Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (2) : 21301    https://doi.org/10.1007/s11467-022-1235-5
RESEARCH ARTICLE
Online optimization for optical readout of a single electron spin in diamond
Xue Lin1,2, Jingwei Fan1, Runchuan Ye1,2, Mingti Zhou2, Yumeng Song1,2, Dawei Lu3(), Nanyang Xu2()
1. School of Microelectronics and School of Physics, Hefei University of Technology, Hefei 230009, China
2. Research Center for Quantum Sensing, Zhejiang Laboratory, Hangzhou 311000, China
3. Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
 Download: PDF(3350 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The nitrogen-vacancy (NV) center in diamond has been developed as a promising platform for quantum sensing, especially for magnetic field measurements in the nano-tesla range with a nano-meter resolution. Optical spin readout performance has a direct effect on the signal-to-noise ratio (SNR) of experiments. In this work, we introduce an online optimization method to customize the laser waveform for readout. Both simulations and experiments reveal that our new scheme optimizes the optically detected magnetic resonance in NV center. The SNR of optical spin readout has been witnessed a 44.1% increase in experiments. In addition, we applied the scheme to the Rabi oscillation experiment, which shows an improvement of 46.0% in contrast and a reduction of 12.1% in mean deviation compared to traditional constant laser power SNR optimization. This scheme is promising to improve sensitivities for a wide range of NV-based applications in the future.

Keywords NV center      readout      signal-to-noise ratio      online optimization     
Corresponding Author(s): Dawei Lu,Nanyang Xu   
Issue Date: 11 January 2023
 Cite this article:   
Xue Lin,Jingwei Fan,Runchuan Ye, et al. Online optimization for optical readout of a single electron spin in diamond[J]. Front. Phys. , 2023, 18(2): 21301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1235-5
https://academic.hep.com.cn/fop/EN/Y2023/V18/I2/21301
Fig.1  Illustration of algorithm-assisted OLO method for NV-based metrology. On the left is a schematic of the experimental setup, which mainly includes an AOM driven by the AWG and a 532 nm continuous-wave laser modulated by the AOM. The modulated laser is used for optical pumping of the electron spin in diamond. A detector records the fluorescences emitted by the spin system and feeds the photon time traces to the classical computer on the right. SNR is extracted from the feedback information, and subsequently utilized to generate a new set of laser parameters u=[u1,u2,...,un] by the algorithm. These parameters are then performed in new experiments for the next-round feedback information.
Fig.2  Analysis of optical pumping for the electron spin in diamond. (a) Pulse sequence of the electron-spin initialization and readout. The microwave operation only acts on the preparation of spin states other than ms=0. (b) Photon time traces of spin states initialized at ms=0 (dark green and dark red dotted lines) and ms=1 (light green and light red dotted lines), measured with 108 repetitions. The red and green lines covered by the shadow are their differential signals, namely, signal photons. The inset plot shows the detailed comparison between signal photons at different time and power of laser. (c, e) Theoretical SNR of the traditional scheme as a function of the pumping rate and duration for global optical pumping (including initialization and readout) and initialization, respectively. (d, f) SNR of the traditional scheme as a function of pumping rate in simulations or power in experiments under optimal duration conditions for global optical pumping and initialization, respectively.
Fig.3  Simulation and experimental results of the OLO scheme for readout. (a) and (b) show the optimization process for simulations and experiments, respectively. The dotted lines represent the optimal SNR achieved at each iteration. (c) and (d) plot the final optimal laser waveform (shaded area) and photon time traces of the ms=0 and ms=1 for simulations and experiments, respectively.
Fig.4  Rabi oscillation measurements (left axis) and their deviation (right axis) with different optimizations. The fitted contrast of the OLO scheme (green, solid line), the traditional scheme optimized by SNR (orange, dashed line), and the traditional scheme optimized by contrast (purple, dash-dot line) are 16.5%, 11.3%, and 15.2%, respectively. Columns are deviations of Rabi measurements, defined by differences between the data points and the best fitted lines. The means of deviations on each Rabi oscillation, are 0.00538 (OLO scheme by SNR), 0.00612 (traditional scheme by SNR), and 0.04794 (traditional scheme by contrast), respectively. Both contrast and deviation are improved by our OLO scheme.
1 Balasubramanian G. , Y. Chan I. , Kolesov R. , Al-Hmoud M. , Tisler J. , Shin C. , Kim C. , Wojcik A. , R. Hemmer P. , Krueger A. , Hanke T. , Leitenstorfer A. , Bratschitsch R. , Jelezko F. , Wrachtrup J. . Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature, 2008, 455(7213): 648
https://doi.org/10.1038/nature07278
2 Jakobi I. , Neumann P. , Wang Y. , B. R. Dasari D. , El Hallak F. , A. Bashir M. , Markham M. , Edmonds A. , Twitchen D. , Wrachtrup J. . Measuring broadband magnetic fields on the nanoscale using a hybrid quantum register. Nat. Nanotechnol., 2017, 12(1): 67
https://doi.org/10.1038/nnano.2016.163
3 R. Maze J. , L. Stanwix P. , S. Hodges J. , Hong S. , M. Taylor J. , Cappellaro P. , Jiang L. , V. G. Dutt M. , Togan E. , S. Zibrov A. , Yacoby A. , L. Walsworth R. , D. Lukin M. . Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature, 2008, 455(7213): 644
https://doi.org/10.1038/nature07279
4 Zaiser S. , Rendler T. , Jakobi I. , Wolf T. , Y. Lee S. , Wagner S. , Bergholm V. , Schulte-Herbrggen T. , Neumann P. , Wrachtrup J. . Enhancing quantum sensing sensitivity by a quantum memory. Nat. Commun., 2016, 7(1): 12279
https://doi.org/10.1038/ncomms12279
5 Unden T. , Balasubramanian P. , Louzon D. , Vinkler Y. , Plenio M. , Markham M. , Twitchen D. , Stacey A. , Lovchinsky I. , Sushkov A. , Lukin M. , Retzker A. , Naydenov B. , McGuinness L. , Jelezko F. . Quantum metrology enhanced by repetitive quantum error correction. Phys. Rev. Lett., 2016, 116(23): 230502
https://doi.org/10.1103/PhysRevLett.116.230502
6 L. Degen C. . Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett., 2008, 92(24): 243111
https://doi.org/10.1063/1.2943282
7 Zhou J. , Wang P. , Shi F. , Huang P. , Kong X. , Xu X. , Zhang Q. , Wang Z. , Rong X. , Du J. . Quantum information processing and metrology with color centers in diamonds. Front. Phys., 2014, 9(5): 587
https://doi.org/10.1007/s11467-014-0421-5
8 Dolde F. , Fedder H. , W. Doherty M. , Nbauer T. , Rempp F. , Balasubramanian G. , Wolf T. , Reinhard F. , C. L. Hollenberg L. , Jelezko F. , Wrachtrup J. . Electric-field sensing using single diamond spins. Nat. Phys., 2011, 7(6): 459
https://doi.org/10.1038/nphys1969
9 Kucsko G. , C. Maurer P. , Y. Yao N. , Kubo M. , J. Noh H. , K. Lo P. , Park H. , D. Lukin M. . Nanometre-scale thermometry in a living cell. Nature, 2013, 500(7460): 54
https://doi.org/10.1038/nature12373
10 M. Toyli D. , F. de las Casas C. , J. Christle D. , V. Dobrovitski V. , D. Awschalom D. . Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond. Proc. Natl. Acad. Sci. USA, 2013, 110(21): 8417
https://doi.org/10.1073/pnas.1306825110
11 Hsieh S. , Bhattacharyya P. , Zu C. , Mittiga T. , J. Smart T. , Machado F. , Kobrin B. , O. Hhn T. , Z. Rui N. , Kamrani M. , Chatterjee S. , Choi S. , Zaletel M. , V. Struzhkin V. , E. Moore J. , I. Levitas V. , Jeanloz R. , Y. Yao N. . Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science, 2019, 366(6471): 1349
https://doi.org/10.1126/science.aaw4352
12 Staudacher T. , Shi F. , Pezzagna S. , Meijer J. , Du J. , A. Meriles C. , Reinhard F. , Wrachtrup J. . Nuclear magnetic resonance spectroscopy on a (5-nanometer)3 sample volume. Science, 2013, 339(6119): 561
https://doi.org/10.1126/science.1231675
13 Shi F. , Zhang Q. , Wang P. , Sun H. , Wang J. , Rong X. , Chen M. , Ju C. , Reinhard F. , Chen H. , Wrachtrup J. , Wang J. , Du J. . Single-protein spin resonance spectroscopy under ambient conditions. Science, 2015, 347(6226): 1135
https://doi.org/10.1126/science.aaa2253
14 P. Tetienne J. , Hingant T. , V. Kim J. , H. Diez L. , P. Adam J. , Garcia K. , F. Roch J. , Rohart S. , Thiaville A. , Ravelosona D. , Jacques V. . Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope. Science, 2014, 344(6190): 1366
https://doi.org/10.1126/science.1250113
15 L. Degen C. , Poggio M. , J. Mamin H. , T. Rettner C. , Rugar D. . Nanoscale magnetic resonance imaging. Proc. Natl. Acad. Sci. USA, 2009, 106(5): 1313
https://doi.org/10.1073/pnas.0812068106
16 L. Degen C.Reinhard F.Cappellaro P., Quantum sensing, Rev. Mod. Phys. 89(3), 035002 (2017) (rMP.)
17 F. Barry J. , M. Schloss J. , Bauch E. , J. Turner M. , A. Hart C. , M. Pham L. , L. Walsworth R. . Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys., 2020, 92(1): 015004
https://doi.org/10.1103/RevModPhys.92.015004
18 F. Barry J. , J. Turner M. , M. Schloss J. , R. Glenn D. , Song Y. , D. Lukin M. , Park H. , L. Walsworth R. . Optical magnetic detection of single-neuron action potentials using quantum defects in diamond. Proc. Natl. Acad. Sci. USA, 2016, 113(49): 14133
https://doi.org/10.1073/pnas.1601513113
19 C. Davis H. , Ramesh P. , Bhatnagar A. , Lee-Gosselin A. , F. Barry J. , R. Glenn D. , L. Walsworth R. , G. Shapiro M. . Mapping the microscale origins of magnetic resonance image contrast with subcellular diamond magnetometry. Nat. Commun., 2018, 9(1): 131
https://doi.org/10.1038/s41467-017-02471-7
20 A. Hopper D.R. Grote R.L. Exarhos A.C. Bassett L., Near-infrared-assisted charge control and spin readout of the nitrogen-vacancy center in diamond, Phys. Rev. B 94(24), 241201 (2016) (pRB.)
21 Neumann P. , Beck J. , Steiner M. , Rempp F. , Fedder H. , R. Hemmer P. , Wrachtrup J. , Jelezko F. . Single-shot readout of a single nuclear spin. Science, 2010, 329(5991): 542
https://doi.org/10.1126/science.1189075
22 Qian P. , Lin X. , Zhou F. , Ye R. , Ji Y. , Chen B. , Xie G. , Xu N. . Machine-learning-assisted electron-spin readout of nitrogen-vacancy center in diamond. Appl. Phys. Lett., 2021, 118(8): 084001
https://doi.org/10.1063/5.0038590
23 Song Y. , Tian Y. , Hu Z. , Zhou F. , Xing T. , Lu D. , Chen B. , Wang Y. , Xu N. , Du J. . Pulse-width-induced polarization enhancement of optically pumped N-V electron spin in diamond. Photon. Res., 2020, 8(8): 1289
https://doi.org/10.1364/PRJ.386983
24 Liu T. , Zhang J. , Yuan H. , Xu L. , Bian G. , Fan P. , Li M. , Liu Y. , Xia S. , Xu C. , Xiao X. . A pulsed time-varying method for improving the spin readout efficiency of nitrogen vacancy centers. J. Phys. D, 2021, 54(39): 395002
https://doi.org/10.1088/1361-6463/ac1191
25 Oshnik N. , Rembold P. , Calarco T. , Montangero S. , Neu E. , M. Müller M. . Robust magnetometry with single nitrogen-vacancy centers via two-step optimization. Phys. Rev. A, 2022, 106(1): 013107
https://doi.org/10.1103/PhysRevA.106.013107
26 Bauer B. , Wecker D. , J. Millis A. , B. Hastings M. , Troyer M. . Hybrid quantum-classical approach to correlated materials. Phys. Rev. X, 2016, 6(3): 031045
https://doi.org/10.1103/PhysRevX.6.031045
27 Bravyi S. , Smith G. , A. Smolin J. . Trading classical and quantum computational resources. Phys. Rev. X, 2016, 6(2): 021043
https://doi.org/10.1103/PhysRevX.6.021043
28 R. McClean J. , Romero J. , Babbush R. , Aspuru-Guzik A. . The theory of variational hybrid quantum-classical algorithms. New J. Phys., 2016, 18(2): 023023
https://doi.org/10.1088/1367-2630/18/2/023023
29 Suter D. , Jelezko F. . Single-spin magnetic resonance in the nitrogen-vacancy center of diamond. Prog. Nucl. Magn. Reson. Spectrosc., 2017, 98–99, 50
https://doi.org/10.1016/j.pnmrs.2016.12.001
30 W. Doherty M. , B. Manson N. , Delaney P. , Jelezko F. , Wrachtrup J. , C. L. Hollenberg L. . The nitrogen-vacancy colour centre in diamond. Phys. Rep., 2013, 528(1): 1
https://doi.org/10.1016/j.physrep.2013.02.001
31 W. Doherty M. , B. Manson N. , Delaney P. , C. L. Hollenberg L. . The negatively charged nitrogen-vacancy centre in diamond: The electronic solution. New J. Phys., 2011, 13(2): 025019
https://doi.org/10.1088/1367-2630/13/2/025019
32 Chen B. , Hou X. , Zhou F. , Qian P. , Shen H. , Xu N. . Detecting the out-of-time-order correlations of dynamical quantum phase transitions in a solid-state quantum simulator. Appl. Phys. Lett., 2020, 116(19): 194002
https://doi.org/10.1063/5.0004152
33 D. Fuchs G. , V. Dobrovitski V. , M. Toyli D. , J. Heremans F. , D. Weis C. , Schenkel T. , D. Awschalom D. . Excited-state spin coherence of a single nitrogen–vacancy centre in diamond. Nat. Phys., 2010, 6(9): 668
https://doi.org/10.1038/nphys1716
34 L. Goldman M.Sipahigil A.W. Doherty M.Y. Yao N.D. Bennett S.Markham M.J. Twitchen D.B. Manson N.Kubanek A.D. Lukin M., Phonon-induced population dynamics and intersystem crossing in nitrogen-vacancy centers, Phys. Rev. Lett. 114(14), 145502 (2015)
35 B. Manson N. , P. Harrison J. , J. Sellars M. . Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics. Phys. Rev. B, 2006, 74(10): 104303
https://doi.org/10.1103/PhysRevB.74.104303
36 Steiner M.Neumann P.Beck J.Jelezko F.Wrachtrup J., Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond, Phys. Rev. B 81(3), 035205 (2010)
37 A. Wolf S.Rosenberg I.Rapaport R.Bar-Gill N., Purcell-enhanced optical spin readout of nitrogen-vacancy centers in diamond, Phys. Rev. B 92(23), 235410 (2015)
38 G. Skellam J. . The frequency distribution of the difference between two poisson variates belonging to different populations. J. R. Stat. Soc., 1946, 109(3): 296
https://doi.org/10.2307/2981372
39 Yang X. , Chen X. , Li J. , Peng X. , Laamme R. . Hybrid quantum-classical approach to enhanced quantum metrology. Sci. Rep., 2021, 11: 672
https://doi.org/10.1038/s41598-020-80070-1
40 Li J. , Yang X. , Peng X. , P. Sun C. . Hybrid quantum-classical approach to quantum optimal control. Phys. Rev. Lett., 2017, 118(15): 150503
https://doi.org/10.1103/PhysRevLett.118.150503
41 Lu D. , Li K. , Li J. , Katiyar H. , J. Park A. , Feng G. , Xin T. , Li H. , Long G. , Brodutch A. , Baugh J. , Zeng B. , Laamme R. . Enhancing quantum control by bootstrapping a quantum processor of 12 qubits. npj Quantum Inform., 2017, 3: 45
https://doi.org/10.1038/s41534-017-0045-z
42 Xin T. , Nie X. , Kong X. , Wen J. , Lu D. , Li J. . Quantum pure state tomography via variational hybrid quantum-classical method. Phys. Rev. Appl., 2020, 13(2): 024013
https://doi.org/10.1103/PhysRevApplied.13.024013
43 Bhole G. , A. Jones J. . Practical pulse engineering: Gradient ascent without matrix exponentiation. Front. Phys., 2018, 13(3): 130312
https://doi.org/10.1007/s11467-018-0791-1
44 Ouyang Y. , Yu C. , Yan G. , Chen J. . Machine learning approach for the prediction and optimization of thermal transport properties. Front. Phys., 2021, 16(4): 43200
https://doi.org/10.1007/s11467-020-1041-x
45 Li X. , Yu W. , Fan X. , J. Babu G. . Some optimizations on detecting gravitational wave using convolutional neural network. Front. Phys., 2020, 15(5): 54501
https://doi.org/10.1007/s11467-020-0966-4
46 M. Lewis R. , Torczon V. , W. Trosset M. . Direct search methods: Then and now. J. Comput. Appl. Math., 2000, 124(1-2): 191
https://doi.org/10.1016/S0377-0427(00)00423-4
47 E. Eiben A. , Smith J. . From evolutionary computation to the evolution of things. Nature, 2015, 521(7553): 476
https://doi.org/10.1038/nature14544
48 Hooke R. , A. Jeeves T. . “Direct search” solution of numerical and statistical problems. J. Assoc. Comput. Mach., 1961, 8(2): 212
https://doi.org/10.1145/321062.321069
49 A. Golter D. , Wang H. . Optically driven rabi oscillations and adiabatic passage of single electron spins in diamond. Phys. Rev. Lett., 2014, 112(11): 116403
https://doi.org/10.1103/PhysRevLett.112.116403
50 Robledo L.Bernien H.van Weperen I.Hanson R., Control and coherence of the optical transition of single nitrogen vacancy centers in diamond, Phys. Rev. Lett. 105(17), 177403 (2010)
51 A. Hopper D. , J. Shulevitz H. , C. Bassett L. . Spin readout techniques of the nitrogen-vacancy center in diamond. Micromachines (Basel), 2018, 9(9): 437
https://doi.org/10.3390/mi9090437
52 M. Pham L. , Bar-Gill N. , Belthangady C. , Le Sage D. , Cappellaro P. , D. Lukin M. , Yacoby A. , L. Walsworth R. . Enhanced solid-state multispin metrology using dynamical decoupling. Phys. Rev. B, 2012, 86(4): 045214
https://doi.org/10.1103/PhysRevB.86.045214
53 V. G. Dutt M. , Childress L. , Jiang L. , Togan E. , Maze J. , Jelezko F. , S. Zibrov A. , R. Hemmer P. , D. Lukin M. . Quantum register based on individual electronic and nuclear spin qubits in diamond. Science, 2007, 316(5829): 1312
https://doi.org/10.1126/science.1139831
54 M. Pham L. , L. Sage D. , L. Stanwix P. , K. Yeung T. , Glenn D. , Trifonov A. , Cappellaro P. , R. Hemmer P. , D. Lukin M. , Park H. , Yacoby A. , L. Walsworth R. . Magnetic field imaging with nitrogen-vacancy ensembles. New J. Phys., 2011, 13(4): 045021
https://doi.org/10.1088/1367-2630/13/4/045021
[1] fop-21235-OF-linxue_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed