Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (4) : 42300    https://doi.org/10.1007/s11467-023-1266-6
RESEARCH ARTICLE
Characteristics investigation of Yb3+:YAG crystals for optical refrigeration
Yongqing Lei1,2, Biao Zhong1(), Xuelu Duan1, Chaoyu Wang1, Jiajin Xu1, Ziheng Zhang1, Jinxin Ding1, Jianping Yin1()
1. State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
2. Shanxi Vocational University of Engineering Science and Technology, Jinzhong 030619, China
 Download: PDF(4812 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Yb3+:YAG crystal is one excellent material for developing high-power radiation-balanced lasers (RBLs). An experimental study of the laser cooling performances of YAG crystals with various doping Yb3+ concentrations, especially for application of RBLs, is reported here. With improved Yb3+ doping concentration in YAG crystal, though the resonance absorption coefficient increases, the corresponding external quantum efficiency has been found to decrease with the average fluorescence wavelength being red shifted, which is detrimental to anti-Stokes fluorescence (ASF) cooling. The decrease of the external quantum efficiency can cause the first zero crossing wavelength to red shift, which is not conducive to RBLs. Based on the comprehensive study of the cooling characteristics of the series of Yb3+-doped YAG crystals, the optimal Yb3+ doping concentration for ASF cooling has been suggested.

Keywords anti-Stokes fluorescence cooling      Yb3+:YAG crystal      radiation-balanced lasers     
Corresponding Author(s): Biao Zhong,Jianping Yin   
Issue Date: 14 March 2023
 Cite this article:   
Yongqing Lei,Biao Zhong,Xuelu Duan, et al. Characteristics investigation of Yb3+:YAG crystals for optical refrigeration[J]. Front. Phys. , 2023, 18(4): 42300.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1266-6
https://academic.hep.com.cn/fop/EN/Y2023/V18/I4/42300
Fig.1  The schematic diagram of the LITMoS test and laser cooling experimental setup. HWP: half-wave plate; OI: optical isolator; PBS: polarizing beam splitter.
Fig.2  (a) The energy diagram of the Yb3+ in YAG crystal. (b) Absorption (blue) and fluorescence (red) spectra for the 5% Yb3+:YAG crystal at 300 K. The blue dotted line indicates the mean fluorescence wavelength λf at 300 K.
Fig.3  The temperature-dependent fluorescence (a) and absorption (b) spectra for the 5% Yb3+:YAG crystal, respectively. (c) The mean fluorescence wavelength λf for 1%, 5% and 10% Yb3+:YAG versus the temperature of the sample. The solid line indicates a linear fitting. (d) The normalized fluorescence spectrum for 1%, 5% and 10% Yb3+:YAG at 300 K.
Sample Parameters
ηext αb Cooling range (λc1λc2)
1% Yb3+:YAG 99.20% 1.6×10−4 cm−1 1020−1055 nm
5% Yb3+:YAG 99.15% 1.0×10−4 cm−1 1022−1082 nm
10% Yb3+:YAG 97.80% 2.0×10−4 cm−1 1038−1080 nm
Tab.1  The results of the LITMoS test.
Fig.4  Experimental results (blue solid circles) and model fitting (red lines) to cooling efficiency for the 1% (a), 5% (b) and 10% (c) Yb3+:YAG crystals at 300 K.
Fig.5  The cooling windows of the 1% (a), 5% (b) and 10% (c) Yb3+:YAG crystals. The blue and red regions correspond to the cooling and heating regimes, respectively, with the dotted lines representing ηc = 0.
Fig.6  (a) Steady-state temperature of the 1%, 5% and 10% Yb3+:YAG crystals versus the power of pumping laser. Dots represent the measurement data and lines represent the model prediction. (b) Time-dependent evolution of the 1%, 5% and 10% Yb3+:YAG crystals.
Fig.7  (a) Concentration dependence of the mean fluorescence wavelength λf (300 K). (b) Concentration dependence of the external quantum efficiency ηext. (c) The background absorption coefficients of each sample. The red line indicates the average value of the background absorption coefficient (2.3 × 10−4 cm−1). (d) Concentration dependence of the minimum cooling temperature of each sample obtained in the experiment with the pump laser of about 35 W and the g-MAT of each sample with the same average background absorption coefficient (2.3 × 10−4 cm−1).
1 Djeu N., Whitney W.. Laser cooling by spontaneous anti-Stokes scattering. Phys. Rev. Lett., 1981, 46(4): 236
https://doi.org/10.1103/PhysRevLett.46.236
2 A. Cornell E., E. Wieman C.. Bose–Einstein condensation in a dilute gas, the first 70 years and some recent experiments. Rev. Mod. Phys., 2002, 74(3): 875
https://doi.org/10.1103/RevModPhys.74.875
3 W. Hänsch T., L. Schawlow A.. Cooling of gases by laser radiation. Opt. Commun., 1975, 13(1): 68
https://doi.org/10.1016/0030-4018(75)90159-5
4 S. Jin D., Ye J.. Polar molecules in the quantum regime. Phys. Today, 2011, 64(5): 27
https://doi.org/10.1063/1.3592002
5 Zander C., H. Drexhage K.. Cooling of a dye solution by anti-Stokes fluorescence. Adv. Photochem., 1995, 20: 59
https://doi.org/10.1002/9780470133514.ch2
6 I. Epstein R., I. Buchwald M., C. Edwards B., R. Gosnell T., E. Mungan C.. Observation of laser-induced fluorescent cooling of a solid. Nature, 1995, 377(6549): 500
https://doi.org/10.1038/377500a0
7 V. Seletskiy D., D. Melgaard S., Bigotta S., Di Lieto A., Tonelli M., Sheik-Bahae M.. Laser cooling of solids to cryogenic temperatures. Nat. Photonics, 2010, 4(3): 161
https://doi.org/10.1038/nphoton.2009.269
8 D. Melgaard S., R. Albrecht A., P. Hehlen M., Sheik-Bahae M.. Solid-state optical refrigeration to sub-100 Kelvin regime. Sci. Rep., 2016, 6(1): 20380
https://doi.org/10.1038/srep20380
9 V. Seletskiy D., Epstein R., Sheik-Bahae M.. Laser cooling in solids: Advances and prospects. Rep. Prog. Phys., 2016, 79(9): 096401
https://doi.org/10.1088/0034-4885/79/9/096401
10 D. Phillips W.. Nobel Lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 1998, 70(3): 721
https://doi.org/10.1103/RevModPhys.70.721
11 Bloch I., Dalibard J., Zwerger W.. Many-body physics with ultracold gases. Rev. Mod. Phys., 2008, 80(3): 885
https://doi.org/10.1103/RevModPhys.80.885
12 D. Ludlow A., M. Boyd M., Ye J., Peik E., O. Schmidt P.. Optical atomic clocks. Rev. Mod. Phys., 2015, 87(2): 637
https://doi.org/10.1103/RevModPhys.87.637
13 Horchani R.. Laser cooling of internal degrees of freedom of molecules. Front. Phys., 2016, 11(4): 113301
https://doi.org/10.1007/s11467-016-0565-6
14 L. Bohn J., M. Rey A., Ye J.. Cold molecules: Progress in quantum engineering of chemistry and quantum matter. Science, 2017, 357(6355): 1002
https://doi.org/10.1126/science.aam6299
15 A. Malinovskaya S.. Laser cooling using adiabatic rapid passage. Front. Phys., 2021, 16(5): 52601
https://doi.org/10.1007/s11467-021-1071-z
16 Liang Q., Chen T., H. Bu W., H. Zhang Y., Yan B.. Laser cooling with adiabatic passage for type-II transitions. Front. Phys., 2021, 16(3): 32501
https://doi.org/10.1007/s11467-020-1019-8
17 Yan K., Gu R., Wu D., Wei J., Xia Y., Yin J.. Simulation of EOM-based frequency-chirped laser slowing of MgF radicals. Front. Phys., 2022, 17(4): 42502
https://doi.org/10.1007/s11467-021-1137-y
18 Bu W., Zhang Y., Liang Q., Chen T., Yan B.. Saturated absorption spectroscopy of buffer-gas-cooled Barium monofluoride molecules. Front. Phys., 2022, 17(6): 62502
https://doi.org/10.1007/s11467-022-1194-x
19 Liu Y., Luo L.. Molecular collisions: From near-cold to ultra-cold. Front. Phys., 2021, 16(4): 42300
https://doi.org/10.1007/s11467-020-1037-6
20 Vicente R., Nogues G., M. Niot J., Wiertz T., Contini P., Gardelein A.. Impacts of laser cooling for low earth orbit observation satellites: An analysis in terms of size, weight and power. Cryogenics, 2020, 105: 103000
https://doi.org/10.1016/j.cryogenics.2019.103000
21 Li J., Chen Z., Liu Y., S. Kollipara P., Feng Y., Zhang Z., Zheng Y.. Opto-refrigerative tweezers. Sci. Adv., 2021, 7(26): eabh1101
https://doi.org/10.1126/sciadv.abh1101
22 P. Hehlen M., Meng J., R. Albrecht A., R. Lee E., Gragossian A., P. Love S., E. Hamilton C., I. Epstein R., Sheik-Bahae M.. First demonstration of an all-solid-state optical cryocooler. Light Sci. Appl., 2018, 7(1): 15
https://doi.org/10.1038/s41377-018-0028-7
23 Knall J., Engholm M., Boilard T., Bernier M., B. Vigneron P., Yu N., D. Dragic P., Ballato J., J. F. Digonnet M.. Radiation-balanced silica fiber laser. Optica, 2021, 8(6): 830
https://doi.org/10.1364/OPTICA.425115
24 Caminati F., Cittadino G., Damiano E., Di Lieto A., Tonelli M.. A design for optical refrigeration: The parallel configuration. Appl. Phys. Lett., 2023, 122(2): 021102
https://doi.org/10.1063/5.0126394
25 Pringsheim P.. Zwei bemerkungen über den unterschied von lumineszenz-und temperaturstrahlung. Eur. Phys. J. A, 1929, 57(11−12): 739
https://doi.org/10.1007/BF01340652
26 Landau L.. On the thermodynamics of photoluminescence. J. Phys. (Moscow), 1946, 10: 503
27 Patterson W., Bigotta S., Sheik-Bahae M., Parisi D., Tonelli M., Epstein R.. Anti-Stokes luminescence cooling of Tm3+ doped BaY2F8. Opt. Express, 2008, 16(3): 1704
https://doi.org/10.1364/OE.16.001704
28 Rostami S., R. Albrecht A., Volpi A., P. Hehlen M., Tonelli M., Sheik-Bahae M.. Tm-doped crystals for mid-IR optical cryocoolers and radiation balanced lasers. Opt. Lett., 2019, 44(6): 1419
https://doi.org/10.1364/OL.44.001419
29 Rostami S., R. Albrecht A., Volpi A., Sheik-Bahae M.. Observation of optical refrigeration in a holmium-doped crystal. Photon. Res., 2019, 7(4): 445
https://doi.org/10.1364/PRJ.7.000445
30 Gragossian A., Ghasemkhani M., Meng J., Albrecht A., Tonelli M., Sheik-Bahae M.. Optical refrigeration inches toward liquid-nitrogen temperatures. SPIE Newsroom, 2017,
https://doi.org/10.1117/2.1201704.006840
31 Bigotta S., Di Lieto A., Toncelli A., Tonelli M., Seletskiy D., Hasselbeck M., Sheik-Bahae M., Epstein R.. Laser cooling of solids: New results with single fluoride crystals. Nuovo Cimento-Societa Italiana Di Fisica Sezione B, 2007, 122: 685
32 Zhong B., Yin J., Jia Y., Chen L., Hang Y., Yin J.. Laser cooling of Yb3+-doped LuLiF4 crystal. Opt. Lett., 2014, 39(9): 2747
https://doi.org/10.1364/OL.39.002747
33 Zhong B., Lei Y., Luo H., Shi Y., Yang T., Yin J.. Laser cooling of the Yb3+-doped LuLiF4 single crystal for optical refrigeration. J. Lumin., 2020, 226: 117472
https://doi.org/10.1016/j.jlumin.2020.117472
34 Lei Y., Zhong B., Yang T., Duan X., Xia M., Wang C., Xu J., Zhang Z., Ding J., Yin J.. Laser cooling of Yb3+:LuLiF4 crystal below cryogenic temperature to 121 K. Appl. Phys. Lett., 2022, 120(23): 231101
https://doi.org/10.1063/5.0094705
35 Zhang J., Li D., Chen R., Xiong Q.. Laser cooling of a semiconductor by 40 Kelvin. Nature, 2013, 493(7433): 504
https://doi.org/10.1038/nature11721
36 B. Khurgin J.. Multi-phonon-assisted absorption and emission in semiconductors and its potential for laser refrigeration. Appl. Phys. Lett., 2014, 104(22): 221115
https://doi.org/10.1063/1.4880799
37 T. Ha S., Shen C., Zhang J., Xiong Q.. Laser cooling of organic–inorganic lead halide perovskites. Nat. Photonics, 2016, 10(2): 115
https://doi.org/10.1038/nphoton.2015.243
38 Xia X., Pant A., S. Ganas A., Jelezko F., J. Pauzauskie P.. Quantum point defects for solid‐state laser refrigeration. Adv. Mater., 2021, 33(23): 1905406
https://doi.org/10.1002/adma.201905406
39 Zhang J., Zhang Q., Wang X., C. Kwek L., Xiong Q.. Resolved-sideband Raman cooling of an optical phonon in semiconductor materials. Nat. Photonics, 2016, 10(9): 600
https://doi.org/10.1038/nphoton.2016.122
40 Li D., Zhang J., Xiong Q.. Laser cooling of CdS nanobelts: Thickness matters. Opt. Express, 2013, 21(16): 19302
https://doi.org/10.1364/OE.21.019302
41 R. Bowman S.. Lasers without internal heat generation. IEEE J. Quantum Electron., 1999, 35(1): 115
https://doi.org/10.1109/3.737628
42 R. Bowman S., P. O’Connor S., Biswal S., J. Condon N., Rosenberg A.. Minimizing heat generation in solid-state lasers. IEEE J. Quantum Electron., 2010, 46(7): 1076
https://doi.org/10.1109/JQE.2010.2043415
43 Nemova G., Kashyap R.. Thin-disk athermal laser system. Opt. Commun., 2014, 319: 100
https://doi.org/10.1016/j.optcom.2014.01.003
44 Mobini E., Peysokhan M., Abaie B., Mafi A.. Thermal modeling, heat mitigation, and radiative cooling for double-clad fiber amplifiers. J. Opt. Soc. Am. B, 2018, 35(10): 2484
https://doi.org/10.1364/JOSAB.35.002484
45 M. Knall J., Engholm M., Boilard T., Bernier M., Digonnet M.. Radiation-balanced silica fiber amplifier. Phys. Rev. Lett., 2021, 127(1): 013903
https://doi.org/10.1103/PhysRevLett.127.013903
46 M. Knall J., J. Digonnet M.. Design of high-power radiation-balanced silica fiber lasers with a doped core and cladding. J. Lightwave Technol., 2021, 39(8): 2497
https://doi.org/10.1109/JLT.2021.3053466
47 Sheik-Bahae M., Yang Z.. Optimum operation of radiation-balanced lasers. IEEE J. Quantum Electron., 2020, 56(1): 1
https://doi.org/10.1109/JQE.2019.2949647
48 Nemova G., Kashyap R.. Athermal continuous-wave fiber amplifier. Opt. Commun., 2009, 282(13): 2571
https://doi.org/10.1016/j.optcom.2009.03.038
49 Mobini E., Rostami S., Peysokhan M., Albrecht A., Mafi A.. Laser cooling of ytterbium-doped silica glass. Commun. Phys.-UK, 2020, 3: 1
50 Mobini E., Peysokhan M., Abaie B., P. Hehlen M., Mafi A.. Spectroscopic investigation of Yb-doped silica glass for solid-state optical refrigeration. Phys. Rev. Appl., 2019, 11(1): 014066
https://doi.org/10.1103/PhysRevApplied.11.014066
51 Peysokhan M., Mobini E., Abaie B., Mafi A.. Method for measuring the resonant absorption coefficient of rare-earth-doped optical fibers. Appl. Opt., 2019, 58(7): 1841
https://doi.org/10.1364/AO.58.001841
52 Xia X., Pant A., J. Davis E., J. Pauzauskie P.. Design of a radiation-balanced fiber laser via optically active composite cladding materials. J. Opt. Soc. Am. B, 2019, 36(12): 3307
https://doi.org/10.1364/JOSAB.36.003307
53 Yang Z., Meng J., R. Albrecht A., Sheik-Bahae M.. Radiation-balanced Yb:YAG disk laser. Opt. Express, 2019, 27(2): 1392
https://doi.org/10.1364/OE.27.001392
54 B. Khurgin J.. Radiation-balanced tandem semiconductor/Yb3+: YLF lasers: Feasibility study. J. Opt. Soc. Am. B, 2020, 37(6): 1886
https://doi.org/10.1364/JOSAB.394738
55 Knall J., Engholm M., Ballato J., D. Dragic P., Yu N., J. Digonnet M.. Experimental comparison of silica fibers for laser cooling. Opt. Lett., 2020, 45(14): 4020
https://doi.org/10.1364/OL.395513
56 Peysokhan M., Mobini E., Allahverdi A., Abaie B., Mafi A.. Characterization of Yb-doped ZBLAN fiber as a platform for radiation-balanced lasers. Photon. Res., 2020, 8(2): 202
https://doi.org/10.1364/PRJ.380615
57 Peysokhan M., Rostami S., Mobini E., R. Albrecht A., Kuhn S., Hein S., Hupel C., Nold J., Haarlammert N., Schreiber T., Eberhardt R., Flores A., Tünnermann A., Sheik-Bahae M., Mafi A.. Implementation of laser-induced anti-stokes fluorescence power cooling of ytterbium-doped silica glass. ACS Omega, 2021, 6(12): 8376
https://doi.org/10.1021/acsomega.1c00116
58 I. Epstein R., Brown J., C. Edwards B., Gibbs A.. Measurements of optical refrigeration in ytterbium-doped crystals. J. Appl. Phys., 2001, 90(9): 4815
https://doi.org/10.1063/1.1406544
59 S. L. Filho E., Nemova G., Loranger S., Kashyap R.. Laser-induced cooling of a Yb:YAG crystal in air at atmospheric pressure. Opt. Express, 2013, 21(21): 24711
https://doi.org/10.1364/OE.21.024711
60 Zhong B., Lei Y., Duan X., Yang T., Yin J.. Optical refrigeration of the Yb3+-doped YAG crystal close to the thermoelectric cooling limit. Appl. Phys. Lett., 2021, 118(13): 131104
https://doi.org/10.1063/5.0047086
61 Sheik-Bahae M., I. Epstein R.. Optical refrigeration. Nat. Photonics, 2007, 1(12): 693
https://doi.org/10.1038/nphoton.2007.244
62 C. Brown D., A. Vitali V.. Yb:YAG kinetics model including saturation and power conservation. IEEE J. Quantum Electron., 2011, 47(1): 3
https://doi.org/10.1109/JQE.2010.2063417
63 D. Melgaard S., Cryogenic optical refrigeration: Laser cooling of solids below 123 K, Ph.D Thesis, The University of New Mexico, 2013
64 Duan X., Zhong B., Lei Y., Wang C., Xu J., Zhang Z., Ding J., Yin J.. Accurate characterization of the properties of the rare-earth-doped crystal for laser cooling. Appl. Sci. (Basel), 2022, 12(9): 4447
https://doi.org/10.3390/app12094447
65 W. Bruesselbach H., S. Sumida D., A. Reeder R., W. Byren R.. Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers. IEEE J. Sel. Top. Quantum Electron., 1997, 3(1): 105
https://doi.org/10.1109/2944.585822
66 McCumber D.. Einstein relations connecting broadband emission and absorption spectra. Phys. Rev., 1964, 136(4A): A954
https://doi.org/10.1103/PhysRev.136.A954
67 Volpi A., Laser cooling of fluoide crystals, Ph. D Thesis, Università di Pisa, 2015
68 Nemova G., Kashyap R.. Optimization of optical refrigaration in Yb3+:YAG samples. J. Lumin., 2015, 164: 99
https://doi.org/10.1016/j.jlumin.2015.03.024
69 D. Patel F., C. Honea E., Speth J., A. Payne S., Hutcheson R., Equall R.. Laser demonstration of Yb3Al5O12/(YbAG) and materials properties of highly doped Yb:YAG. IEEE J. Quantum Electron., 2001, 37(1): 135
https://doi.org/10.1109/3.892735
70 Auzel F., Bonfigli F., Gagliari S., Baldacchini G.. The interplay of self-trapping and self-quenching for resonant transitions in solids, role of a cavity. J. Lumin., 2001, 94–95, 293
https://doi.org/10.1016/S0022-2313(01)00308-8
71 Goutaudier C., Lebbou K., Guyot Y., Ito M., Canibano H., El Hassouni A., Laversenne L., T. Cohen-Adad M., Boulon G.. Advances in fibre crystals: Growth and optimization of spectroscopic properties for Yb3+ doped laser crystals. Ann. Chim., 2003, 28(6): 73
https://doi.org/10.1016/j.anncsm.2003.10.002
72 Nakayama Y., Harada Y., Kita T.. An energy transfer accompanied by phonon absorption in ytterbium-doped yttrium aluminum perovskite for optical refrigeration. Appl. Phys. Lett., 2020, 117(4): 041104
https://doi.org/10.1063/5.0013213
73 V. Seletskiy D., P. Hehlen M., I. Epstein R., Sheik-Bahae M.. Cryogenic optical refrigeration. Adv. Opt. Photonics, 2012, 4(1): 78
https://doi.org/10.1364/AOP.4.000078
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed