|
|
Neuronal avalanches: Sandpiles of self-organized criticality or critical dynamics of brain waves? |
Vitaly L. Galinsky1( ), Lawrence R. Frank1,2( ) |
1. Center for Scientific Computation in Imaging, University of California at San Diego, La Jolla, CA 92037-0854, USA 2. Center for Functional MRI, University of California at San Diego, La Jolla, CA 92037-0677, USA |
|
|
Abstract Analytical expressions for scaling of brain wave spectra derived from the general nonlinear wave Hamiltonian form show excellent agreement with experimental “neuronal avalanche” data. The theory of the weakly evanescent nonlinear brain wave dynamics [Phys. Rev. Research 2, 023061 (2020); J. Cognitive Neurosci. 32, 2178 (2020)] reveals the underlying collective processes hidden behind the phenomenological statistical description of the neuronal avalanches and connects together the whole range of brain activity states, from oscillatory wave-like modes, to neuronal avalanches, to incoherent spiking, showing that the neuronal avalanches are just the manifestation of the different nonlinear side of wave processes abundant in cortical tissue. In a more broad way these results show that a system of wave modes interacting through all possible combinations of the third order nonlinear terms described by a general wave Hamiltonian necessarily produces anharmonic wave modes with temporal and spatial scaling properties that follow scale free power laws. To the best of our knowledge this has never been reported in the physical literature and may be applicable to many physical systems that involve wave processes and not just to neuronal avalanches.
|
Keywords
nonlinear waves
critical exponent
Hamiltonian system
neuronal avalanches
critical dynamics
|
Corresponding Author(s):
Vitaly L. Galinsky,Lawrence R. Frank
|
Issue Date: 17 March 2023
|
|
1 |
L. Galinsky V. , R. Frank L. . Universal theory of brain waves: From linear loops to nonlinear synchronized spiking and collective brain rhythms. Phys. Rev. Research, 2020, 2: 023061
https://doi.org/10.1103/PhysRevResearch.2.023061
|
2 |
L. Galinsky V. , R. Frank L. . Brain waves: Emergence of localized, persistent, weakly evanescent cortical loops. J. Cogn. Neurosci., 2020, 32(11): 2178
https://doi.org/10.1162/jocn_a_01611
|
3 |
Buzsaki G., Rhythms of the Brain, Oxford University Press, 2006
|
4 |
L. Hodgkin A. , F. Huxley A. . A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 1952, 117(4): 500
https://doi.org/10.1113/jphysiol.1952.sp004764
|
5 |
FitzHugh R. . Impulses and physiological states in theoretical models of nerve membrane. Biophys. J., 1961, 1(6): 445
https://doi.org/10.1016/S0006-3495(61)86902-6
|
6 |
Nagumo J. , Arimoto S. , Yoshizawa S. . An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 1962, 50(10): 2061
https://doi.org/10.1109/JRPROC.1962.288235
|
7 |
Morris C. , Lecar H. . Voltage oscillations in the barnacle giant muscle fiber. Biophys. J., 1981, 35(1): 193
https://doi.org/10.1016/S0006-3495(81)84782-0
|
8 |
M. Izhikevich E. . Simple model of spiking neurons. IEEE Trans. Neural Netw., 2003, 14(6): 1569
https://doi.org/10.1109/TNN.2003.820440
|
9 |
Gerstner W.M. Kistler W.Naud R.Paninski L., Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition, Cambridge University Press, New York, NY, USA, 2014
|
10 |
Kulkarni A. , Ranft J. , Hakim V. . Synchronization, stochasticity, and phase waves in neuronal networks with spatially-structured connectivity. Front. Comput. Neurosci., 2020, 14: 569644
https://doi.org/10.3389/fncom.2020.569644
|
11 |
Kim R. , J. Sejnowski T. . Strong inhibitory signaling underlies stable temporal dynamics and working memory in spiking neural networks. Nat. Neurosci., 2021, 24(1): 129
https://doi.org/10.1038/s41593-020-00753-w
|
12 |
M. Beggs J. , Plenz D. . Neuronal avalanches in neocortical circuits. J. Neurosci., 2003, 23(35): 11167
https://doi.org/10.1523/JNEUROSCI.23-35-11167.2003
|
13 |
M. Beggs J. , Plenz D. . Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci., 2004, 24(22): 5216
https://doi.org/10.1523/JNEUROSCI.0540-04.2004
|
14 |
Plenz D. , L. Ribeiro T. , R. Miller S. , A. Kells P. , Vakili A. , L. Capek E. . Self-organized criticality in the brain. Front. Phys. (Lausanne), 2021, 9: 639389
https://doi.org/10.3389/fphy.2021.639389
|
15 |
Friedman N. , Ito S. , A. Brinkman B. , Shimono M. , E. DeVille R. , A. Dahmen K. , M. Beggs J. , C. Butler T. . Universal critical dynamics in high resolution neuronal avalanche data. Phys. Rev. Lett., 2012, 108(20): 208102
https://doi.org/10.1103/PhysRevLett.108.208102
|
16 |
R. Chialvo D. . Emergent complex neural dynamics. Nat. Phys., 2010, 6(10): 744
https://doi.org/10.1038/nphys1803
|
17 |
M. Beggs J. , Timme N. . Being critical of criticality in the brain. Front. Physiol., 2012, 3: 163
https://doi.org/10.3389/fphys.2012.00163
|
18 |
Priesemann V. , Wibral M. , Valderrama M. , Pröpper R. , Le Van Quyen M. , Geisel T. , Triesch J. , Nikolić D. , H. Munk M. . Spike avalanches in vivo suggest a driven, slightly subcritical brain state. Front. Syst. Neurosci., 2014, 8: 108
https://doi.org/10.3389/fnsys.2014.00108
|
19 |
Cramer B. , Stöckel D. , Kreft M. , Wibral M. , Schemmel J. , Meier K. , Priesemann V. . Control of criticality and computation in spiking neuromorphic networks with plasticity. Nat. Commun., 2020, 11(1): 2853
https://doi.org/10.1038/s41467-020-16548-3
|
20 |
J. Fontenele A. , A. P. de Vasconcelos N. , Feliciano T. , A. A. Aguiar L. , Soares-Cunha C. , Coimbra B. , Dalla Porta L. , Ribeiro S. , J. Rodrigues A. , Sousa N. , V. Carelli P. , Copelli M. . Criticality between cortical states. Phys. Rev. Lett., 2019, 122(20): 208101
https://doi.org/10.1103/PhysRevLett.122.208101
|
21 |
J. Fosque L. , V. Williams-García R. , M. Beggs J. , Ortiz G. . Evidence for quasicritical brain dynamics. Phys. Rev. Lett., 2021, 126(9): 098101
https://doi.org/10.1103/PhysRevLett.126.098101
|
22 |
Bak P. , Tang C. , Wiesenfeld K. . Self-organized criticality: An explanation of the 1/f noise. Phys. Rev. Lett., 1987, 59(4): 381
https://doi.org/10.1103/PhysRevLett.59.381
|
23 |
Bak P. , Tang C. , Wiesenfeld K. . Self-organized criticality. Phys. Rev. A, 1988, 38(1): 364
https://doi.org/10.1103/PhysRevA.38.364
|
24 |
Zapperi S. , B. Lauritsen K. , E. Stanley H. . Self-organized branching processes: Mean-field theory for avalanches. Phys. Rev. Lett., 1995, 75(22): 4071
https://doi.org/10.1103/PhysRevLett.75.4071
|
25 |
Bækgaard Lauritsen K. , Zapperi S. , E. Stanley H. . Self-organized branching processes: Avalanche models with dissipation. Phys. Rev. E, 1996, 54(3): 2483
https://doi.org/10.1103/PhysRevE.54.2483
|
26 |
W. Eurich C. , M. Herrmann J. , A. Ernst U. . Finite-size effects of avalanche dynamics. Phys. Rev. E, 2002, 66(6): 066137
https://doi.org/10.1103/PhysRevE.66.066137
|
27 |
Bédard C. , Kröger H. , Destexhe A. . Does the 1/f frequency scaling of brain signals reflect self-organized critical states. Phys. Rev. Lett., 2006, 97(11): 118102
https://doi.org/10.1103/PhysRevLett.97.118102
|
28 |
Touboul J. , Destexhe A. . Can power-law scaling and neuronal avalanches arise from stochastic dynamics. PLoS One, 2010, 5(2): e8982
https://doi.org/10.1371/journal.pone.0008982
|
29 |
Touboul J. , Destexhe A. . Power-law statistics and universal scaling in the absence of criticality. Phys. Rev. E, 2017, 95(1): 012413
https://doi.org/10.1103/PhysRevE.95.012413
|
30 |
A. Robinson P. , J. Rennie C. , J. Wright J. . Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E, 1997, 56(1): 826
https://doi.org/10.1103/PhysRevE.56.826
|
31 |
P. Yang D. , A. Robinson P. . Critical dynamics of Hopf bifurcations in the corticothalamic system: Transitions from normal arousal states to epileptic seizures. Phys. Rev. E, 2017, 95(4): 042410
https://doi.org/10.1103/PhysRevE.95.042410
|
32 |
A. Robinson P. , J. Rennie C. , L. Rowe D. . Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys. Rev. E, 2002, 65(4): 041924
https://doi.org/10.1103/PhysRevE.65.041924
|
33 |
di Santo S.Villegas P.Burioni R.A. Muñoz M., Landau–Ginzburg theory of cortex dynamics: Scale-free avalanches emerge at the edge of synchronization, Proc. Natl. Acad. Sci. USA 115(7), E1356 (2018), Available at:
|
34 |
D. Gireesh E. , Plenz D. . Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3. Proc. Natl. Acad. Sci. USA, 2008, 105(21): 7576
https://doi.org/10.1073/pnas.0800537105
|
35 |
Buendía V. , Villegas P. , Burioni R. , A. Muñoz M. . Hybrid-type synchronization transitions: Where incipient oscillations, scale-free avalanches, and bistability live together. Phys. Rev. Research, 2021, 3(2): 023224
https://doi.org/10.1103/PhysRevResearch.3.023224
|
36 |
L. Galinsky V. , R. Frank L. . Collective synchronous spiking in a brain network of coupled nonlinear oscillators. Phys. Rev. Lett., 2021, 126(15): 158102
https://doi.org/10.1103/PhysRevLett.126.158102
|
37 |
Ott E. , M. Antonsen T. . Long time evolution of phase oscillator systems. Chaos, 2009, 19(2): 023117
https://doi.org/10.1063/1.3136851
|
38 |
V. Tyulkina I. , S. Goldobin D. , S. Klimenko L. , Pikovsky A. . Dynamics of noisy oscillator populations beyond the Ott−Antonsen ansatz. Phys. Rev. Lett., 2018, 120(26): 264101
https://doi.org/10.1103/PhysRevLett.120.264101
|
39 |
L. Galinsky V.R. Frank L., Critically synchronized brain waves form an effective, robust and flexible basis for human memory and learning, doi: (2022)
|
40 |
Frank L.Galinsky V.Townsend J.A. Mueller R.Keehn B., Imaging of brain electric field networks, doi: (2023)
|
41 |
Kuramoto Y., Chemical Oscillations, Waves, and Turbulence, Dover Books on Chemistry Series, Dover Publications, Incorporated, 2013
|
42 |
Daido H. . Generic scaling at the onset of macroscopic mutual entrainment in limit-cycle oscillators with uniform all-to-all coupling. Phys. Rev. Lett., 1994, 73(5): 760
https://doi.org/10.1103/PhysRevLett.73.760
|
43 |
D. Crawford J. . Scaling and singularities in the entrainment of globally coupled oscillators. Phys. Rev. Lett., 1995, 74(21): 4341
https://doi.org/10.1103/PhysRevLett.74.4341
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|