Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (1) : 13306    https://doi.org/10.1007/s11467-022-1219-5
RESEARCH ARTICLE
Graph attention network for global search of atomic clusters: A case study of Agn (n = 14−26) clusters
Linwei Sai1, Li Fu2, Qiuying Du2,3, Jijun Zhao2()
1. School of Science, Hohai University, Changzhou 213022, China
2. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
3. College of Physics and Electronic Information, Inner Mongolia Normal University, Hohhot 010022, China
 Download: PDF(3636 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Due to coexistence of huge number of structural isomers, global search for the ground-state structures of atomic clusters is a challenging issue. The difficulty also originates from the computational cost of ab initio methods for describing the potential energy surface. Recently, machine learning techniques have been widely utilized to accelerate materials discovery and molecular simulation. Compared to the commonly used artificial neural network, graph network is naturally suitable for clusters with flexible geometric environment of each atom. Herein we develop a cluster graph attention network (CGANet) by aggregating information of neighboring vertices and edges using attention mechanism, which can precisely predict the binding energy and force of silver clusters with root mean square error of 5.4 meV/atom and mean absolute error of 42.3 meV/Å, respectively. As a proof-of-concept, we have performed global optimization of medium-sized Agn clusters (n = 14−26) by combining CGANet and genetic algorithm. The reported ground-state structures for n = 14−21, have been successfully reproduced, while entirely new lowest-energy structures are obtained for n = 22−26. In addition to the description of potential energy surface, the CGANet is also applied to predict the electronic properties of clusters, such as HOMO energy and HOMO-LUMO gap. With accuracy comparable to ab initio methods and acceleration by at least two orders of magnitude, CGANet holds great promise in global search of lowest-energy structures of large clusters and inverse design of functional clusters.

Keywords deep learning      graph attention network      potential surface fitting      Ag clusters      global search     
Corresponding Author(s): Jijun Zhao   
Issue Date: 03 November 2022
 Cite this article:   
Linwei Sai,Li Fu,Qiuying Du, et al. Graph attention network for global search of atomic clusters: A case study of Agn (n = 14−26) clusters[J]. Front. Phys. , 2023, 18(1): 13306.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1219-5
https://academic.hep.com.cn/fop/EN/Y2023/V18/I1/13306
Fig.1  Feature extraction and graph convolution operations.
Fig.2  (a) Energy prediction network and (b) force prediction network.
Fig.3  Root mean square error of energy (left) and mean absolute error of force (right) for Ag16, Ag20 and Ag24.
Fig.4  Root mean square error (RMSE) of energy (upper) and mean absolute error (MAE) of force (lower) for mixed-size train of Ag16, Ag20 and Ag24.
Fig.5  Lowest-energy structures of Agn clusters (14 ≤ n ≤ 26). The point group symmetry is given in parenthesis. Red color highlights the newly found lowest-energy structures, while black color denote those the same as in literature [21, 39-45].
Fig.6  Mean absolute error of HOMO energy (lower) and HOMO−LUMO gap (upper) trained for Ag20.
1 Gong W., Yan Q.. Graph-based deep learning frameworks for molecules and solid-state materials. Comput. Mater. Sci., 2021, 195: 110332
https://doi.org/10.1016/j.commatsci.2021.110332
2 Friederich P., Hase F., Proppe J., Aspuru-Guzik A.. Machine-learned potentials for next-generation matter simulations. Nat. Mater., 2021, 20(6): 750
https://doi.org/10.1038/s41563-020-0777-6
3 C. Mater A., L. Coote M.. Deep learning in chemistry. J. Chem. Inf. Model., 2019, 59(6): 2545
https://doi.org/10.1021/acs.jcim.9b00266
4 Pattanaik L., B. Ingraham J., A. Grambow C., H. Green W.. Generating transition states of isomerization reactions with deep learning. Phys. Chem. Chem. Phys., 2020, 22(41): 23618
https://doi.org/10.1039/D0CP04670A
5 Coley C.Jin W.Rogers L.Jamison T.Jaakkola T. Green W.Barzilay R.Jensen K., A graph-convolutional neural network model for the prediction of chemical reactivity, Chem. Sci. (Camb.) 10(2), 370 (2019)
6 Nikitin F.Isayev O.Strijov V., DRACON: Disconnected graph neural network for atom mapping in chemical reactions, Phys. Chem. Chem. Phys. 22(45), 26478 (2020)
7 Ouyang Y., Yu C., Yan G., Chen J.. Machine learning approach for the prediction and optimization of thermal transport properties. Front. Phys., 2021, 16(4): 43200
https://doi.org/10.1007/s11467-020-1041-x
8 R. Kitchin J.. Machine learning in catalysis. Nat. Catal., 2018, 1(4): 230
https://doi.org/10.1038/s41929-018-0056-y
9 McGill C., Forsuelo M., Guan Y., H. Green W.. Predicting infrared spectra with message passing neural networks. J. Chem. Inf. Model., 2021, 61(6): 2594
https://doi.org/10.1021/acs.jcim.1c00055
10 Pfau D.S. Spencer J.G. D. G. Matthews A.M. C. Foulkes W., Ab initio solution of the many-electron Schrödinger equation with deep neural networks, Phys. Rev. Res. 2(3), 033429 (2020)
11 Khan A., Ghorbanian V., Lowther D.. Deep learning for magnetic field estimation. IEEE Trans. Magn., 2019, 55(6): 1
https://doi.org/10.1109/TMAG.2019.2899304
12 Sanchez-Lengeling B.N. Wei J.K. Lee B. C. Gerkin R.Aspuru-Guzik A.B. Wiltschko A., Machine learning for scent: Learning generalizable perceptual representations of small molecules, arXiv: 1910.10685 (2019)
13 Zhou J., Cui G., Hu S., Zhang Z., Yang C., Liu Z., Wang L., Li C., Sun M.. Graph neural networks: A review of methods and applications. AI Open, 2020, 1: 57
https://doi.org/10.1016/j.aiopen.2021.01.001
14 Behler J., Parrinello M.. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett., 2007, 98(14): 146401
https://doi.org/10.1103/PhysRevLett.98.146401
15 Behler J.. Atom-centered symmetry functions for constructing high-dimensional neural network potentials. J. Chem. Phys., 2011, 134(7): 074106
https://doi.org/10.1063/1.3553717
16 S. Smith J.Isayev O.E. Roitberg A., ANI-1: An extensible neural network potential with DFT accuracy at force field computational cost, Chem. Sci. (Camb.) 8(4), 3192 (2017)
17 Gao X.Ramezanghorbani F.Isayev O. S. Smith J.E. Roitberg A.N. I. Torch A., A free and open source PyTorch-based deep learning implementation of the ANI neural network potentials, J. Chem. Inf. Model. 60(7), 3408 (2020)
18 L. Glick Z.P. Metcalf D.Koutsoukas A.A. Spronk S.L. Cheney D.D. Sherrill C., AP-Net: An atomic-pairwise neural network for smooth and transferable interaction potentials, J. Chem. Phys. 153(4), 044112 (2020)
19 Lot R.Pellegrini F.Shaidu Y.Küçükbenli E., PANNA: Properties from artificial neural network architectures, Comput. Phys. Commun. 256, 107402 (2020)
20 Modee R., Laghuvarapu S., D. Priyakumar U.. Benchmark study on deep neural network potentials for small organic molecules. J. Comput. Chem., 2022, 43(5): 308
https://doi.org/10.1002/jcc.26790
21 Cao L., Wang P., Sai L., Fu J., Duan X.. Artificial neural network potential for gold clusters. Chin. Phys. B, 2020, 29(11): 117304
https://doi.org/10.1088/1674-1056/abc15d
22 T. Schütt K., Arbabzadah F., Chmiela S., R. Muller K., Tkatchenko A.. Quantum-chemical insights from deep tensor neural networks. Nat. Commun., 2017, 8(1): 13890
https://doi.org/10.1038/ncomms13890
23 T. Schutt K., E. Sauceda H., J. Kindermans P., Tkatchenko A., R. Muller K.. SchNet − A deep learning architecture for molecules and materials. J. Chem. Phys., 2018, 148(24): 241722
https://doi.org/10.1063/1.5019779
24 Gilmer J.S. Schoenholz S.F. Riley P.Vinyals O.E. Dahl G., Neural message passing for quantum chemistry, in: International Conference on Machine Learning (2017)
25 Lubbers N., S. Smith J., Barros K.. Hierarchical modeling of molecular energies using a deep neural network. J. Chem. Phys., 2018, 148(24): 241715
https://doi.org/10.1063/1.5011181
26 Xie T., C. Grossman J.. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett., 2018, 120(14): 145301
https://doi.org/10.1103/PhysRevLett.120.145301
27 T. Unke O., Meuwly M.. PhysNet: A neural network for predicting energies, forces, dipole moments, and partial charges. J. Chem. Theory Comput., 2019, 15(6): 3678
https://doi.org/10.1021/acs.jctc.9b00181
28 Chen C., Ye W., Zuo Y., Zheng C., P. Ong S.. Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater., 2019, 31(9): 3564
https://doi.org/10.1021/acs.chemmater.9b01294
29 Lu C.Liu Q. Wang C.Huang Z.Lin P.He L., Molecular property prediction: A multilevel quantum interactions modeling perspective, in: Association for the Advancement of Artificial Intelligence (2019)
30 Klicpera J.Groß J.Günnemann S., Directional message passing for molecular graphs, in: International Conference on Learning Representations (2020)
31 Qian C., Xiong Y., Chen X.. Directed graph attention neural network utilizing 3D coordinates for molecular property prediction. Comput. Mater. Sci., 2021, 200: 110761
https://doi.org/10.1016/j.commatsci.2021.110761
32 Liu Z., Lin L., Jia Q., Cheng Z., Jiang Y., Guo Y., Ma J.. Transferable multilevel attention neural network for accurate prediction of quantum chemistry properties via multitask learning. J. Chem. Inf. Model., 2021, 61(3): 1066
https://doi.org/10.1021/acs.jcim.0c01224
33 Bahdanau D.Cho K.Bengio Y., Neural machine translation by jointly learning to align and translate, in: International Conference on Learning Representations (2014)
34 N. Kipf T.Welling M., Semi-supervised classification with graph convolutional networks, arXiv: 1609.02907 (2016)
35 Veličković P.Cucurull G.Casanova A. Romero A.Lio P.Bengio Y., Graph attention networks, arXiv: 1710.10903 (2017)
36 Zhao J., Shi R., Sai L., Huang X., Su Y.. Comprehensive genetic algorithm Forab initioglobal optimisation of clusters. Mol. Simul., 2016, 42(10): 809
https://doi.org/10.1080/08927022.2015.1121386
37 Delley B.. From molecules to solids with the DMol3 approach. J. Chem. Phys., 2000, 113(18): 7756
https://doi.org/10.1063/1.1316015
38 P. Perdew J., Burke K., Ernzerhof M.. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
39 Tian D., Zhang H., Zhao J.. Structure and structural evolution of Agn (n = 3–22) clusters using a genetic algorithm and density functional theory method. Solid State Commun., 2007, 144(3−4): 174
https://doi.org/10.1016/j.ssc.2007.05.020
40 Harb M., Rabilloud F., Simon D., Rydlo A., Lecoultre S., Conus F., Rodrigues V., Felix C.. Optical absorption of small silver clusters: Agn (n = 4−22). J. Chem. Phys., 2008, 129(19): 194108
https://doi.org/10.1063/1.3013557
41 Baishya K., C. Idrobo J., Öğüt S., Yang M., Jackson K., Jellinek J.. Optical absorption spectra of intermediate-size silver clusters from first principles. Phys. Rev. B, 2008, 78(7): 075439
https://doi.org/10.1103/PhysRevB.78.075439
42 Chen M., E. Dyer J., Li K., A. Dixon D.. Prediction of structures and atomization energies of small silver clusters, (Ag)n, n < 100. J. Phys. Chem. A, 2013, 117(34): 8298
https://doi.org/10.1021/jp404493w
43 Liao M., D. Watts J., Huang M.. Theoretical comparative study of oxygen adsorption on neutral and anionic Agn and Aun clusters (n = 2–25). J. Phys. Chem. C, 2014, 118(38): 21911
https://doi.org/10.1021/jp501701f
44 L. McKee M., Samokhvalov A.. Density functional study of neutral and charged silver clusters Agn with n = 2−22: Evolution of properties and structure. J. Phys. Chem. A, 2017, 121(26): 5018
https://doi.org/10.1021/acs.jpca.7b03905
45 Yin B., Du Q., Geng L., Zhang H., Luo Z., Zhou S., Zhao J.. Superatomic signature and reactivity of silver clusters with oxygen: double magic Ag17– with geometric and electronic shell closure. CCS Chemistry, 2021, 3(12): 219
https://doi.org/10.31635/ccschem.020.202000719
46 Weinreich J., Römer A., L. Paleico M., Behler J.. Properties of α-brass nanoparticles (1): Neural network potential energy surface. J. Phys. Chem. C, 2020, 124(23): 12682
https://doi.org/10.1021/acs.jpcc.0c00559
47 Chmiela S., Tkatchenko A., E. Sauceda H., Poltavsky I., T. Schütt K., R. Müller K.. Machine learning of accurate energy-conserving molecular force fields. Sci. Adv., 2017, 3(5): e1603015
https://doi.org/10.1126/sciadv.1603015
48 W. Schmidt M., K. Baldridge K., A. Boatz J., T. Elbert S., S. Gordon M., H. Jensen J., Koseki S., Matsunaga N., A. Nguyen K., Su S., L. Windus T., Dupuis M., A. Montgomery J.. General atomic and molecular electronic structure system. J. Comput. Chem., 1993, 14(11): 1347
https://doi.org/10.1002/jcc.540141112
49 Tao J., P. Perdew J., N. Staroverov V., E. Scuseria G.. Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett., 2003, 91(14): 146401
https://doi.org/10.1103/PhysRevLett.91.146401
50 Alameddin G., Hunter J., Cameron D., M. Kappes M.. Electronic and geometric structure in silver clusters. Chem. Phys. Lett., 1992, 192(1): 122
https://doi.org/10.1016/0009-2614(92)85439-H
51 Koopmans T.. Ordering of wave functions and eigenenergies to the individual electrons of an atom. Physica, 1933, 1: 104
https://doi.org/10.1016/S0031-8914(34)90011-2
[1] fop-21219-OF-sailinwei_suppl_1 Download
[1] Shurui Li, Jianqin Xu, Jing Qian, Weiping Zhang. Revisiting the dynamics of Bose–Einstein condensates in a double well by deep learning with a hybrid network[J]. Front. Phys. , 2022, 17(2): 22504-.
[2] Hua-Mei Luo, Wenbin Lin, Zu-Cheng Chen, Qing-Guo Huang. Extraction of gravitational wave signals with optimized convolutional neural network[J]. Front. Phys. , 2020, 15(1): 14601-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed