Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (1) : 12301    https://doi.org/10.1007/s11467-022-1215-9
RESEARCH ARTICLE
A giant atom with modulated transition frequency
Lei Du1,2, Yan Zhang3(), Yong Li1,4()
1. Center for Theoretical Physics and School of Science, Hainan University, Haikou 570228, China
2. Beijing Computational Science Research Center, Beijing 100193, China
3. Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
4. Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
 Download: PDF(9508 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Giant atoms are known for the frequency-dependent spontaneous emission and associated interference effects. In this paper, we study the spontaneous emission dynamics of a two-level giant atom with dynamically modulated transition frequency. It is shown that the retarded feedback effect of the giant-atom system is greatly modified by a dynamical phase arising from the frequency modulation and the retardation effect itself. Interestingly, such a modification can in turn suppress the retarded feedback such that the giant atom behaves like a small one. By introducing an additional phase difference between the two atom-waveguide coupling paths, we also demonstrate the possibility of realizing chiral and tunable temporal profiles of the output fields. The results in this paper have potential applications in quantum information processing and quantum network engineering.

Keywords giant atoms      frequency modulation      spontaneous emission dynamics      non-Markovian retardation effect     
Corresponding Author(s): Yan Zhang,Yong Li   
Issue Date: 23 November 2022
 Cite this article:   
Lei Du,Yan Zhang,Yong Li. A giant atom with modulated transition frequency[J]. Front. Phys. , 2023, 18(1): 12301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1215-9
https://academic.hep.com.cn/fop/EN/Y2023/V18/I1/12301
Fig.1  Dynamic evolutions of atomic population probability P e(t) with (a) ϕ0= (2m+ 1)π and (b) ϕ0= 2mπ. Panels (a) and (b) share the same legend. The vertical dotted lines correspond to the moment t=τ that the atom feels the retarded feedback. Other parameters are χ=1, θ=0, φ=0, and τΓ =0.2 (except for indicated).
Fig.2  (a, b) Dynamic evolutions of atomic population probability P e(t) with different values of χ and ϕ 0. Panels (a) and (b) share the same legend. (c) P e(t=2 /Γ) as a function of χ for ϕ0= 2mπ. (d) Dynamic evolutions of atomic population probability Pe(t) with different values of θ and ϕ0= 2mπ. We assume θ =0 in panels (a−c) and χ =1 in panel (d). The vertical dotted lines in (a), (b), and (d) correspond to t=τ as those in Fig.1. Other parameters are τΓ=0.2, Ω/Γ=5π, and φ=0.
Fig.3  (a, c) Dynamic evolutions of atomic population probability P e(t) with (a) different values of modulation depth χ and (c) different values of modulation frequency Ω. The inset in panel (c) depicts P e(t=11 /Γ) versus Ω for fixed χ. (b, d) Dynamic evolutions of the real part of the dynamical phase factor Re( F) with (b) different values of modulation depth χ and (d) different values of modulation frequency Ω. We assume Ω/Γ=0.5π in panels (a) and (b) and χ=0.5 in panels (c) and (d). Panels (a) and (b) [(c) and (d)] share the same legend. Other parameters are ϕ0= 2mπ, τ Γ=10, θ=0, and φ=0.
Fig.4  Dynamic evolutions of the left and right output intensities (in units of Γ/(2vg)) versus t~τ with different values of modulation parameters (cosine-type modulation). We assume χ =1 in panels (a−c) and φ=π /2 in panels (d−f). Other parameters are ϕ0= (2m+ 1)π, ϕ0=(2n+ 1/ 2)π, τΓ= 0.2, Ω/Γ=5π, and θ=0.
Fig.5  Dynamic evolutions of the left (a) and right (b) output intensities (in units of Γ/(2vg)) versus t~τ with different values of β (linear modulation). Other parameters are ϕ0= (2m+ 1)π, ϕ0=(2n+ 1/ 2)π, φ=π/2, and τΓ =1.
1 S. Agarwal G., Quantum Statistical Theories of Spontaneous Emission and Their Relation to Other Approaches, Springer, Berlin, 1974
2 J. Carmichael H., An Open Systems Approach to Quantum Optics, Springer-Verlag, Berlin, 1993
3 W. Gardiner C.Zoller P., Quantum Noise, 2nd Ed., Springer, Berlin, 2000
4 T. Shen J., Fan S.. Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits. Phys. Rev. Lett., 2005, 95(21): 213001
https://doi.org/10.1103/PhysRevLett.95.213001
5 Zhou L., R. Gong Z., X. Liu Y., P. Sun C., Nori F.. Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett., 2008, 101(10): 100501
https://doi.org/10.1103/PhysRevLett.101.100501
6 Zhou L., P. Yang L., Li Y., P. Sun C.. Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett., 2013, 111(10): 103604
https://doi.org/10.1103/PhysRevLett.111.103604
7 Zheng H., J. Gauthier D., U. Baranger H.. Waveguide-QED-based photonic quantum computation. Phys. Rev. Lett., 2013, 111(9): 090502
https://doi.org/10.1103/PhysRevLett.111.090502
8 Gonzalez-Ballestero C., Moreno E., J. Garcia-Vidal F., Gonzalez-Tudela A.. Nonreciprocal few-photon routing schemes based on chiral waveguide-emitter couplings. Phys. Rev. A, 2016, 94(6): 063817
https://doi.org/10.1103/PhysRevA.94.063817
9 Mirhosseini M., Kim E., Zhang X., Sipahigil A., B. Dieterle P., J. Keller A., Asenjo-Garcia A., E. Chang D., Painter O.. Cavity quantum electrodynamics with atom-like mirrors. Nature, 2019, 569(7758): 692
https://doi.org/10.1038/s41586-019-1196-1
10 W. Adams B., Buth C., Cavaletto S., Evers J., Harman Z., H. Keitel C., Palffy A., Picon A., Röhlsberger R., Rostovtsev Y., Tamasaku K.. X-ray quantum optics. J. Mod. Opt., 2013, 60(1): 2
https://doi.org/10.1080/09500340.2012.752113
11 Cavaletto S., Harman Z., Ott C., Buth C., Pfeifer T., H. Keitel C.. Broadband high-resolution X-ray frequency combs. Nat. Photon., 2014, 8: 520
https://doi.org/10.1038/nphoton.2014.113
12 Z. Qin X., H. Huang J., H. Zhong H., Lee C.. Clock frequency estimation under spontaneous emission. Front. Phys., 2018, 13(1): 130302
https://doi.org/10.1007/s11467-017-0706-6
13 Söllner I., Mahmoodian S., L. Hansen S., Midolo L., Javadi A., Kiršanskė G., Pregnolato T., El-Ella H., H. Lee E., D. Song J., Stobbe S., Lodahl P.. Deterministic photon-emitter coupling in chiral photonic circuits. Nat. Nanotechnol., 2015, 10(9): 775
https://doi.org/10.1038/nnano.2015.159
14 Lodahl P., Mahmoodian S., Stobbe S., Rauschenbeutel A., Schneeweiss P., Volz J., Pichler H., Zoller P.. Chiral quantum optics. Nature, 2017, 541(7638): 473
https://doi.org/10.1038/nature21037
15 Kleppner D.. Inhibited spontaneous emission. Phys. Rev. Lett., 1981, 47(4): 233
https://doi.org/10.1103/PhysRevLett.47.233
16 Jhe W., Anderson A., A. Hinds E., Meschede D., Moi L., Haroche S.. Suppression of spontaneous decay at optical frequencies: Test of vacuum-field anisotropy in confined space. Phys. Rev. Lett., 1987, 58(14): 1497
https://doi.org/10.1103/PhysRevLett.58.1497.2
17 J. Heinzen D., J. Childs J., E. Thomas J., S. Feld M.. Enhanced and inhibited visible spontaneous emission by atoms in a confocal resonator. Phys. Rev. Lett., 1987, 58(13): 1320
https://doi.org/10.1103/PhysRevLett.58.1320
18 Yablonovitch E.. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987, 58(20): 2059
https://doi.org/10.1103/PhysRevLett.58.2059
19 Lambropoulos P., M. Nikolopoulos G., R. Nielsen T., Bay S.. Fundamental quantum optics in structured reservoirs. Rep. Prog. Phys., 2000, 63(4): 455
https://doi.org/10.1088/0034-4885/63/4/201
20 Lodahl P., Floris van Driel A., S. Nikolaev I., Irman A., Overgaag K., Vanmaekelbergh D., L. Vos W.. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature, 2004, 430(7000): 654
https://doi.org/10.1038/nature02772
21 Noda S., Fujita M., Asano T.. Spontaneous emission control by photonic crystals and nanocavities. Nat. Photonics, 2007, 1(8): 449
https://doi.org/10.1038/nphoton.2007.141
22 G. Kofman A., Kurizki G.. Universal dynamical control of quantum mechanical decay: Modulation of the coupling to the continuum. Phys. Rev. Lett., 2001, 87(27): 270405
https://doi.org/10.1103/PhysRevLett.87.270405
23 Dorner U., Zoller P.. Laser-driven atoms in half cavities. Phys. Rev. A, 2002, 66(2): 023816
https://doi.org/10.1103/PhysRevA.66.023816
24 Kiffner M., Macovei M., Evers J., H. Keitel C.. Vacuum-induced processes in multilevel atoms. Prog. Opt., 2010, 55: 85
https://doi.org/10.1016/B978-0-444-53705-8.00003-5
25 Viola L., Lloyd S.. Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A, 1998, 58(4): 2733
https://doi.org/10.1103/PhysRevA.58.2733
26 G. Kofman A., Kurizki G.. Acceleration of quantum decay processes by frequent observations. Nature, 2000, 405(6786): 546
https://doi.org/10.1038/35014537
27 Dhar D., K. Grover L., M. Roy S.. Preserving quantum states using inverting pulses: A super-Zeno effect. Phys. Rev. Lett., 2006, 96(10): 100405
https://doi.org/10.1103/PhysRevLett.96.100405
28 Evers J., H. Keitel C.. Spontaneous-emission suppression on arbitrary atomic transitions. Phys. Rev. Lett., 2002, 89(16): 163601
https://doi.org/10.1103/PhysRevLett.89.163601
29 Akram U., Evers J., H. Keitel C.. Multiphoton quantum interference on a dipole-forbidden transition. J. Phys. At. Mol. Opt. Phys., 2005, 38(4): L69
https://doi.org/10.1088/0953-4075/38/4/L01
30 F. Kockum A., Delsing P., Johansson G.. Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom. Phys. Rev. A, 2014, 90(1): 013837
https://doi.org/10.1103/PhysRevA.90.013837
31 F. Kockum A., Quantum Optics with Giant Atoms the First Five Years, in: Mathematics for Industry, Springer, Singapore, 2021, pp 125−146
32 Dong H., R. Gong Z., Ian H., Zhou L., P. Sun C.. Intrinsic cavity QED and emergent quasinormal modes for a single photon. Phys. Rev. A, 2009, 79(6): 063847
https://doi.org/10.1103/PhysRevA.79.063847
33 Bradford M., T. Shen J.. Spontaneous emission in cavity QED with a terminated waveguide. Phys. Rev. A, 2013, 87(6): 063830
https://doi.org/10.1103/PhysRevA.87.063830
34 Tufarelli T., Ciccarello F., S. Kim M.. Dynamics of spontaneous emission in a single-end photonic waveguide. Phys. Rev. A, 2013, 87(1): 013820
https://doi.org/10.1103/PhysRevA.87.013820
35 Tufarelli T., S. Kim M., Ciccarello F.. Non-Markovianity of a quantum emitter in front of a mirror. Phys. Rev. A, 2014, 90(1): 012113
https://doi.org/10.1103/PhysRevA.90.012113
36 Calajó G., L. L. Fang Y., U. Baranger H., Ciccarello F.. Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback. Phys. Rev. Lett., 2019, 122(7): 073601
https://doi.org/10.1103/PhysRevLett.122.073601
37 F. Kockum A., Johansson G., Nori F.. Decoherence-free interaction between giant atoms in waveguide quantum electrodynamics. Phys. Rev. Lett., 2018, 120(14): 140404
https://doi.org/10.1103/PhysRevLett.120.140404
38 Kannan B., J. Ruckriegel M., L. Campbell D., Frisk Kockum A., Braumüller J., K. Kim D., Kjaergaard M., Krantz P., Melville A., M. Niedzielski B., Vepsäläinen A., Winik R., L. Yoder J., Nori F., P. Orlando T., Gustavsson S., D. Oliver W.. Waveguide quantum electrodynamics with superconducting artificial giant atoms. Nature, 2020, 583(7818): 775
https://doi.org/10.1038/s41586-020-2529-9
39 Carollo A., Cilluffo D., Ciccarello F.. Mechanism of decoherence-free coupling between giant atoms. Phys. Rev. Res., 2020, 2(4): 043184
https://doi.org/10.1103/PhysRevResearch.2.043184
40 Guo L., F. Kockum A., Marquardt F., Johansson G.. Oscillating bound states for a giant atom. Phys. Rev. Res., 2020, 2(4): 043014
https://doi.org/10.1103/PhysRevResearch.2.043014
41 Guo S., Wang Y., Purdy T., Taylor J.. Beyond spontaneous emission: Giant atom bounded in the continuum. Phys. Rev. A, 2020, 102(3): 033706
https://doi.org/10.1103/PhysRevA.102.033706
42 Wang X., Liu T., F. Kockum A., R. Li H., Nori F.. Tunable chiral bound states with giant atoms. Phys. Rev. Lett., 2021, 126(4): 043602
https://doi.org/10.1103/PhysRevLett.126.043602
43 Zhao W., Wang Z.. Single-photon scattering and bound states in an atom-waveguide system with two or multiple coupling points. Phys. Rev. A, 2020, 101(5): 053855
https://doi.org/10.1103/PhysRevA.101.053855
44 Vega C., Bello M., Porras D., González-Tudela A.. Qubit-photon bound states in topological waveguides with long-range hoppings. Phys. Rev. A, 2021, 104(5): 053522
https://doi.org/10.1103/PhysRevA.104.053522
45 Soro A., F. Kockum A.. Chiral quantum optics with giant atoms. Phys. Rev. A, 2022, 105(2): 023712
https://doi.org/10.1103/PhysRevA.105.023712
46 Wang X., R. Li H.. Chiral quantum network with giant atoms. Quantum Sci. Technol., 2022, 7(3): 035007
https://doi.org/10.1088/2058-9565/ac6a04
47 Du L., Zhang Y., H. Wu J., F. Kockum A., Li Y.. Giant atoms in synthetic frequency dimensions. Phys. Rev. Lett., 2022, 128(22): 223602
https://doi.org/10.1103/PhysRevLett.128.223602
48 Du L., Li Y.. Single-photon frequency conversion via a giant Λ-type atom. Phys. Rev. A, 2021, 104(2): 023712
https://doi.org/10.1103/PhysRevA.104.023712
49 Du L., T. Chen Y., Li Y.. Nonreciprocal frequency conversion with chiral Λ-type atoms. Phys. Rev. Res., 2021, 3(4): 043226
https://doi.org/10.1103/PhysRevResearch.3.043226
50 Y. Cai Q., Z. Jia W.. Coherent single-photon scattering spectra for a giant-atom waveguide-QED system beyond the dipole approximation. Phys. Rev. A, 2021, 104(3): 033710
https://doi.org/10.1103/PhysRevA.104.033710
51 L. Feng S., Z. Jia W.. Manipulating single-photon transport in a waveguide-QED structure containing two giant atoms. Phys. Rev. A, 2021, 104(6): 063712
https://doi.org/10.1103/PhysRevA.104.063712
52 Zhao W., Zhang Y., Wang Z.. Phase-modulated Autler−Townes splitting in a giant-atom system within waveguide QED. Front. Phys., 2022, 17(4): 42506
https://doi.org/10.1007/s11467-021-1135-0
53 L. Yin X., H. Liu Y., F. Huang J., Q. Liao J.. Single photon scattering in a giant-molecule waveguide-QED system. Phys. Rev. A, 2022, 106(1): 013715
https://doi.org/10.1103/PhysRevA.106.013715
54 T. Chen Y., Du L., Guo L., Wang Z., Zhang Y., Li Y., H. Wu J.. Nonreciprocal and chiral single-photon scattering for giant atoms. Commun. Phys., 2022, 5(1): 215
https://doi.org/10.1038/s42005-022-00991-3
55 Xiao H., Wang L., Li Z.-H., Chen X., Yuan L.. Bound state in a giant atom-modulated resonators system. npj Quantum Infom., 2022, 8: 80
https://doi.org/10.1038/s41534-022-00591-7
56 D. Oliver W., Yu Y., C. Lee J., K. Berggren K., S. Levitov L., P. Orlando T.. Mach−Zehnder interferometry in a strongly driven superconducting qubit. Science, 2005, 310(5754): 1653
https://doi.org/10.1126/science.1119678
57 M. Wilson C., Duty T., Persson F., Sandberg M., Johansson G., Delsing P.. Coherence times of dressed states of a superconducting qubit under extreme driving. Phys. Rev. Lett., 2007, 98(25): 257003
https://doi.org/10.1103/PhysRevLett.98.257003
58 Metcalfe M., M. Carr S., Muller A., S. Solomon G., Lawall J.. Resolved sideband emission of InAs/GaAs quantum dots strained by surface acoustic waves. Phys. Rev. Lett., 2010, 105(3): 037401
https://doi.org/10.1103/PhysRevLett.105.037401
59 Schmidt M., Kessler S., Peano V., Painter O., Marquardt F.. Optomechanical creation of magnetic fields for photons on a lattice. Optica, 2015, 2(7): 635
https://doi.org/10.1364/OPTICA.2.000635
60 Roushan P., Neill C., Megrant A., Chen Y., Babbush R., Barends R., Campbell B., Chen Z., Chiaro B., Dunsworth A., Fowler A., Jeffrey E., Kelly J., Lucero E., Mutus J., J. J. O’Malley P., Neeley M., Quintana C., Sank D., Vainsencher A., Wenner J., White T., Kapit E., Neven H., Martinis J.. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys., 2017, 13(2): 146
https://doi.org/10.1038/nphys3930
61 Fang K., Luo J., Metelmann A., H. Matheny M., Marquardt F., A. Clerk A., Painter O.. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys., 2017, 13(5): 465
https://doi.org/10.1038/nphys4009
62 Jin L., Wang P., Song Z.. One-way light transport controlled by synthetic magnetic fluxes and PT-symmetric resonators. New J. Phys., 2017, 19(1): 015010
https://doi.org/10.1088/1367-2630/aa57ba
63 Jin L., Song Z.. Incident direction independent wave propagation and unidirectional lasing. Phys. Rev. Lett., 2018, 121(7): 073901
https://doi.org/10.1103/PhysRevLett.121.073901
64 Ramos T., Vermersch B., Hauke P., Pichler H., Zoller P.. Non-Markovian dynamics in chiral quantum networks with spins and photons. Phys. Rev. A, 2016, 93(6): 062104
https://doi.org/10.1103/PhysRevA.93.062104
65 T. Shen J., Fan S.. Theory of single-photon transport in a single-mode waveguide (I): Coupling to a cavity containing a two-level atom. Phys. Rev. A, 2009, 79(2): 023837
https://doi.org/10.1103/PhysRevA.79.023837
66 Longhi S.. Photonic simulation of giant atom decay. Opt. Lett., 2020, 45(11): 3017
https://doi.org/10.1364/OL.393578
67 Guo L., Grimsmo A., F. Kockum A., Pletyukhov M., Johansson G.. Giant acoustic atom: A single quantum system with a deterministic time delay. Phys. Rev. A, 2017, 95(5): 053821
https://doi.org/10.1103/PhysRevA.95.053821
68 H. Dicke R.. Coherence in spontaneous radiation processes. Phys. Rev., 1954, 93(1): 99
https://doi.org/10.1103/PhysRev.93.99
69 Lalumière K., C. Sanders B., F. van Loo A., Fedorov A., Wallraff A., Blais A.. Input−output theory for waveguide QED with an ensemble of inhomogeneous atoms. Phys. Rev. A, 2013, 88(4): 043806
https://doi.org/10.1103/PhysRevA.88.043806
70 Macovei M., H. Keitel C.. Quantum dynamics of a two-level emitter with a modulated transition frequency. Phys. Rev. A, 2014, 90(4): 043838
https://doi.org/10.1103/PhysRevA.90.043838
71 Du L., T. Chen Y., Zhang Y., Li Y.. Giant atoms with time-dependent couplings. Phys. Rev. Res., 2022, 4(2): 023198
https://doi.org/10.1103/PhysRevResearch.4.023198
72 Janowicz M.. Non-Markovian decay of an atom coupled to a reservoir: Modification by frequency modulation. Phys. Rev. A, 2000, 61(2): 025802
https://doi.org/10.1103/PhysRevA.61.025802
73 Andersson G., Suri B., Guo L., Aref T., Delsing P.. Non-exponential decay of a giant artificial atom. Nat. Phys., 2019, 15(11): 1123
https://doi.org/10.1038/s41567-019-0605-6
74 Lorenzo S., Plastina F., Paternostro M.. Geometrical characterization of non-Markovianity. Phys. Rev. A, 2013, 88: 020102(R)
https://doi.org/10.1103/PhysRevA.88.020102
75 Koshino K., Terai H., Inomata K., Yamamoto T., Qiu W., Wang Z., Nakamura Y.. Observation of the three-state dressed states in circuit quantum electrodynamics. Phys. Rev. Lett., 2013, 110(26): 263601
https://doi.org/10.1103/PhysRevLett.110.263601
76 Liu Y., A. Houck A.. Quantum electrodynamics near a photonic bandgap. Nat. Phys., 2017, 13(1): 48
https://doi.org/10.1038/nphys3834
77 Mirhosseini M., Kim E., S. Ferreira V., Kalaee M., Sipahigil A., J. Keller A., Painter O.. Superconducting metamaterials for waveguide quantum electrodynamics. Nat. Commun., 2018, 9(1): 3706
https://doi.org/10.1038/s41467-018-06142-z
78 Bello M., Platero G., I. Cirac J., González-Tudela A.. Unconventional quantum optics in topological waveguide QED. Sci. Adv., 2019, 5(7): eaaw0297
https://doi.org/10.1126/sciadv.aaw0297
79 Sánchez-Burillo E., Wan C., Zueco D., González-Tudela A.. Chiral quantum optics in photonic sawtooth lattices. Phys. Rev. Res., 2020, 2(2): 023003
https://doi.org/10.1103/PhysRevResearch.2.023003
80 Guimond P.-O., Vermersch B., L. Juan M., Sharafiev A., Kirchmair G., Zoller P.. A unidirectional onchip photonic interface for superconducting circuits. npj Quantum Infom., 2020, 6: 32
https://doi.org/10.1038/s41534-020-0261-9
81 Du L., R. Cai M., H. Wu J., Wang Z., Li Y.. Single-photon nonreciprocal excitation transfer with non-Markovian retarded effects. Phys. Rev. A, 2021, 103(5): 053701
https://doi.org/10.1103/PhysRevA.103.053701
82 Y. Qiu Q.Wu Y.Y. Lü X., Collective radiance of giant atoms in non-Markovian regime, arXiv: 2205.10982 (2022)
83 Soro A.S. Muñoz C.F. Kockum A., Interaction between giant atoms in a one-dimensional structured environment, arXiv: 2208.04102 (2022)
84 Jin Z., L. Su S., D. Zhu A., F. Wang H., Zhang S.. Engineering multipartite steady entanglement of distant atoms via dissipation. Front. Phys., 2018, 13(5): 134209
https://doi.org/10.1007/s11467-018-0826-7
85 A. Clerk A., Introduction to quantum non-reciprocal interactions: From non-Hermitian Hamiltonians to quantum master equations and quantum feedforward schemes, arXiv: 2201.00894 (2022)
86 P. Silveri M., A. Tuorila J., V. Thuneberg E., S. Paraoanu G.. Quantum systems under frequency modulation. Rep. Prog. Phys., 2017, 80(5): 056002
https://doi.org/10.1088/1361-6633/aa5170
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed