Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (4) : 45301    https://doi.org/10.1007/s11467-023-1273-7
RESEARCH ARTICLE
Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves?
Vitaly L. Galinsky1(), Lawrence R. Frank1,2()
1. Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA 92037-0854, USA
2. Center for Functional MRI, University of California at San Diego, La Jolla, CA 92037-0677, USA
 Download: PDF(5338 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Analytical expressions for scaling of brain wave spectra derived from the general nonlinear wave Hamiltonian form show excellent agreement with experimental “neuronal avalanche” data. The theory of the weakly evanescent nonlinear brain wave dynamics [Phys. Rev. Research 2, 023061 (2020); J. Cognitive Neurosci. 32, 2178 (2020)] reveals the underlying collective processes hidden behind the phenomenological statistical description of the neuronal avalanches and connects together the whole range of brain activity states, from oscillatory wave-like modes, to neuronal avalanches, to incoherent spiking, showing that the neuronal avalanches are just the manifestation of the different nonlinear side of wave processes abundant in cortical tissue. In a more broad way these results show that a system of wave modes interacting through all possible combinations of the third order nonlinear terms described by a general wave Hamiltonian necessarily produces anharmonic wave modes with temporal and spatial scaling properties that follow scale free power laws. To the best of our knowledge this has never been reported in the physical literature and may be applicable to many physical systems that involve wave processes and not just to neuronal avalanches.

Keywords nonlinear waves      critical exponent      Hamiltonian system      neuronal avalanches      critical dynamics     
Corresponding Author(s): Vitaly L. Galinsky,Lawrence R. Frank   
Issue Date: 17 March 2023
 Cite this article:   
Vitaly L. Galinsky,Lawrence R. Frank. Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves?[J]. Front. Phys. , 2023, 18(4): 45301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1273-7
https://academic.hep.com.cn/fop/EN/Y2023/V18/I4/45301
Fig.1  (a) Comparison of the analytical expression (32) for the effective spiking frequency ωs=2π/Ts (red) and the frequency estimated from numerical solution of (21) and (22) (blue) as a function of the criticality parameter γ/γc. In the numerical solution only γ was varied and the remaining parameters were the same as parameters reported in Ref. [36]. (b) Spiking solutions for typical parameters producing temporal ((21) and (22), red) and spatial ((41) and (42), blue) spiking profiles where some signal of width δts or δls was detected and surrounded by quiet area with the total effective period Ts or Ls.
Fig.2  (a) The avalanche durations distribution for all wave modes compared with the ?2 exponent. (b) WETCOW modes randomly distributed and propagated on a 1000 by 1000 grid. Two examples of temporal signal snapshots with different values of signal threshold are shown (color pallet encodes the change of frequencies from the smallest (blue) to the largest (red). Localized regions of wave activity in the spatial domain are clearly evident.
Fig.3  (a) Analytical probability density spectra as a function of brain waves criticality parameter S/Sc show excellent agreement with the experimental avalanche data [(b), from Refs. [12, 13]] reproducing not only the overall shape of the spectra with the ?3/2 power exponent at the initial scale free part of the spectra and the steep falling edge in the vicinity of the critical point, but also reproduce the fine details such as the small bump-like flattening of the spectra at the transition from ?3/2 leg to the steep falling edge that is clearly evident in experimental spectra.
Fig.4  Analytical probability density spectra multiplied by an (S/Sc)3/2 as a function of brain waves criticality parameter S/Sc plotted for several values of the phase shift Φ.
Fig.5  Examples of complete wave mode trajectory snapshots for two randomly selected parameters and initial conditions. The trajectories was randomly selected from an ensemble of 106 WETCOW modes used for generation of probability distributions of Fig.6. The brain substrate includes separate regions for gray and white matter, such that the cortical region (gray matter) is semi-transparent and sub-cortical area is not transparent, instead, it is completely opaque. The trajectories are only visible if they are confined in the cortical tissue and would be obscured by white-gray matter surface. Therefore the figure clearly show that the wave trajectories mostly propagate through the cortical tissue.
Fig.6  Plots of spatial (a) and temporal (b) probability density spectra obtained by binning oscillatory signal of ensemble of 106 WETCOW modes randomly distributed and propagated through cortical tissue. Two examples of temporal signal (dots or “spikes”) snapshots with different values of signal threshold are shown in (c) and (d) (color pallet encodes the change of frequencies from the smallest (blue) to the largest (red).
1 L. Galinsky V. , R. Frank L. . Universal theory of brain waves: From linear loops to nonlinear synchronized spiking and collective brain rhythms. Phys. Rev. Research, 2020, 2: 023061
https://doi.org/10.1103/PhysRevResearch.2.023061
2 L. Galinsky V. , R. Frank L. . Brain waves: Emergence of localized, persistent, weakly evanescent cortical loops. J. Cogn. Neurosci., 2020, 32(11): 2178
https://doi.org/10.1162/jocn_a_01611
3 Buzsaki G., Rhythms of the Brain, Oxford University Press, 2006
4 L. Hodgkin A. , F. Huxley A. . A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 1952, 117(4): 500
https://doi.org/10.1113/jphysiol.1952.sp004764
5 FitzHugh R. . Impulses and physiological states in theoretical models of nerve membrane. Biophys. J., 1961, 1(6): 445
https://doi.org/10.1016/S0006-3495(61)86902-6
6 Nagumo J. , Arimoto S. , Yoshizawa S. . An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 1962, 50(10): 2061
https://doi.org/10.1109/JRPROC.1962.288235
7 Morris C. , Lecar H. . Voltage oscillations in the barnacle giant muscle fiber. Biophys. J., 1981, 35(1): 193
https://doi.org/10.1016/S0006-3495(81)84782-0
8 M. Izhikevich E. . Simple model of spiking neurons. IEEE Trans. Neural Netw., 2003, 14(6): 1569
https://doi.org/10.1109/TNN.2003.820440
9 Gerstner W.M. Kistler W.Naud R.Paninski L., Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition, Cambridge University Press, New York, NY, USA, 2014
10 Kulkarni A. , Ranft J. , Hakim V. . Synchronization, stochasticity, and phase waves in neuronal networks with spatially-structured connectivity. Front. Comput. Neurosci., 2020, 14: 569644
https://doi.org/10.3389/fncom.2020.569644
11 Kim R. , J. Sejnowski T. . Strong inhibitory signaling underlies stable temporal dynamics and working memory in spiking neural networks. Nat. Neurosci., 2021, 24(1): 129
https://doi.org/10.1038/s41593-020-00753-w
12 M. Beggs J. , Plenz D. . Neuronal avalanches in neocortical circuits. J. Neurosci., 2003, 23(35): 11167
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
13 M. Beggs J. , Plenz D. . Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci., 2004, 24(22): 5216
https://doi.org/10.1523/JNEUROSCI.0540-04.2004
14 Plenz D. , L. Ribeiro T. , R. Miller S. , A. Kells P. , Vakili A. , L. Capek E. . Self-organized criticality in the brain. Front. Phys. (Lausanne), 2021, 9: 639389
https://doi.org/10.3389/fphy.2021.639389
15 Friedman N. , Ito S. , A. Brinkman B. , Shimono M. , E. DeVille R. , A. Dahmen K. , M. Beggs J. , C. Butler T. . Universal critical dynamics in high resolution neuronal avalanche data. Phys. Rev. Lett., 2012, 108(20): 208102
https://doi.org/10.1103/PhysRevLett.108.208102
16 R. Chialvo D. . Emergent complex neural dynamics. Nat. Phys., 2010, 6(10): 744
https://doi.org/10.1038/nphys1803
17 M. Beggs J. , Timme N. . Being critical of criticality in the brain. Front. Physiol., 2012, 3: 163
https://doi.org/10.3389/fphys.2012.00163
18 Priesemann V. , Wibral M. , Valderrama M. , Pröpper R. , Le Van Quyen M. , Geisel T. , Triesch J. , Nikolić D. , H. Munk M. . Spike avalanches in vivo suggest a driven, slightly subcritical brain state. Front. Syst. Neurosci., 2014, 8: 108
https://doi.org/10.3389/fnsys.2014.00108
19 Cramer B. , Stöckel D. , Kreft M. , Wibral M. , Schemmel J. , Meier K. , Priesemann V. . Control of criticality and computation in spiking neuromorphic networks with plasticity. Nat. Commun., 2020, 11(1): 2853
https://doi.org/10.1038/s41467-020-16548-3
20 J. Fontenele A. , A. P. de Vasconcelos N. , Feliciano T. , A. A. Aguiar L. , Soares-Cunha C. , Coimbra B. , Dalla Porta L. , Ribeiro S. , J. Rodrigues A. , Sousa N. , V. Carelli P. , Copelli M. . Criticality between cortical states. Phys. Rev. Lett., 2019, 122(20): 208101
https://doi.org/10.1103/PhysRevLett.122.208101
21 J. Fosque L. , V. Williams-García R. , M. Beggs J. , Ortiz G. . Evidence for quasicritical brain dynamics. Phys. Rev. Lett., 2021, 126(9): 098101
https://doi.org/10.1103/PhysRevLett.126.098101
22 Bak P. , Tang C. , Wiesenfeld K. . Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett., 1987, 59(4): 381
https://doi.org/10.1103/PhysRevLett.59.381
23 Bak P. , Tang C. , Wiesenfeld K. . Self-organized criticality. Phys. Rev. A, 1988, 38(1): 364
https://doi.org/10.1103/PhysRevA.38.364
24 Zapperi S. , B. Lauritsen K. , E. Stanley H. . Self-organized branching processes: Mean-field theory for avalanches. Phys. Rev. Lett., 1995, 75(22): 4071
https://doi.org/10.1103/PhysRevLett.75.4071
25 Bækgaard Lauritsen K. , Zapperi S. , E. Stanley H. . Self-organized branching processes: Avalanche models with dissipation. Phys. Rev. E, 1996, 54(3): 2483
https://doi.org/10.1103/PhysRevE.54.2483
26 W. Eurich C. , M. Herrmann J. , A. Ernst U. . Finite-size effects of avalanche dynamics. Phys. Rev. E, 2002, 66(6): 066137
https://doi.org/10.1103/PhysRevE.66.066137
27 Bédard C. , Kröger H. , Destexhe A. . Does the 1/f frequency scaling of brain signals reflect self-organized critical states. Phys. Rev. Lett., 2006, 97(11): 118102
https://doi.org/10.1103/PhysRevLett.97.118102
28 Touboul J. , Destexhe A. . Can power-law scaling and neuronal avalanches arise from stochastic dynamics. PLoS One, 2010, 5(2): e8982
https://doi.org/10.1371/journal.pone.0008982
29 Touboul J. , Destexhe A. . Power-law statistics and universal scaling in the absence of criticality. Phys. Rev. E, 2017, 95(1): 012413
https://doi.org/10.1103/PhysRevE.95.012413
30 A. Robinson P. , J. Rennie C. , J. Wright J. . Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E, 1997, 56(1): 826
https://doi.org/10.1103/PhysRevE.56.826
31 P. Yang D. , A. Robinson P. . Critical dynamics of Hopf bifurcations in the corticothalamic system: Transitions from normal arousal states to epileptic seizures. Phys. Rev. E, 2017, 95(4): 042410
https://doi.org/10.1103/PhysRevE.95.042410
32 A. Robinson P. , J. Rennie C. , L. Rowe D. . Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys. Rev. E, 2002, 65(4): 041924
https://doi.org/10.1103/PhysRevE.65.041924
33 di Santo S.Villegas P.Burioni R.A. Muñoz M., Landau–Ginzburg theory of cortex dynamics: Scale-free avalanches emerge at the edge of synchronization, Proc. Natl. Acad. Sci. USA 115(7), E1356 (2018), Available at:
34 D. Gireesh E. , Plenz D. . Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3. Proc. Natl. Acad. Sci. USA, 2008, 105(21): 7576
https://doi.org/10.1073/pnas.0800537105
35 Buendía V. , Villegas P. , Burioni R. , A. Muñoz M. . Hybrid-type synchronization transitions: Where incipient oscillations, scale-free avalanches, and bistability live together. Phys. Rev. Research, 2021, 3(2): 023224
https://doi.org/10.1103/PhysRevResearch.3.023224
36 L. Galinsky V. , R. Frank L. . Collective synchronous spiking in a brain network of coupled nonlinear oscillators. Phys. Rev. Lett., 2021, 126(15): 158102
https://doi.org/10.1103/PhysRevLett.126.158102
37 Ott E. , M. Antonsen T. . Long time evolution of phase oscillator systems. Chaos, 2009, 19(2): 023117
https://doi.org/10.1063/1.3136851
38 V. Tyulkina I. , S. Goldobin D. , S. Klimenko L. , Pikovsky A. . Dynamics of noisy oscillator populations beyond the Ott−Antonsen ansatz. Phys. Rev. Lett., 2018, 120(26): 264101
https://doi.org/10.1103/PhysRevLett.120.264101
39 L. Galinsky V.R. Frank L., Critically synchronized brain waves form an effective, robust and flexible basis for human memory and learning, doi: (2022)
40 Frank L.Galinsky V.Townsend J.A. Mueller R.Keehn B., Imaging of brain electric field networks, doi: (2023)
41 Kuramoto Y., Chemical Oscillations, Waves, and Turbulence, Dover Books on Chemistry Series, Dover Publications, Incorporated, 2013
42 Daido H. . Generic scaling at the onset of macroscopic mutual entrainment in limit-cycle oscillators with uniform all-to-all coupling. Phys. Rev. Lett., 1994, 73(5): 760
https://doi.org/10.1103/PhysRevLett.73.760
43 D. Crawford J. . Scaling and singularities in the entrainment of globally coupled oscillators. Phys. Rev. Lett., 1995, 74(21): 4341
https://doi.org/10.1103/PhysRevLett.74.4341
[1] Xiao-Jun Tan, You-Jin Deng, Jesper Lykke Jacobsen. N-cluster correlations in four- and five-dimensional percolation[J]. Front. Phys. , 2020, 15(4): 41501-.
[2] XIE Bai-song, DU Shu-cheng. Solitons in relativistic laser-plasma interactions[J]. Front. Phys. , 2007, 2(2): 178-185.
[3] GUO Wen-an, Henk W.J. Ble, Bernard Nienhuis. O (n ) tricriticality in two dimensions[J]. Front. Phys. , 2007, 2(1): 103-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed