Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (3) : 33301    https://doi.org/10.1007/s11467-022-1248-0
RESEARCH ARTICLE
Au/MXene based ultrafast all-optical switching
Yule Zhang1, Feng Zhang1, Bowen Du1, Hualong Chen1, S. Wageh2, Omar A. Al-Hartomy2, Abdullah G. Al-Sehemi3, Bin Zhang1(), Han Zhang1()
1. International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics and Translational Medicine, The First Affiliated Hospital (Shenzhen Second People’s Hospital), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
2. Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
3. Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Ab-ha, 61413, Saudi Arabia
 Download: PDF(4201 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

All-optical switches have arisen great attention due to their ultrafast speed as compared with electric switches. However, the excellent optical properties and strong interaction of two-dimensional (2D) material MXene show great potentials in next-generation all-optical switching. As a solution, we propose all-optical switching used Au/MXene with switching full width at half maximum (FWHM) operating at 290 fs. Compared with pure MXene, the Au/MXene behaves outstanding performances due to local surface plasmon resonance (LSPR), including broadband differential transmission, strong near-infrared on/off ratio enhancement. Remarkably, this study enhances understanding of Au/MXene based ultrafast all-optical switching red-shifted about 34 nm in comparison to MXene, validating all optical properties of Au/MXene opening the way to the implementation of optical interconnection and optical switching.

Keywords Au/MXene      ultrafast all-optical switching      Au/MXene carrier lifetime     
Corresponding Author(s): Bin Zhang,Han Zhang   
Issue Date: 11 January 2023
 Cite this article:   
Yule Zhang,Feng Zhang,Bowen Du, et al. Au/MXene based ultrafast all-optical switching[J]. Front. Phys. , 2023, 18(3): 33301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1248-0
https://academic.hep.com.cn/fop/EN/Y2023/V18/I3/33301
Fig.1  Morphology characterizations of straticulate Au/MXene (a) Transmission Electron Microscope (TEM) images of scale bar: 20 nm and 5 nm. (c?e) Au, Ti, and C EDS-mappings in (b) HAADF EDX-mapping.
Fig.2  (a) XANES and (b) EXAFS results of Au foil, AuCl3 standards and Au/MXene. (c, d) Wavelet transform of Au L3 edge EXAFS in Au/MXene. (e) DLS spectrum of Au/MXene. (f) UV-vis absorption spectra of Au/MXene and MXene.
Fig.3  Schematic representation of structure of the optical switch. (a) Photoexcited Au/MXene by pump light and probe light. (b) Electron was excited from ground state to excited state.
Fig.4  MXene and Au/MXene TA spectrums. (a) Selective pump-probe delay times of MXene film on quartz in the probe range (475?780 nm and 800?1300 nm) by 420 nm excitation. (b) MXene 2D TA spectrum map with excitation intensity of 0.5 J/pulse. (c) Au/MXene film on quartz in the same probe. (d) 2D TA spectrum map of Au/MXene in the same pulse energy.
Fig.5  MXene and Au/MXene carrier liftimes. (a) Ultrafast dynamics observed at 680 and 690 nm. (b) At the probe wavelength of 823 nm and 857 nm.
Fig.6  Ultrafast dynamics at the probe wavelength of 1000 nm.
Materialsτ1τ2 τ3
MXene40.69 fs ± 6 fs2.92 ps ± 12 fs320.8 ps ± 5 ps
Au/MXene125.7 fs ± 7 fs10.64 ps ± 30 fs4.73 ns ± 90 ps
Tab.1  Carrier delay time at probe wavelength of 1000 nm.
Fig.7  A typical pump-probe experimental set-up.
1 Z. Butler S. , M. Hollen S. , Cao L. , Cui Y. , A. Gupta J. , R. Gutiérrez H. , F. Heinz T. , S. Hong S. , Huang J. , F. Ismach A. , Johnston-Halperin E. , Kuno M. , V. Plashnitsa V. , D. Robinson R. , S. Ruoff R. , Salahuddin S. , Shan J. , Shi L. , G. Spencer M. , Terrones M. , Windl W. , E. Goldberger J. . Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7(4): 2898
https://doi.org/10.1021/nn400280c
2 K. Geim A. , V. Grigorieva I. . Van der Waals heterostructures. Nature, 2013, 499(7459): 419
https://doi.org/10.1038/nature12385
3 N. Grigorenko A. , Polini M. , S. Novoselov K. . Graphene plasmonics. Nat. Photonics, 2012, 6(11): 749
https://doi.org/10.1038/nphoton.2012.262
4 W. Jiang J. , S. Park H. . Negative Poisson’s ratio in single-layer black phosphorus. Nat. Commun., 2014, 5(1): 4727
https://doi.org/10.1038/ncomms5727
5 H. Wang Q. , Kalantar-Zadeh K. , Kis A. , N. Coleman J. , S. Strano M. . Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
https://doi.org/10.1038/nnano.2012.193
6 Q. Luo Z.Huang Y.Zhong M.Li Y.Wu J.Xu B.Xu H.Cai Z.Peng J.Weng J., 1-, 1.5-, and 2-μm fiber lasers Q-switched by a broadband few-layer MoS2 saturable absorber, J. Lightwave Technol. 32(24), 4079 (2014)
7 M. Wu L. , Dong Y. , Zhao J. , Ma D. , Huang W. , Zhang Y. , Wang Y. , Jiang X. , Xiang Y. , Li J. , Feng Y. , Xu J. , Zhang H. . Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv. Mater., 2019, 31(14): 1807981
https://doi.org/10.1002/adma.201807981
8 T. Jiang X. , V. Kuklin A. , Baev A. , Q. Ge Y. , Ågren H. , Zhang H. , N. Prasad P. . Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep., 2020, 848: 1
https://doi.org/10.1016/j.physrep.2019.12.006
9 Wu L. , Jiang X. , Zhao J. , Liang W. , Li Z. , Huang W. , Lin Z. , Wang Y. , Zhang F. , Lu S. , Xiang Y. , Xu S. , Li J. , Zhang H. . MXene-based nonlinear optical information converter for all-optical modulator and switcher. Laser Photonics Rev., 2018, 12(12): 1800215
https://doi.org/10.1002/lpor.201800215
10 L. Bai Y. , Zhou K. , Srikanth N. , H. L. Pang J. , He X. , Wang R. . Dependence of elastic and optical properties on surface terminated groups in two-dimensional MXene monolayers: A first-principles study. RSC Adv., 2016, 6(42): 35731
https://doi.org/10.1039/C6RA03090D
11 Kyriakou G. , B. Boucher M. , D. Jewell A. , A. Lewis E. , J. Lawton T. , E. Baber A. , L. Tierney H. , Flytzani-Stephanopoulos M. , C. H. Sykes E. . Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science, 2012, 335(6073): 1209
https://doi.org/10.1126/science.1215864
12 Yuan H. , Y. Li Z. . Interfacial properties of black phosphorus/transition metal carbide van der Waals heterostructures. Front. Phys., 2018, 13: 138103
https://doi.org/10.1007/s11467-018-0759-1
13 Zhang F. , Cao R. , Li Z. , Gao S. , Chen H. , Guo J. , Zhang Y. , O. Al-Amoudi B. , Wageh S. , A. Al-Ghamdi A. , Zhang X. , Zhang H. . Dynamics of broadband photoinduced species and enabled photodetection in MXenes. Nanophotonics, 2022, 11(13): 3139
https://doi.org/10.1515/nanoph-2022-0170
14 K. El-Demellawi J. , Lopatin S. , Yin J. , F. Mohammed O. , N. Alshareef H. . Tunable multipolar surface plasmons in 2D Ti3C2TX MXene flakes. ACS Nano, 2018, 12(8): 8485
https://doi.org/10.1021/acsnano.8b04029
15 B. Huang L. , V. Hartland G. , M. Feenstra Luxmi , Lian R. , Tahy C. , Xing K. . Ultrafast transient absorption microscopy studies of carrier dynamics in epitaxial graphene. Nano Lett., 2010, 10(4): 1308
https://doi.org/10.1021/nl904106t
16 Z. Wu W. , Zhou Y. , Wang J. , Shao Y. , Kong D. , Gao Y. , Wang Y. . The pump fluence and wavelength-dependent ultrafast carrier dynamics and optical nonlinear absorption in black phosphorus nanosheets. Nanophotonics, 2020, 9(7): 2033
https://doi.org/10.1515/nanoph-2020-0025
17 Wibmer L. , Lages S. , Unruh T. , M. Guldi D. . Excitons and trions in one-photon- and two-photon-excited MoS2: A study in dispersions. Adv. Mater., 2018, 30(12): 1706702
https://doi.org/10.1002/adma.201706702
18 Zhan C. , J. Chen X. , Yi J. , F. Li J. , Y. Wu D. , Q. Tian Z. . From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat. Rev. Chem., 2018, 2(9): 216
https://doi.org/10.1038/s41570-018-0031-9
19 Furube A. , Du L. , Hara K. , Katoh R. , Tachiya M. . Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc., 2007, 129(48): 14852
https://doi.org/10.1021/ja076134v
20 L. Wang X. , Morea R. , Gonzalo J. , Palpant B. . Coupling localized plasmonic and photonic modes tailors and boosts ultrafast light modulation by gold nanoparticles. Nano Lett., 2015, 15(4): 2633
https://doi.org/10.1021/acs.nanolett.5b00226
21 Yang Y. , Ward J. , N. Chormaic S. . Quasi-droplet microbubbles for high resolution sensing applications. Opt. Express, 2014, 22(6): 6881
https://doi.org/10.1364/OE.22.006881
22 F. Han X. , X. Weng Y. , Wang R. , H. Chen X. , H. Luo K. , A. Wu L. , Zhao J. . Single-photon level ultrafast all-optical switching. Appl. Phys. Lett., 2008, 92(15): 151109
https://doi.org/10.1063/1.2909540
23 Zhang N. , Han C. , J. Xu Y. , J. IV Foley J. , Zhang D. , Codrington J. , K. Gray S. , Sun Y. . Near-field dielectric scattering promotes optical absorption by platinum nanoparticles. Nat. Photonics, 2016, 10(7): 473
https://doi.org/10.1038/nphoton.2016.76
24 Mie G. . Contributions to the optics of turbid media, particularly of colloidal metal solutions. Ann. Phys., 1908, 25(3): 377
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed