|
|
Quantum dynamics studies on the non-adiabatic effects of H + LiD reaction |
Yuwen Bai, Zijiang Yang, Bayaer Buren, Ye Mao, Maodu Chen( ) |
Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China |
|
|
Abstract After the Big Bang, chemical reactions of hydrogen with LiH and its isotopic variants played an important role in the late stage of recombination. Moreover, these reactions have attracted the attention of experts in the field of molecular dynamics because of its simple structure. Electronically non-adiabatic effects play a key role in many chemical reactions, while the related studies in LiH2 reactive system and its isotopic variants are not enough, so the microscopic mechanism of this system has not been fully explored. In this work, the microscopic mechanism of H + LiD reaction are performed by comparing both the adiabatic and non-adiabatic results to study the non-adiabatic effects. The reactivity of R1 (H + LiD → Li + HD) channel is inhibited, while that of R2 (H + LiD → D + LiH) channel is enhanced when the non-adiabatic couplings are considered. For R1 channel, a direct stripping process dominates this channel and the main reaction mechanism is not influenced by the non-adiabatic effects. For R2 channel, at relatively low collision energy, the dominance changes from a rebound process to the complex-forming mechanism when the non-adiabatic effects are considered, whereas the rebound collision approach still dominates the reaction at relatively high collision energy in both calculations. The presented results provide a basis for further detailed study on this importantly astrophysical reaction system.
|
Keywords
non-adiabatic effects
quantum dynamics
time-dependent wave packet
astrophysical reaction
|
Corresponding Author(s):
Maodu Chen
|
Issue Date: 03 February 2023
|
|
1 |
Bodo E., A. Gianturco F., Martinazzo R.. The gas-phase lithium chemistry in the early universe: Elementary processes, interaction forces and quantum dynamics. Phys. Rep., 2003, 384(3): 85
https://doi.org/10.1016/S0370-1573(03)00243-6
|
2 |
Lepp S., Stancil P., Dalgarno A.. Atomic and molecular processes in the early universe. J. Phys. At. Mol. Opt. Phys., 2002, 35(10): 201
https://doi.org/10.1088/0953-4075/35/10/201
|
3 |
Zhang Y., Wang N., Li Q., Ou L., Tian J., Liu M., Zhao K., Wu X., Li Z.. Progress of quantum molecular dynamics model and its applications in heavy ion collisions. Front. Phys., 2020, 15(5): 54301
https://doi.org/10.1007/s11467-020-0961-9
|
4 |
He Q., D. Reid M., Opanchuk B., Polkinghorne R., E. Rosales-Zárate L., D. Drummond P.. Quantum dynamics in ultracold atomic physics. Front. Phys., 2012, 7(1): 16
https://doi.org/10.1007/s11467-011-0232-x
|
5 |
Zheng H., Gu Q.. Dynamics of Bose−Einstein condensates in a one-dimensional optical lattice with double-well potential. Front. Phys., 2013, 8(4): 375
https://doi.org/10.1007/s11467-013-0321-0
|
6 |
Wu J., Qi R., Ji A., Liu W.. Quantum tunneling of ultracold atoms in optical traps. Front. Phys., 2014, 9(2): 137
https://doi.org/10.1007/s11467-013-0359-z
|
7 |
Lepp S., M. Shull J.. Molecules in the early universe. Astrophys. J., 1984, 280: 465
https://doi.org/10.1086/162013
|
8 |
J. Clarke N., Sironi M., Raimondi M., Kumar S., A. Gianturco F., Buonomo E., L. Cooper D.. Classical and quantum dynamics on the collinear potential energy surface for the reaction of Li with H2. Chem. Phys., 1998, 233(1): 9
https://doi.org/10.1016/S0301-0104(98)00131-1
|
9 |
Padmanaban R., Mahapatra S.. Time-dependent wave packet dynamics of the H + HLi reactive scattering. J. Chem. Phys., 2002, 117(14): 6469
https://doi.org/10.1063/1.1504702
|
10 |
Roy T., Mahapatra S.. Quantum dynamics of H + LiH reaction and its isotopic variants. J. Chem. Phys., 2012, 136(17): 174313
https://doi.org/10.1063/1.4707144
|
11 |
W. Huran A., González-Sánchez L., Gomez-Carrasco S., Aldegunde J.. A quantum mechanical study of the k−j and k′−j′ vector correlations for the H + LiH → Li + H2 reaction. J. Phys. Chem. A, 2017, 121(8): 1535
https://doi.org/10.1021/acs.jpca.6b10094
|
12 |
J. Martínez T.. Ab initio molecular dynamics around a conical intersection: Li(2p) + H2. Chem. Phys. Lett., 1997, 272(3−4): 139
https://doi.org/10.1016/S0009-2614(97)88000-1
|
13 |
G. Diniz L., Alijah A., R. Mohallem J.. Benchmark linelists and radiative cooling functions for LiH isotopologues. Astrophys. J. Suppl. Ser., 2018, 235(2): 35
https://doi.org/10.3847/1538-4365/aab431
|
14 |
Song J., Zhu Z.. Dynamics studies of the Li(2S) + H2(X1Σg+) → LiH(X1Σ+) + H(2S) reaction by time-dependent wave packet and quasi-classical trajectory methods. Comput. Theor. Chem., 2020, 1173: 112703
https://doi.org/10.1016/j.comptc.2020.112703
|
15 |
He D., Yuan J., Chen M.. Influence of rovibrational excitation on the non-diabatic state-to-state dynamics for the Li(2p) + H2 → LiH + H reaction. Sci. Rep., 2017, 7(1): 3084
https://doi.org/10.1038/s41598-017-03274-y
|
16 |
Chen J., Lin K.. Influence of vibrational excitation on the reaction Li(22PJ) + H2(ν = 1) → LiH(X1Σ+) + H. J. Chem. Phys., 2003, 119(17): 8785
https://doi.org/10.1063/1.1620997
|
17 |
S. Lee H., S. Lee Y., Jeung G.. Potential energy surfaces for LiH2 and photochemical reactions Li* + H2 ↔ LiH + H. J. Phys. Chem. A, 1999, 103(50): 11080
https://doi.org/10.1021/jp9921295
|
18 |
He X., Wu H., Zhang P., Zhang Y.. Quantum state-to-state dynamics of the H + LiH → H2 + Li reaction. J. Phys. Chem. A, 2015, 119(33): 8912
https://doi.org/10.1021/acs.jpca.5b05178
|
19 |
Padmanaban R., Mahapatra S.. Resonances in three-dimensional H + HLi scattering: A time-dependent wave packet dynamical study. J. Chem. Phys., 2004, 120(4): 1746
https://doi.org/10.1063/1.1634559
|
20 |
Gómez-Carrasco S., González-Sánchez L., Bulut N., Roncero O., Bañares L., F. Castillo J.. State-to-state quantum wave packet dynamics of the LiH + H reaction on two ab initio potential energy surfaces. Astrophys. J., 2014, 784(1): 55
https://doi.org/10.1088/0004-637X/784/1/55
|
21 |
He D., Li W., Wang M.. A study on the non-adiabatic dynamics of the Li(2p) + H2 → Li(2s) + H2 quenching reaction calculated by time-dependent wavepacket method. Chem. Phys. Lett., 2021, 780: 138910
https://doi.org/10.1016/j.cplett.2021.138910
|
22 |
Fu L., Wang D., Huang X.. Accurate potential energy surfaces for the first two lowest electronic states of the Li(2p) + H2 reaction. RSC Adv., 2018, 8(28): 15595
https://doi.org/10.1039/C8RA02504E
|
23 |
Born M.Heisenberg W., Zur quantentheorie der molekeln, in: Original Scientific Papers Wissenschaftliche Originalarbeiten, Springer, 1985, pp 216–246
|
24 |
V. Makhov D., J. Glover W., J. Martinez T., V. Shalashilin D.. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics. J. Chem. Phys., 2014, 141(5): 054110
https://doi.org/10.1063/1.4891530
|
25 |
F. Curchod B., J. Penfold T., Rothlisberger U., Tavernelli I.. Nonadiabatic ab initio molecular dynamics using linear-response time-dependent density functional theory. Cent. Eur. J. Phys., 2013, 11: 1059
https://doi.org/10.2478/s11534-013-0321-2
|
26 |
Betz V., D. Goddard B.. Nonadiabatic transitions through tilted avoided crossings. SIAM J. Sci. Comput., 2011, 33(5): 2247
https://doi.org/10.1137/100802347
|
27 |
Guan Y., Xie C., R. Yarkony D., Guo H.. High-fidelity first principles nonadiabaticity: Diabatization, analytic representation of global diabatic potential energy matrices, and quantum dynamics. Phys. Chem. Chem. Phys., 2021, 23(44): 24962
https://doi.org/10.1039/D1CP03008F
|
28 |
Bernardi F., Olivucci M., A. Robb M.. Potential energy surface crossings in organic photochemistry. Chem. Soc. Rev., 1996, 25(5): 321
https://doi.org/10.1039/cs9962500321
|
29 |
Xie C., L. Malbon C., Guo H., R. Yarkony D.. Up to a sign. The insidious effects of energetically inaccessible conical intersections on unimolecular reactions. Acc. Chem. Res., 2019, 52(2): 501
https://doi.org/10.1021/acs.accounts.8b00571
|
30 |
Guo H., R. Yarkony D.. Accurate nonadiabatic dynamics. Phys. Chem. Chem. Phys., 2016, 18(38): 26335
https://doi.org/10.1039/C6CP05553B
|
31 |
Xie C., R. Yarkony D., Guo H.. Nonadiabatic tunneling via conical intersections and the role of the geometric phase. Phys. Rev. A, 2017, 95(2): 022104
https://doi.org/10.1103/PhysRevA.95.022104
|
32 |
Mai S., Marquetand P., González L.. A general method to describe intersystem crossing dynamics in trajectory surface hopping. Int. J. Quantum Chem., 2015, 115(18): 1215
https://doi.org/10.1002/qua.24891
|
33 |
K. Kendrick B., Hazra J., Balakrishnan N.. Geometric phase effects in the ultracold H + H2 reaction. J. Chem. Phys., 2016, 145(16): 164303
https://doi.org/10.1063/1.4966037
|
34 |
J. C. Varandas A., G. Yu H.. Geometric phase effects on transition-state resonances and bound vibrational states of H3 via a time-dependent wavepacket method. J. Chem. Soc. Faraday Trans., 1997, 93(5): 819
https://doi.org/10.1039/a605777b
|
35 |
Koizumi H., Sugano S.. The geometric phase in two electronic level systems. J. Chem. Phys., 1994, 101(6): 4903
https://doi.org/10.1063/1.467412
|
36 |
C. Juanes-Marcos J., C. Althorpe S., Wrede E.. Effect of the geometric phase on the dynamics of the hydrogen-exchange reaction. J. Chem. Phys., 2007, 126(4): 044317
https://doi.org/10.1063/1.2430708
|
37 |
Huang J., H. Zhang D.. An efficient way to incorporate the geometric phase in the time-dependent wave packet calculations in a diabatic representation. J. Chem. Phys., 2020, 153(14): 141102
https://doi.org/10.1063/5.0028035
|
38 |
F. E. Croft J., Hazra J., Balakrishnan N., K. Kendrick B.. Symmetry and the geometric phase in ultracold hydrogen exchange reactions. J. Chem. Phys., 2017, 147(7): 074302
https://doi.org/10.1063/1.4998226
|
39 |
Yuan D., Guan Y., Chen W., Zhao H., Yu S., Luo C., Tan Y., Xie T., Wang X., Sun Z., H. Zhang D., Yang X.. Observation of the geometric phase effect in the H + HD → H2 + D reaction. Science, 2018, 362(6420): 1289
https://doi.org/10.1126/science.aav1356
|
40 |
Xie Y., Zhao H., Wang Y., Huang Y., Wang T., Xu X., Xiao C., Sun Z., H. Zhang D., Yang X.. Quantum interference in H + HD → H2 + D between direct abstraction and roaming insertion pathways. Science, 2020, 368(6492): 767
https://doi.org/10.1126/science.abb1564
|
41 |
Wang Y., R. Yarkony D.. Conical intersection seams in spin–orbit coupled systems with an even number of electrons: A numerical study based on neural network fit surfaces. J. Chem. Phys., 2021, 155(17): 174115
https://doi.org/10.1063/5.0067660
|
42 |
P. Rakitzis T.. Transition states and spin-orbit structure. Science, 2021, 371(6532): 886
https://doi.org/10.1126/science.abg3184
|
43 |
Chen W., Wang R., Yuan D., Zhao H., Luo C., Tan Y., Li S., H. Zhang D., Wang X., Sun Z., Yang X.. Quantum interference between spin-orbit split partial waves in the F + HD → HF + D reaction. Science, 2021, 371(6532): 936
https://doi.org/10.1126/science.abf4205
|
44 |
Li J., Sajjan M., S. Kale S., Kais S.. Statistical correlation between quantum entanglement and spin–orbit coupling in crossed beam molecular dynamics. Adv. Quantum Technol., 2021, 4: 2100098
https://doi.org/10.1002/qute.202100098
|
45 |
Zimmermann T., Vaníček J.. Evaluation of the importance of spin−orbit couplings in the nonadiabatic quantum dynamics with quantum fidelity and with its efficient “on-the-fly” ab initio semiclassical approximation. J. Chem. Phys., 2012, 137: 22A516
https://doi.org/10.1063/1.4738878
|
46 |
Yang Z., Yuan J., Wang S., Chen M.. Global diabatic potential energy surfaces for the BeH2+ system and dynamics studies on the Be+(2P) + H2(X1Σg+) → BeH+(X1Σ+) + H(2S) reaction. RSC Advances, 2018, 8(40): 22823
https://doi.org/10.1039/C8RA04305A
|
47 |
Yang Z., Mao Y., Chen M.. Quantum dynamics studies of the significant intramolecular isotope effects on the nonadiabatic Be+(2P) + HD → BeH+/BeD++ D/H reaction. J. Phys. Chem. A, 2021, 125(1): 235
https://doi.org/10.1021/acs.jpca.0c09593
|
48 |
Mao Y., Yuan J., Yang Z., Chen M.. Quantum dynamics studies of isotope effects in the Mg+(3p) + HD → MgH+/MgD+ + D/H insertion reaction. Sci. Rep., 2020, 10(1): 3410
https://doi.org/10.1038/s41598-020-60033-2
|
49 |
Buren B., Mao Y., Yang Z., Chen M.. Non-adiabatic couplings induced complex-forming mechanism in H + MgH+ → Mg+ + H2 reaction. Chin. J. Chem. Phys., 2022, 35(2): 345
https://doi.org/10.1063/1674-0068/cjcp2111237
|
50 |
He D., Yuan J., Li H., Chen M.. Global diabatic potential energy surfaces and quantum dynamical studies for the Li(2p) + H2(X1Σg+) → LiH(X1Σ+) + H reaction. Sci. Rep., 2016, 6: 25083
https://doi.org/10.1038/srep25083
|
51 |
D. Coutinho N., O. Sanches-Neto F., H. Carvalho-Silva V., C. B. Oliveira H., A. Ribeiro L., Aquilanti V.. Kinetics of the OH + HCl → H2O + Cl reaction: Rate determining roles of stereodynamics and roaming and of quantum tunneling. J. Comput. Chem., 2018, 39(30): 2508
https://doi.org/10.1002/jcc.25597
|
52 |
D. Coutinho N., H. Silva V., C. de Oliveira H., J. Camargo A., C. Mundim K., Aquilanti V.. Stereodynamical origin of anti-arrhenius kinetics: negative activation energy and roaming for a four-atom reaction. J. Phys. Chem. Lett., 2015, 6(9): 1553
https://doi.org/10.1021/acs.jpclett.5b00384
|
53 |
Tsai P., Che D., Nakamura M., Lin K., Kasai T.. Orientation dependence for Br formation in the reaction of oriented OH radical with HBr molecule. Phys. Chem. Chem. Phys., 2011, 13(4): 1419
https://doi.org/10.1039/C0CP01089H
|
54 |
Zhao B., Han S., L. Malbon C., Manthe U., Yarkony D., Guo H.. Full-dimensional quantum stereodynamics of the nonadiabatic quenching of OH(A2Σ+) by H2. Nat. Chem., 2021, 13(9): 909
https://doi.org/10.1038/s41557-021-00730-1
|
55 |
Buren B., Chen M.. Stereodynamics-controlled product branching in the nonadiabatic H + NaD → Na(3s, 3p) + HD reaction at low temperatures. J. Phys. Chem. A, 2022, 126(16): 2453
https://doi.org/10.1021/acs.jpca.2c00114
|
56 |
Sun Z., Y. Lee S., Guo H., H. Zhang D.. Comparison of second-order split operator and Chebyshev propagator in wave packet based state-to-state reactive scattering calculations. J. Chem. Phys., 2009, 130(17): 174102
https://doi.org/10.1063/1.3126363
|
57 |
Yao C., Zhang P., Duan Z., Zhao G.. Influence of collision energy on the dynamics of the reaction H(2S) + NH(X3Σ−) → N(4S) + H2(X1Σg+) by the state-to-state quantum mechanical study. Theor. Chem. Acc., 2014, 133(6): 1489
https://doi.org/10.1007/s00214-014-1489-2
|
58 |
Song H., Y. Lee S., Sun Z., Lu Y.. Time-dependent wave packet state-to-state dynamics of H/D + HCl/DCl reactions. J. Chem. Phys., 2013, 138(5): 054305
https://doi.org/10.1063/1.4790116
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|