opt., 2012, 51(10): C1
https://doi.org/10.1364/AO.51.0000C1
8 S. Rumala Y., Milione G., A. Nguyen T., Pratavieira S., Hossain Z., Nolan D., Slussarenko S., Karimi E., Marrucci L., R. Alfano R.. Tunable supercontinuum light vector vortex beam generator using a q-plate. Opt. Lett., 2013, 38(23): 5083
https://doi.org/10.1364/OL.38.005083
9 M. Kamali S.Arbabi E.Arbabi A.Faraon A., A review of dielectric optical metasurfaces for wavefront control, Nanophotonics 7(6), 1041 (2018)
10 Ding K., Y. Xiao S., Zhou L.. New frontiers in metamaterials research: Novel electronic materials and inhomogeneous metasurfaces. Front. Phys., 2013, 8(4): 386
https://doi.org/10.1007/s11467-013-0322-z
11 H. Dorrah A., A. Rubin N., Zaidi A., Tamagnone M., Capasso F.. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics, 2021, 15(4): 287
https://doi.org/10.1038/s41566-020-00750-2
12 Y. Song Z., Q. Chu Q., P. Shen X., H. Liu Q.. Wideband high-efficient linear polarization rotators. Front. Phys., 2018, 13(5): 137803
https://doi.org/10.1007/s11467-018-0779-x
13 Wen D., J. Cadusch J., Meng J., B. Crozier K.. Light field on a chip: Metasurface-based multicolor holograms. Adv. Photonics, 2021, 3(2): 024001
https://doi.org/10.1117/1.AP.3.2.024001
14 K. Chen M., Wu Y., Feng L., Fan Q., Lu M., Xu T., P. Tsai D.. Principles, functions, and applications of optical meta-lens. Adv. Opt. Mater., 2021, 9(4): 2001414
https://doi.org/10.1002/adom.202001414
15 Yang H., Xie Z., Li G., Ou K., Yu F., He H., Wang H., Yuan X.. All-dielectric metasurface for fully resolving arbitrary beams on a higher-order Poincaré sphere. Photon. Res., 2021, 9(3): 331
https://doi.org/10.1364/PRJ.411503
16 Li Z., Cai X., Huang L., Xu H., Wei Y., Dai N.. Controllable polarization rotator with broadband high transmission using all-dielectric metasurfaces. Adv. Theory Simul., 2019, 2(9): 1900086
https://doi.org/10.1002/adts.201900086
17 Wen D., Yue F., Zhang C., Zang X., Liu H., Wang W., Chen X.. Plasmonic metasurface for optical rotation. Appl. Phys. Lett., 2017, 111(2): 023102
https://doi.org/10.1063/1.4993429
18 A. Cole M., C. Chen W., Liu M., S. Kruk S., J. Padilla W., V. Shadrivov I., A. Powell D.. Strong broadband terahertz optical activity through control of the Blaschke phase with chiral metasurfaces. Phys. Rev. A, 2017, 8(1): 014019
19 Al-Mahmoud M., Coda V., Rangelov A., Montemezzani G.. Broadband polarization rotator with tunable rotation angle composed of three wave plates. Phys. Rev. A, 2020, 13(1): 014048
20 Ahmed H., Kim H., Zhang Y., Intaravanne Y., Jang J., Rho J., Chen S., Chen X.. Optical metasurfaces for generating and manipulating optical vortex beams. Nanophotonics, 2022, 11(5): 941
https://doi.org/10.1515/nanoph-2021-0746
21 Zhang Y., Ríos C., Y. Shalaginov M., Li M., Majumdar A., Gu T., Hu J.. Myths and truths about optical phase change materials: A perspective. Appl. Phys. Lett., 2021, 118(21): 210501
https://doi.org/10.1063/5.0054114
22 Ding F., Yang Y., I. Bozhevolnyi S.. Dynamic metasurfaces using phase‐change chalcogenides. Adv. Opt. Mater., 2019, 7(14): 1801709
https://doi.org/10.1002/adom.201801709
23 Zubritskaya I., Maccaferri N., Inchausti Ezeiza X., Vavassori P., Dmitriev A.. Magnetic control of the chiroptical plasmonic surfaces. Nano Lett., 2018, 18(1): 302
https://doi.org/10.1021/acs.nanolett.7b04139
24 S. Ee H., Agarwal R.. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett., 2016, 16(4): 2818
https://doi.org/10.1021/acs.nanolett.6b00618
25 Kalikka J., Akola J., O. Jones R.. Simulation of crystallization in Ge2Sb2Te5: A memory effect in the canonical phase-change material. Phys. Rev. B, 2014, 90(18): 184109
https://doi.org/10.1103/PhysRevB.90.184109
26 Loke D., H. Lee T., J. Wang W., P. Shi L., Zhao R., C. Yeo Y., C. Chong T., R. Elliott S.. Breaking the speed limits of phase-change memory. Science, 2012, 336(6088): 1566
https://doi.org/10.1126/science.1221561
27 Wuttig M., Bhaskaran H., Taubner T.. Phase-change materials for non-volatile photonic applications. Nat. Photonics, 2017, 11(8): 465
https://doi.org/10.1038/nphoton.2017.126
28 Tian J., Luo H., Yang Y., Ding F., Qu Y., Zhao D., Qiu M., I. Bozhevolnyi S.. Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5. Nat. Commun., 2019, 10(1): 396
https://doi.org/10.1038/s41467-018-08057-1
29 Choi C., Y. Lee S., E. Mun S., Y. Lee G., Sung J., Yun H., H. Yang J., O. Kim H., Y. Hwang C., Lee B.. Metasurface with nanostructured Ge2Sb2Te5 as a platform for broadband-operating wavefront switch. Adv. Opt. Mater., 2019, 7(12): 1900171
https://doi.org/10.1002/adom.201900171
30 Abdollahramezani S., Hemmatyar O., Taghinejad H., Krasnok A., Kiarashinejad Y., Zandehshahvar M., Alù A., Adibi A.. Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics, 2020, 9(5): 1189
https://doi.org/10.1515/nanoph-2020-0039
31 Zhang M., Pu M., Zhang F., Guo Y., He Q., Ma X., Huang Y., Li X., Yu H., Luo X.. Plasmonic metasurfaces for switchable photonic spin-orbit interactions based on phase change materials. Adv. Sci. (Weinh. ), 2018, 5(10): 1800835
https://doi.org/10.1002/advs.201800835
32 Yin X., Steinle T., Huang L., Taubner T., Wuttig M., Zentgraf T., Giessen H.. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci. Appl., 2017, 6(7): e17016
https://doi.org/10.1038/lsa.2017.16
33 Fang B., Feng D., Chen P., Shi L., Cai J., Li J., Li C., Hong Z., Jing X.. Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region. Front. Phys., 2022, 17(5): 53502
https://doi.org/10.1007/s11467-021-1148-8
34 J. Thompson B.Goldstein D.H. Goldstein D., Polarized Light, Revised and Expanded, 2nd Ed., 42–43, CRC Press, 2003
35 Cong L.Cao W.Zhang X.Tian Z.Gu J. Singh R.Han J.Zhang W., A perfect metamaterial polarization rotator, Appl. Phys. Lett. 103(17), 171107 (2013)
36 Chen J., Wan C., Zhan Q.. Engineering photonic angular momentum with structured light: A review. Adv. Photonics, 2021, 3(6): 064001
https://doi.org/10.1117/1.AP.3.6.064001
37 Shen Y., Wang X., Xie Z., Min C., Fu X., Liu Q., Gong M., Yuan X.. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 2019, 8(1): 90
https://doi.org/10.1038/s41377-019-0194-2
38 Naidoo D., Aït-Ameur K., Brunel M., Forbes A.. Intra-cavity generation of superpositions of Laguerre-Gaussian beams. Appl. Phys. B, 2012, 106(3): 683
https://doi.org/10.1007/s00340-011-4775-x
39 R. Thompson J., A. Burrow J., J. Shah P., Slagle J., S. Harper E., Van Rynbach A., Agha I., S. Mills M.. Artificial neural network discovery of a switchable metasurface reflector. Opt. Express, 2020, 28(17): 24629
https://doi.org/10.1364/OE.400360
40 Fleurence N., Hay B., Davée G., Cappella A., Foulon E.. Thermal conductivity measurements of thin films at high temperature modulated photothermal radiometry at LNE. Phys. Status Solidi. A, 2015, 212(3): 535
https://doi.org/10.1002/pssa.201400084
41 C. Agarwal S.. Role of potential fluctuations in phase-change GST memory devices. Phys. Status Solidi B, 2012, 249(10): 1956
https://doi.org/10.1002/pssb.201200362
42 W. Ryu S., H. Oh J., H. Lee J., J. Choi B., Kim W., K. Hong S., S. Hwang C., J. Kim H.. Phase transformation behaviors of SiO2 doped Ge2Sb2Te5 films for application in phase change random access memory. Appl. Phys. Lett., 2008, 92(14): 142110
https://doi.org/10.1063/1.2898719
43 H. Chu C., L. Tseng M., Chen J., C. Wu P., H. Chen Y., C. Wang H., Y. Chen T., T. Hsieh W., J. Wu H., Sun G., P. Tsai D.. Active dielectric metasurface based on phase-change medium. Laser Photonics Rev., 2016, 10(6): 986
https://doi.org/10.1002/lpor.201600106
44 Wang Q., T. F. Rogers E., Gholipour B., M. Wang C., Yuan G., Teng J., I. Zheludev N.. Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics, 2016, 10(1): 60
https://doi.org/10.1038/nphoton.2015.247
45 Pandian R., J. Kooi B., Palasantzas G., T. M. De Hosson J., Pauza A.. Nanoscale electrolytic switching in phase-change chalcogenide films. Adv. Mater., 2007, 19(24): 4431
https://doi.org/10.1002/adma.200700904
46 Zhang W., Mazzarello R., Wuttig M., Ma E.. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater., 2019, 4(3): 150
https://doi.org/10.1038/s41578-018-0076-x
[1] FOP-21214-of-hehairong_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed