|
|
On the question of quark confinement in the Abelian U(1) QED gauge interaction |
Cheuk-Yin Wong( ) |
Physics Division, Oak Ridge National Laboratory*, Oak Ridge, TN 37831, USA |
|
|
Abstract If we approximate light quarks as massless and apply the Schwinger confinement mechanism to light quarks, we will reach the conclusion that a light quark and its antiquark will be confined as a boson in the Abelian U(1) QED gauge interaction in (1+1)D, as in an open string. From the work of Coleman, Jackiw, and Susskind, we can infer further that the Schwinger confinement mechanism persists even for massive quarks in (1+1)D. Could such a QED-confined one-dimensional open string in (1+1)D be the idealization of a flux tube in the physical world in (3+1)D, similar to the case of QCD-confined open string? If so, the QED-confined bosons may show up as neutral QED mesons in the mass region of many tens of MeV [Phys. Rev. C 81, 064903 (2010) & J. High Energy Phys. 2020(8), 165 (2020)]. Is it ever possible that a quark and an antiquark be produced and interact in QED alone to form a confined QED meson? Is there any experimental evidence for the existence of a QED meson (or QED mesons)? The observations of the anomalous soft photons, the X17 particle, and the E38 particle suggest that they may bear the experimental evidence for the existence of such QED mesons. Further confirmation and investigations on the X17 and E38 particles will shed definitive light on the question of quark confinement in QED in (3+1)D. Implications of quark confinement in the QED interaction are discussed.
|
Keywords
quark confinement
QCD interaction
QED interaction
Schwinger model
open string model of mesons
QCD molecular states
|
Issue Date: 05 June 2023
|
|
1 |
Schwinger J.. Gauge invariance and mass II. Phys. Rev., 1962, 128(5): 2425
https://doi.org/10.1103/PhysRev.128.2425
|
2 |
Schwinger J., Gauge theory of vector particles, in: Theoretical Physics, Trieste Lectures, 1962 (IAEA, Vienna, 1963), page 89
|
3 |
Coleman S., Jackiw R., Susskind L.. Charge shielding and quark confinement in the massive Schwinger model. Ann. Phys., 1975, 93(1−2): 267
https://doi.org/10.1016/0003-4916(75)90212-2
|
4 |
Coleman S.. More about the massive Schwinger model. Ann. Phys., 1976, 101(1): 239
https://doi.org/10.1016/0003-4916(76)90280-3
|
5 |
M. Polyakov A.. Quark confinement and topology of gauge theories. Nucl. Phys. B, 1977, 120(3): 429
https://doi.org/10.1016/0550-3213(77)90086-4
|
6 |
M. Polyakov A., Gauge Fields and Strings, Hardwood Academic Publishers, Switzerland, 1987
|
7 |
G. Wilson K.. Confinement of quarks. Phys. Rev. D, 1974, 10(8): 2445
https://doi.org/10.1103/PhysRevD.10.2445
|
8 |
Kogut J., Susskind L.. Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D, 1975, 11(2): 395
https://doi.org/10.1103/PhysRevD.11.395
|
9 |
Mandelstam S.. Vortices and quark confinement in non-Abelian gauge theories. Phys. Lett. B, 1975, 53(5): 476
https://doi.org/10.1016/0370-2693(75)90221-X
|
10 |
Banks T., Myerson B., Kogut J.. Phase transitions in Abelian lattice gauge theories. Nucl. Phys. B, 1977, 129(3): 493
https://doi.org/10.1016/0550-3213(77)90129-8
|
11 |
Glimm J., Jaffe A.. Instantons in a U(1) lattice gauge theory: A Coulomb dipole gas. Commun. Math. Phys., 1977, 56(3): 195
https://doi.org/10.1007/BF01614208
|
12 |
E. Peskin M.. Mandelstam−’t Hooft duality in Abelian lattice models. Ann. Phys., 1978, 113(1): 122
https://doi.org/10.1016/0003-4916(78)90252-X
|
13 |
Guth A.. Existence proof of a nonconfining phase in four-dimensional U(1) lattice gauge theory. Phys. Rev. D, 1980, 21(8): 2291
https://doi.org/10.1103/PhysRevD.21.2291
|
14 |
I. Kondo K.. Existence of confinement phase in quantum electrodynamics. Phys. Rev. D, 1998, 58(8): 085013
https://doi.org/10.1103/PhysRevD.58.085013
|
15 |
Magnifico G.Felser T.Silvi P.Montangero S., Lattice quantum electrodynamics in (3+1)-dimensions at finite density with tensor networks, Nat. Commun. 12(1), 3600 (2021), arXiv: 2011.10658
|
16 |
D. Drell S., R. Quinn H., Svetitsky B., Weinstein M.. Quantum electrodynamics on a lattice: A Hamiltonian variational approach to the physics of the weak-coupling region. Phys. Rev. D, 1979, 19(2): 619
https://doi.org/10.1103/PhysRevD.19.619
|
17 |
Arnold G.Bunk B.Lippert T.Schilling K., Compact QED under scrutiny: It’s first order, Nucl. Phys. B Proc. Suppl. 119, 864 (2003), arXiv: hep-lat/0210010
|
18 |
C. Loveridge L.Oliveira O.J. Silva P., Lattice pure gauge compact QED in the Landau gauge: The photon propagator, the phase structure, and the presence of Dirac strings, Phys. Rev. D 104(11), 114511 (2021), and references cited therein
|
19 |
Schwinger J.. On Gauge Invariance and Vacuum Polarization. Phys. Rev., 1951, 82(5): 664
https://doi.org/10.1103/PhysRev.82.664
|
20 |
Y. Wong C., Introduction to High-Energy Heavy-Ion Collisions, World Scientific Publisher, 1994
|
21 |
Georgi H., The Schwinger point, J. High Energy Phys. 11, 057 (2019), arXiv: 1905.09632
|
22 |
Georgi H.Noether B., Non-perturbative effects and unparticle physics in generalized Schwinger models, arXiv: 1908.03279v3 (2019)
|
23 |
Georgi H.Warner B., Generalizations of the Sommerfield and Schwinger models, J. High Energy Phys. 01, 047 (2020), arXiv: 1907.12705v2
|
24 |
Georgi H., Automatic fine-tuning in the two-flavor Schwinger model, Phys. Rev. Lett. 125(18), 181601 (2020), arXiv: 2007.15965
|
25 |
Georgi H., Mass perturbation theory in the 2-flavor Schwinger Model with opposite masses, J. High Energy Phys. 2022(10), 119 (2022), arXiv: 2206.14691
|
26 |
Dempsey R.R. Klebanov I.S. Pufu S.Zan B., Discrete chiral symmetry and mass shift in lattice Hamiltonian approach to Schwinger model, arXiv: 2206.05308 (2022)
|
27 |
Y. Wong C., Anomalous soft photons in hadron production, Phys. Rev. C 81(6), 064903 (2010), arXiv: 1001.1691
|
28 |
Y. Wong C., Anomalous soft photons associated with hadron production in string fragmentation, Talk presented at the IX International Conference on Quark Confinement and Hadron Spectrum, Madrid, Spain, Aug. 30−Sep. 3, 2010, AIP Conf. Proc. 1343, 447 (2011), arXiv: 1011.6265
|
29 |
Y. Wong C., An overview of the anomalous soft photons in hadron production, Talk presented at International Conference on the Structure and the Interactions of the Photon, 20−24 May 2013, Paris, France, PoS Photon 2013, 002 (2014), arXiv: 1404.0040
|
30 |
Y. Wong C., Open string QED meson description of the X17 particle and dark matter, J. High Energy Phys. 2020(8), 165 (2020), arXiv: 2001.04864
|
31 |
Y. Wong C., On the stability of the open-string QED neutron and dark matter, Europhys. J. A 58, 100 (2022), arXiv: 2010.13948
|
32 |
Y. Wong C., QED mesons, the QED neutron, and the dark matter, in: Proceedings of the 19th International Conference on Strangeness in Quark Matter, EPJ Web Confer. 259, 13016 (2022), arXiv: 2108.00959
|
33 |
Y. Wong C., QED meson description of the X17 and other anomalous particles, in: Proceedings of the Workshop of “Shedding Light on X17”, September 6−8, 2021, Centro Ricerche Enrico Fermi, Rome, Italy, arXiv: 2201.09764
|
34 |
Y. Wong C.Koshelkin A., Dynamics of quarks and gauge fields in the lowest-energy states in QCD and QED, arXiv: 2111.14933 (2021)
|
35 |
Koshelkin A.Y. Wong C., Dynamics of quarks and gauge fields in the lowest-energy states in QCD and QED, in Proceedings of the 41st International Conference in High Energy Physics, 6−13 July, 2022, Bologna, Italy, PoS 414, 302 (2022), arXiv: 2212.11749
|
36 |
V. Chliapnikov P., A. De Wolf E., B. Fenyuk A., N. Gerdyukov L., Goldschmidt-Clermont Y., M. Ronjin V., Weigend A.. Observation of direct soft photon production in π−p interactions at 280 GeV/c. Phys. Lett. B, 1984, 141(3−4): 276
https://doi.org/10.1016/0370-2693(84)90216-8
|
37 |
Botterweck F., (EHS-NA22 Collaboration) .. et al.. Direct soft photon production in K+p and π+p interactions at 250 GeV/c. Z. Phys. Chem., 1991, 51: 541
|
38 |
Banerjee S., (SOPHIE/WA83 Collaboration) .. et al.. Observation of direct soft photon production in π−p interactions at 280 GeV/c. Phys. Lett. B, 1993, 305(1−2): 182
https://doi.org/10.1016/0370-2693(93)91126-8
|
39 |
Belogianni A., Beusch W., J. Brodbeck T., Evans D., R. French B., Jacholkowski A., B. Kinson J., Kirk A., Lenti V., A. Loconsole R., Manzari V., Minashvili I., Perepelitsa V., Russakovich N., Sonderegger P., Spyropoulou-Stassinaki M., Tchlatchidze G., Vassiliadis G., Vichou I., Villalobos-Baillie (WA91 Collaboration) O.. Confirmation of a soft photon signal in excess of QED expectations in π−p interactions at 280 GeV/c. Phys. Lett. B, 1997, 408(1−4): 487
https://doi.org/10.1016/S0370-2693(97)00762-4
|
40 |
Belogianni A., (WA102 Collaboration) .. et al.. Further analysis of a direct soft photon excess in π−p interactions at 280-GeV/c. Phys. Lett. B, 2002, 548(3−4): 122
https://doi.org/10.1016/S0370-2693(02)02836-8
|
41 |
Belogianni A., Beusch W., J. Brodbeck T., S. Dzheparov F., R. French B., Ganoti P., B. Kinson J., Kirk A., Lenti V., Minashvili I., F. Perepelitsa V., Russakovich N., V. Singovsky A., Sonderegger P., Spyropoulou-Stassinaki M., Villalobos Baillie (WA102 Collaboration) O.. Observation of a soft photon signal in excess of QED expectations in pp interactions. Phys. Lett. B, 2002, 548(3−4): 129
https://doi.org/10.1016/S0370-2693(02)02837-X
|
42 |
Perepelitsa V., Anomalous soft photons in hadronic decays of Z0, Proceedings of the XXXIX International Symposium on Multiparticle Dynamics, Gomel, Belarus, September 4−9, 2009, published in: Nonlin. Phenom. Complex Syst. 12, 343 (2009)
|
43 |
Abdallah J., et al.. (DELPHI Collaboration), Evidence for an excess of soft photons in hadronic decays of Z0, Eur. Phys. J. C 47(2), 273 (2006), arXiv: hep-ex/0604038
|
44 |
Abdallah J., (DELPHI Collaboration) .. et al.. Observation of the muon inner bremsstrahlung at LEP1. Eur. Phys. J. C, 2008, 57(3): 499
https://doi.org/10.1140/epjc/s10052-008-0779-z
|
45 |
Abdallah J., (DELPHI Collaboration) .. et al.. Study of the dependence of direct soft photon production on the jet characteristics in hadronic Z0 decays. Eur. Phys. J. C, 2010, 67(3−4): 343
https://doi.org/10.1140/epjc/s10052-010-1315-5
|
46 |
J. Krasznahorkay A.Csatlós M.Csige L.Gácsi Z.Gulyás J.Hunyadi M. Kuti I.M. Nyakó B.Stuhl L. Timár J.G. Tornyi T.Vajta Z. J. Ketel T.Krasznahorkay A., Observation of anomalous internal pair creation in 8Be: A possible indication of a light, neutral boson, Phys. Rev. Lett. 116(4), 042501 (2016), arXiv: 1504.01527
|
47 |
J. Krasznahorkay A., et al.., New evidence supporting the existence of the hypothetical X17 particle, arXiv: 1910.10459 (2019)
|
48 |
J. Krasznahorkay A.Csatlós M.Csige L.Gulyás J.Krasznahorkay A.M. Nyakó B.Rajta I.Timár J.Vajda I. J. Sas N., New anomaly observed in 4He supports the existence of the hypothetical X17 particle, Phys. Rev. C 104(4), 044003 (2021), arXiv: 2104.10075
|
49 |
J. Krasznahorkay A., et al.., X17: Staus and experiments on 8Be and 4He, presented at the Workshop of “Shedding Light on X17”, September 6−8, 2021, Centro Ricerche Enrico Fermi, Rome, Italy
|
50 |
J. Sas N.J. Krasznahorkay A.Csatlós M.Gulyás J.Kertész B.Krasznahorkay A.Molnár J.Rajta I.Timár J.Vajda I.N. Harakeh M., Observation of the X17 anomaly in the 7Li(p, e+e−)8Be direct proton-capture reaction, arXiv: 2205.07744 (2022)
|
51 |
J. Krasznahorkay A., et al.., New anomaly observed in 12C supports the existence and the vector character of the hypothetical X17 boson, arXiv: 2209.10795 (2022)
|
52 |
Abraamyan K.B. Anisimov A.I. Baznat M.K. Gudima K.A. Nazarenko M.G. Reznikov S.S. Sorin A., Observation of the E(38)-boson, arXiv: 1208.3829v1 (2012)
|
53 |
Abraamyan K., Austin C., Baznat M., Gudima K., Kozhin M., Reznikov S., Sorin A.. Check of the structure in photon pairs spectra at the invariant mass of about 38 MeV/c2. EPJ Web of Conferences, 2019, 204: 08004
https://doi.org/10.1051/epjconf/201920408004
|
54 |
of the Workshop on “Shedding Light on X17” Proceedings6−8 SeptemberRicerche Enrico Fermi 2021 Eds.: M CentroRomeItaly;. Raggi, P. Valente, M. Nardecchia, A. Frankenthal, G. Cavoto, published in: D. S. M. Alves, et al., Eur. Phys. J. C 83, 230 (2023)
|
55 |
J. Krasznahorkay A. (for the ATOMKI Collaboration), X17: Status of the experiments on 8Be and 4He, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
|
56 |
U. Abraamyan Kh.Austin Ch.I. Baznat M.K. Gudima K.A. Kozhin M.G. Reznikov S.S. Sorin A. (Dubna Collaboration), Private communications
|
57 |
S. Cheng Y.Z. Huang H.Wang G. (STAR Collaboration), Private communications
|
58 |
Papa A. (for the MEGII Collaboration), X17 search with the MEGII apparatus, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
|
59 |
H. N. da Luz (for the TU Prague Collaboration), Measurements of internal pair creation with a time projection chamber-based setup, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
|
60 |
Gustavino C. (for the nTOF Collaboration), The search for 4 He anomaly at n_TOF experiment, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
|
61 |
Depero E. (for the NA64 Collaboration), X17 in the NA64 experiment, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
|
62 |
Darmé L.Raggi M.Nardi E., (for the INFNRome Collabration), X17 production mechanism at accelerators, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
|
63 |
Goudzovski E. (for the NA48 Collaboration), Search for dark photon in π0 decays by NA48/2 at CERN, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
|
64 |
K. Perrevoort A. (for the Mu3e Collaboration), Prospects for Dark Photon Searches in the Mu3e Experiment, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
|
65 |
Doria L. (for the MAGIX Collaboration), Dark Matter and X17 Searches at MESA 4.4. 2 Light Dark Matter, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
|
66 |
Gasparian A. (for the JLAB-PAC50 Collaboration), A Direct Detection Search for Hidden Sector New Particles in the 3−60 MeV Mass Range, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
|
67 |
Ahmidouch A., et al.. (for the JLAB-PAC50 Collaboration), A Direct Detection Search for Hidden Sector New Particles in the 3–60 MeV Mass Range, arXiv: 2108.13276 (2021)
|
68 |
Kozhuharov V. (for the PADME Collaboration), Searching X17 with positrons at PADME, Talk presented at the Workshop on “Shedding Light on X17”, September 6, 2021, Rome, Italy, in Ref. [54]
|
69 |
Cline E., et al.. (for the DarkLight Collaboration), Searching for New Physics with DarkLight at the ARIEL Electron-Linac, arXiv: 2208.04120 (2022)
|
70 |
Navrátil P., ARIEL experiments and theory, arXiv: 2210.08438 (2022)
|
71 |
Huang S. (for the LUXE Collaboration), Probing new physics at the LUXE experiment, Proceedings of 41st International Conference on High Energy physics - ICHEP2022, 6−13 July, 2022, arXiv: 2211.11045
|
72 |
Azuelos G., Bryman D., C. Chen W., de Luz H., Doria L., Gupta A., A. Hamel L., Laurin M., Leach K., Lefebvre G., P. Martin J., Robinson A., Starinski N., Sykora R., Tiwari D., Wichoski U., Zacek V.. Status of the X17 search in Montreal. J. Phys. Conf. Ser., 2022, 2391(1): 012008
https://doi.org/10.1088/1742-6596/2391/1/012008
|
73 |
Gell-Mann M.. The interpretation of the new particles as displaced charge multiplets. Nuovo Cim., 1956, 4(S2): 848
https://doi.org/10.1007/BF02748000
|
74 |
Tanabashi M., (Particle Data Group) .. et al.. Review of particle physics. Phys. Rev. D, 2019, 98: 030001
https://doi.org/10.1103/PhysRevD.98.030001
|
75 |
Abashian A., E. Booth N., M. Crowe K.. Possible anomaly in meson production in p+d collisions. Phys. Rev. Lett., 1960, 5(6): 258
https://doi.org/10.1103/PhysRevLett.5.258
|
76 |
E. Booth N., Abashian A., M. Crowe K.. Anomaly in meson production in p+d collisions. Phys. Rev. Lett., 1961, 7(1): 35
https://doi.org/10.1103/PhysRevLett.7.35
|
77 |
Banaigs J., Berger J., Goldzahl L., Risser T., Vu-Hai L., Cottereau M., Le Brun C.. “ABC” and “DEF” effects in the reaction d + p → He3 + (mm)0: Position, width, isospin, angular and energy distributions. Nucl. Phys. B, 1973, 67(1): 1
https://doi.org/10.1016/0550-3213(73)90317-9
|
78 |
Adlarson P.. et al.. Abashian−Booth−Crowe effect in basic double-pionic fusion: A new resonance?. Phys. Rev. Lett., 2011, 106(24): 242302
https://doi.org/10.1103/PhysRevLett.106.242302
|
79 |
Bashkanov M., Clement H., Skorodko T.. Examination of the nature of the ABC effect. Nucl. Phys. A, 2017, 958: 129
https://doi.org/10.1016/j.nuclphysa.2016.12.001
|
80 |
I. Komarov V., et al.., Resonance-like coherent production of a pion pair in the reaction pd→pdππ in the GeV region, Eur. Phys. J. A 54, 206 (2018), arXiv: 1805.01493
|
81 |
Y. Wong C.. The Wigner function of produced particles in string fragmentation. Phys. Rev. C, 2009, 80(5): 054917
https://doi.org/10.1103/PhysRevC.80.054917
|
82 |
V. Koshelkin A.Y. Wong C., The compactification of QCD4 to QCD2 in a flux tube, Phys. Rev. D 86(12), 125026 (2012), arXiv: 1212.3301
|
83 |
D. Bjorken J., Lectures presented in the 1973 Proceedings of the Summer Institute on Particle Physics, edited by Zipt, SLAC-167 (1973)
|
84 |
Casher A., Kogut J., Susskind L.. Vacuum polarization and the absence of free quarks. Phys. Rev. D, 1974, 10(2): 732
https://doi.org/10.1103/PhysRevD.10.732
|
85 |
Nambu Y., Quark model of the factorization of the Veneziano Amplitude, in Lectures at the Copenhagen Symposium: Symmetry and Quark Models, edited by R. Chand, Gordon and Breach, 1970, page 269
|
86 |
Nambu Y.. Strings, monopoles, and gauge fields. Phys. Rev. D, 1974, 10(12): 4262
https://doi.org/10.1103/PhysRevD.10.4262
|
87 |
Goto T., Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model, Prog. Theor. Phys, 46, 1560 (1971), arXiv: hep-th/9302104
|
88 |
’t Hooft G.. Topology of the gauge condition and new confinement phases in non-Abelian gauge theories. Nucl. Phys. B, 1981, 190(3): 455
https://doi.org/10.1016/0550-3213(81)90442-9
|
89 |
V. Belvedere L., A. Swieca J., D. Rothe K., Schroer B.. Generlaized two-dimensional Abelian gauge theories and confinement. Nucl. Phys. B, 1979, 153: 112
https://doi.org/10.1016/0550-3213(79)90594-7
|
90 |
Sekido T.Ishiguro K.Koma Y.Mori Y.Suzuki T., Abelian dominance and the dual Meissner effect in local unitary gauges in SU(2) gluodynamics, Phys. Rev. C 75, 064906 (2007), arXiv: hep-ph/0703002
|
91 |
Suzuki T.Ishiguro K.Koma Y.Sekido T., Gauge-independent Abelian mechanism of color confinement in gluodynamics, Phys. Rev. D 77, 034502 (2008), arXiv: 0706.4366
|
92 |
Suganuma H.Ohata H. Local correlation among the chiral condensate, monopoles, and color magnetic fields in Abelian projected QCD, arXiv: 2108.08499 (2021)
|
93 |
’t Hooft G.. A planar diagram theory for strong interactions. Nucl. Phys. B, 1974, 72(3): 461
https://doi.org/10.1016/0550-3213(74)90154-0
|
94 |
’t Hooft G.. A two-dimensional model for mesons. Nucl. Phys. B, 1974, 75(3): 461
https://doi.org/10.1016/0550-3213(74)90088-1
|
95 |
Huang S., W. Negele J., Polonyi J.. Meson structure in QCD2. Nucl. Phys. B, 1988, 307(4): 669
https://doi.org/10.1016/0550-3213(88)90104-6
|
96 |
S. Bali G., Neff H., Duessel T., Lippert T., Schilling (SESAM) K.. Observing long colour flux tubes in SU(2) lattice gauge theory. Phys. Rev. D, 2005, 71: 114513
https://doi.org/10.1103/PhysRevD.71.114513
|
97 |
Cosmai L.Cea P.Cuteri F.Papa A., Flux tubes in QCD with (2+1) HISQ fermions, Pos, 4th annual International Symposium on Lattice Field Theory, 24−30 July 2016, University of Southampton, UK, arXiv: 1701.03371 (2017)
|
98 |
Cardoso N.Cardoso M.Bicudo P., Inside the SU(3) quark−antiquark QCD flux tube: Screening versus quantum widening, Phys. Rev. D 88, 054504 (2013), arXiv: 1302.3633
|
99 |
Bicudo P.Cardoso N., Colour field densities of the quark−antiquark excited flux tubes in SU(3) lattice QCD, Phys. Rev. D 98 (2018) 11, 114507, arXiv: 1808.08815
|
100 |
Bicudo P.Cardoso N.Cardoso M., Pure gauge QCD flux tubes and their widths at finite temperature, Nucl. Phys. B 940, 88 (2019), arXiv: 1702.03454
|
101 |
E. Peskin M.V. Schroeder D., An Introduction to Quantum Field Theory, Addison-Wesley Publishing Company, 1995
|
102 |
B. Halpern M.. Quantum “solitons” which are SU(N) fermions. Phys. Rev. D, 1975, 12(6): 1684
https://doi.org/10.1103/PhysRevD.12.1684
|
103 |
Kogut J., Susskind L.. Quark confinement and the puzzle of the ninth axial-vector current. Phys. Rev. D, 1974, 10(10): 3468
https://doi.org/10.1103/PhysRevD.10.3468
|
104 |
Kogut J., Susskind L.. How quark confinement solve the η → 3π problem. Phys. Rev. D, 1975, 11(12): 3594
https://doi.org/10.1103/PhysRevD.11.3594
|
105 |
Kogut J., K. Sinclair D.. Quark Confinement and the evasion of the Goldestone’s theorem in 1 + 1 dimensions. Phys. Rev. D, 1975, 12(6): 1742
https://doi.org/10.1103/PhysRevD.12.1742
|
106 |
Witten E.. Non-Abelian bosonization in two dimensions. Commun. Math. Phys., 1984, 92(4): 455
https://doi.org/10.1007/BF01215276
|
107 |
Gepner D.. Non-abelian bosonization and multiflavor QED and QCD in two dimensions. Nucl. Phys. B, 1985, 252: 481
https://doi.org/10.1016/0550-3213(85)90458-4
|
108 |
Ellis J., Frishman Y., Hanany A., Karliner M.. Quark solitons as constituents of hadrons. Nucl. Phys. B, 1992, 382(2): 189
https://doi.org/10.1016/0550-3213(92)90183-C
|
109 |
Frishman Y.Sonnenschein J., Bosonization and QCD in two dimensions, Phys. Rep. 223(6), 309 (1993)
|
110 |
Frishman Y.Hanany A.Sonnenschein J., Subtleties in QCD theory in two dimensions, Nucl. Phys. B 429(1), 75 (1994)
|
111 |
Armoni A.Sonnenschein J., Mesonic spectra of bosonized QCD2 models, Nucl. Phys. B 457(1−2), 81 (1995)
|
112 |
Armoni A.Frishman Y.Sonnenschein J.Trittmann U., The spectrum of multi-flavor QCD2 and the non-Abelian Schwinger equation, Nucl. Phys. B 537(1−3), 503 (1999)
|
113 |
Abrashkin A.Frishman Y.Sonnenschein J., The spectrum of states with one current acting on the adjoint vacuum of massless, Nucl. Phys. B 703(1–2), 320 (2004)
|
114 |
J. Gross D.R. Klebanov I.V. Matytsin A.V. Smilga A., Screening vs. confinement in 1+1 dimensions, Nucl. Phys. B 461(1–2), 109 (1996), arXiv: hep-th/9511104
|
115 |
P. Vary J., J. Fields T., J. Pirner H.. Chiral perturbation theory in the Schwinger model. Phys. Rev. D, 1996, 53(12): 7231
https://doi.org/10.1103/PhysRevD.53.7231
|
116 |
Hosotani Y., Rodriguez R.. Bosonized massive N-flavour Schwinger model. J. Phys. Math. Gen., 1998, 31(49): 9925
https://doi.org/10.1088/0305-4470/31/49/013
|
117 |
Abdalla E.C. B. Abdalla M.D. Rothe K., Two Dimensional Quantum Field Theory, World Scientific Publishing Company, Singapore, 2001
|
118 |
Nagy S.. Massless fermions in mutiflavor QED. Phys. Rev. D, 2009, 79(4): 045004
https://doi.org/10.1103/PhysRevD.79.045004
|
119 |
Kovács J., Nagy S., Nandori I., Sailer K.. Renormalization of QCD2. J. High Energy Phys., 2011, 2011(1): 126
https://doi.org/10.1007/JHEP01(2011)126
|
120 |
Weinberg S.. Phenomenological Lagrangians. Physica A, 1979, 96(1−2): 327
https://doi.org/10.1016/0378-4371(79)90223-1
|
121 |
Witten E.. Current algebra theorems for the U(1) Goldstone boson. Nucl. Phys. B, 1979, 156(2): 269
https://doi.org/10.1016/0550-3213(79)90031-2
|
122 |
Veneziano G., of a crossing-simmetric Construction. Regge-behaved amplitude for linearly rising trajectories. Nuovo Cim. A, 1968, 57(1): 190
https://doi.org/10.1007/BF02824451
|
123 |
Artru X., Mennessier G.. String model and multiproduction. Nucl. Phys. B, 1974, 70(1): 93
https://doi.org/10.1016/0550-3213(74)90360-5
|
124 |
M. Polyakov A.. Quantum geometry of bosonic strings. Phys. Lett. B, 1981, 103(3): 207
https://doi.org/10.1016/0370-2693(81)90743-7
|
125 |
Andersson B.Gustafson G.Sjöstrand T., A general model for jet fragmentation, Zeit. für Phys. C 20, 317 (1983)
|
126 |
Andersson B.Gustafson G.Ingelman G.Sjöstrand T., Parton fragmentation and string dynamics, Phys. Rep. 97(2−3), 31 (1983)
|
127 |
M. Bengtsson. T. Sjöstrand, The Lund Monte Carlo for jet fragmentation and e+e− physics − jetset version 6.3 − an update, Comput. Phys. Commun. 43(3), 367 (1987)
|
128 |
Andersson B.Gustafson G.Nilsson-Almqvist B., A model for low-pT hadronic reactions with generalizations to hadron−nucleus and nucleus−nucleus collisions, Nucl. Phys. B 281(1–2), 289 (1987)
|
129 |
Gatoff G.Y. Wong C., Origin of the soft pT spectra, Phys. Rev. D 46(3), 997 (1992)
|
130 |
Y. Wong C.Gatoff G., The transverse profile of a color flux tube, Phys. Rep. 242(4–6), 4 (1994)
|
131 |
Y. Wong C., C. Wang R., C. Shih C.. Study of particle production using two-dimensional bosonized QED. Phys. Rev. D, 1991, 44(1): 257
https://doi.org/10.1103/PhysRevD.44.257
|
132 |
Aihara H., et al.. (TPC/Two_Gamma Collaboration), Charged hadron production in e+−e− annihilation at s = 29 GeV, Lawrence Berkeley Laboratory Report LBL-23737 (1988)
|
133 |
Hofmann W.. Particle composition in hadronic jets in e+−e− annihilation. Annu. Rev. Nucl. Part. Sci., 1988, 38(1): 279
https://doi.org/10.1146/annurev.ns.38.120188.001431
|
134 |
Petersen A., (Mark II Collaboration) .. et al.. Multihadronic events at ECM = 29 GeV and predictions of QCD models from ECM = 29 GeV to ECM = 93 GeV. Phys. Rev. D, 1988, 37: 1
https://doi.org/10.1103/PhysRevD.37.1
|
135 |
Abe K., (SLD Collaboration) .. et al.. Production of π+, K+, K0, K*0, ϕ, p, and Λ0 in hadronic Z0 decays. Phys. Rev. D, 1999, 59: 052001
https://doi.org/10.1103/PhysRevD.59.052001
|
136 |
Abreu K., (DELPHI Collaboration) .. et al.. Energy dependence of inclusive spectra in e+−e− annihilation. Phys. Lett. B, 1999, 459: 397
https://doi.org/10.1016/S0370-2693(99)00601-2
|
137 |
Yang H. (BRAHMS Collaboration), Rapidity densities of π±, K±, p and p¯ in p+p and d+Au collisions at sNN = 200 GeV, J. Phys. G. 35, 104129 (2008)
|
138 |
Hagel K. (BRAHMS Collaboration), APS DNP 2008, Oakland, California, USA, Oct. 23–27, 2008
|
139 |
Gell-Mann M., J. Oakes R., Renner B.. Behavior of current divergences under SU(3)*SU(3). Phys. Rev., 1968, 175(5): 2195
https://doi.org/10.1103/PhysRev.175.2195
|
140 |
Barnes T., S. Swanson E.. Diagrammatic approach to meson−meson scattering in the nonrelativistic quark potential model. Phys. Rev. D, 1992, 46(1): 131
https://doi.org/10.1103/PhysRevD.46.131
|
141 |
Y. Wong C., S. Swanson E., Barnes T.. Cross sections for π- and ρ-induced dissociation of J/ψ and ψ′. Phys. Rev. C Nucl. Phys., 2000, 62: 045201
https://doi.org/10.1103/PhysRevC.62.045201
|
142 |
Y. Wong C.S. Swanson E.Barnes T., Heavy quarkonium dissociation cross sections in relativistic heavy-ion collisions, Phy. Rev. C 65, 014903 (2002), arXiv: nucl-th/0106067
|
143 |
Baldicchi M., V. Nesterenko A., M. Prosperi G., Simolo C.. QCD coupling below 1 GeV from quarkonium spectrum. Phys. Rev. D, 2008, 77(3): 034013
https://doi.org/10.1103/PhysRevD.77.034013
|
144 |
Deur A.J. Brodsky S.F. de Téramond G., The QCD running coupling, Prog. Part. Nuc. Phys. 90, 1 (2016), arXiv: 1604.08082
|
145 |
Low F.. Bremsstrahlung of very low-energy quanta in elementary particle collisions. Phys. Rev., 1958, 110(4): 974
https://doi.org/10.1103/PhysRev.110.974
|
146 |
N. Gribov V., Bremsstrahlung of hadrons at high energies, Yad. Fiz. 5, 399 (1967) [Sov. J. Nucl. Phys. 5, 280 (1967)]
|
147 |
Van Hove L., Cold quark−gluon plasma and multiparticle production, Ann. Phys. 192(1), 66 (1989)
|
148 |
Lichard P.Van Hove L., The cold quark−gluon plasma as a source of very soft photons in high energy collisions, Phys. Lett. B 245(3–4), 605 (1990)
|
149 |
Lichard P.. Consistency of data on soft photon production in hadronic interactions. Phys. Rev. D, 1994, 50(11): 6824
https://doi.org/10.1103/PhysRevD.50.6824
|
150 |
Kokoulina E.Kutov A.Nikitin V., Gluon dominance model and cluster production, Braz. J. Phys. 37(2c), 785 (2007)
|
151 |
Volkov M.Kokoulina E.Kuraev E., Gluon dominance model and cluster production, Ukr. J. Phys. 49, 1252 (2003)
|
152 |
Barshay S.. Anomalous soft photons from a coherent hadronic phase in high-energy collisions. Phys. Lett. B, 1989, 227(2): 279
https://doi.org/10.1016/S0370-2693(89)80037-1
|
153 |
Shuryak E.. The soft photon puzzle and pion modification in hadronic matter. Phys. Lett. B, 1989, 231(1−2): 175
https://doi.org/10.1016/0370-2693(89)90134-2
|
154 |
Balek V., Pisutova N., Pisut J.. The puzzle of very soft photon production in hadronic Interactions. Acta Phys. Pol. B, 1990, 21: 149
|
155 |
Czyz W., Florkowski W.. Soft photon production in the boost invariant color flux tube model. Z. Phys. Chem., 1994, 61: 171
|
156 |
Nachtmann O., Nonperturbative QCD effects in high-energy collisions, arXiv: hep-ph/9411345 (1994)
|
157 |
W. Botz G.Haberl P.Nachtmann O., Soft photons in hadron hadron collisions: Synchrotron radiation from the QCD vacuum? Z. Phys. Chem. 67, 143 (1995)
|
158 |
Lebiedowicz P.Nachtmann O.Szczurek A., Soft-photon radiation in high-energy proton−proton collisions within the tensor-Pomeron approach: Bremsstrahlung, Phys. Rev. D 106, 034023 (2022), arXiv: 2206.03411
|
159 |
Hatta Y., Ueda T.. Soft photon anomaly and gauge/string duality. Nucl. Phys. B, 2010, 837(1−2): 22
https://doi.org/10.1016/j.nuclphysb.2010.04.017
|
160 |
M. Darbinian S., A. Ispirian K., T. Margarian A.. Unruh radiation of quarks and the soft photon puzzle in hadronic interactions. Sov. J. Nucl. Phys., 1991, 54: 364
|
161 |
A. Simonov Yu., Di-pion decays of heavy quarkonium in the field correlator method, Phys. Atom. Nucl. 71, 1049 (2008), arXiv: hep-ph/07113626
|
162 |
A. Simonov Yu., Di-pion emission in heavy quarkonia decays, JETP Lett. 87(3), 121 (2008)
|
163 |
A. Simonov Yu.I. Veselov A., Bottomonium ϒ(5S) decays into BB and BBπ, JETP Lett. 88(1), 5 (2008)
|
164 |
A. Simonov Yu.I. Veselov A., Strong decays and di-pion transitions of ϒ(5S), Phys. Lett. B 671(1), 55 (2009)
|
165 |
E. Kharzeev D., Loshaj F.. Anomalous soft photon production from the induced currents in Dirac sea. Phys. Rev. D, 2014, 89(7): 074053
https://doi.org/10.1103/PhysRevD.89.074053
|
166 |
Hagedorn R.. Statistical thermodynamics of strong interactions at high energies. Nuo. Cim. Suppl., 1965, 3: 147
|
167 |
Abelev I., (STAR Collaboration) .. et al.. Strange particle production in p+p collisions at s = 200 GeV. Phys. Rev. C, 2007, 75(6): 064901
https://doi.org/10.1103/PhysRevC.75.064901
|
168 |
Abelev I., (STAR Collaboration) .. et al.. Systematic measurements of identified particle spectra in pp, d+Au, and Au+Au collisions at the STAR detector. Phys. Rev. C, 2009, 79: 034909
https://doi.org/10.1103/PhysRevC.79.034909
|
169 |
Adare A., (PHENIX Collaboration) .. et al.. Measurement of neutral mesons in pp collisions at s=200 GeV. Phys. Rev. D, 2011, 83: 052004
https://doi.org/10.1103/PhysRevD.83.052004
|
170 |
T. D’yachenko A., S. Gromova E.. Detection of particles of dark matter from the spectrum of secondary particles in high-energy proton−proton collisions in a thermodynamic model. J. Phys. Conf. Series, 2021, 2131: 022
|
171 |
T. D’yachenko A., A. Verisokina A., A. Verisokina M.. High-energy collisions of protons and nuclei and the possibility of detecting dark matter particles in the spectra of soft photons. Acta Phys. Pol. B Proc. Suppl., 2021, 14(4): 761
https://doi.org/10.5506/APhysPolBSupp.14.761
|
172 |
W. N. de Boer F., Fröhlich O., E. Stiebing K., Bethge K., Bokemeyer H., Balanda A., Buda A., van Dantzig R., W. Elze T., Folger H., van Klinken J., A. Müller K., Stelzer K., Thee P., Waldschmidt M.. A deviation in internal pair conversion. Phys. Lett. B, 1996, 388(2): 235
https://doi.org/10.1016/S0370-2693(96)01311-1
|
173 |
W. N. de Boer F., van Dantzig R., van Klinken J., Bethge K., Bokemeyer H., Buda A., A. Müller K., E. Stiebing K.. Excess in nuclear pairs near 9 MeV/c2 invariant mass. J. Phys. G, 1997, 23(11): L85
https://doi.org/10.1088/0954-3899/23/11/001
|
174 |
W. N. de Boer F.Bethge K.Bokemeyer H.van Dantzig R.van Klinken J.Mironov V. A. Müller K.E. Stiebing K., Further search for a neutral boson with a mass around 9 MeV/c2, J. Phys. G 27(4), L29 (2001), arXiv: hep-ph/0101298v2
|
175 |
Vitéz A., Krasznahorkay A., Gulyás J., Csatlós M., Csige Z. Gácsi L., Krasznahorkay Jr. A., M. Nyakó B., W. N. de Boer F., J. Ketel T.. 33 anomalous internal pair creation in 8Be as a signature of the decay of a new particle. Acta Phys. Pol., 2008, B39: 483
|
176 |
Zhang X., A. Miller G.. Can nuclear physics explain the anomaly observed in the internal pair production in the Beryllium-8 nucleus?. Phys. Lett. B, 2017, 773: 159
https://doi.org/10.1016/j.physletb.2017.08.013
|
177 |
Feng J., et al.., Protophobic fifth force interpretation of the observed anomaly in 8Be nuclear transitions, Phys. Rev. Lett. 117, 071803 (2016) (2016)
|
178 |
Feng J.Fornal B.Galon I.Gardner S.Smolinsky J.M. P. Tait T.Tanedo P., Particle physics models for the 17 MeV anomaly in beryllium nuclear decays, Phys. Rev. D 95(3), 035017 (2017)
|
179 |
Fornal B.. Is there a sign of new physics in beryllium transitions?. Int. J. Mod. Phys. A, 2017, 32(25): 1730020
https://doi.org/10.1142/S0217751X17300204
|
180 |
Batley J., (NA48/2 Collaboration) .. et al.. Search for the dark photon in π0 decays. Phys. Lett. B, 2015, 746: 178
https://doi.org/10.1016/j.physletb.2015.04.068
|
181 |
D. Rose L.Khalil S.Moretti S., Explanation of the 17 MeV Atomki anomaly in a U(1)-extended two Higgs doublet model, Phys. Rev. D 96(11), 115024 (2017)
|
182 |
Delle Rose L.Khalil S.J. D. King S.Moretti S.M. Thabt A., Atomki anomaly in family-dependent U(1) extension of the standard model, Phys. Rev. D 99(5), 055022 (2019)
|
183 |
Delle Rose L.Khalil S.J. D. King S.Moretti S., New physics suggested by Atomki anomaly, Front. Phys. (Lausanne) 7, 73 (2019)
|
184 |
Bordes J.M. Chan H.S. Tsun T., Accommodating three low-scale anomalies (g-2, Lamb shift, and Atomki) in the framed standard model, Int. J. Mod. Phys. A 34 (25), 1830034 (2019), and references cited therein
|
185 |
M. Chan H.T. Tsou S., Two variations on the theme of Yang and Mills - the SM and the FSM Invited contribution to the “Festschrift for the Yang Centenary” (edited by F. C. Chen, et al.), arXiv: 2201.12256 (2022)
|
186 |
Ellwanger U., Moretti S.. Possible explanation of the electron positron anomaly at 17 MeV in 8Be transitions through a light pseudoscalar. J. High Energy Phys., 2016, 11(11): 39
https://doi.org/10.1007/JHEP11(2016)039
|
187 |
S. M. Alves D., J. Weiner N.. A viable QCD axion in the MeV mass range. J. High Energy Phys., 2018, 07(7): 92
https://doi.org/10.1007/JHEP07(2018)092
|
188 |
Kubarovsky V.Rittenhouse West J.J. Brodsky S., Quantum chromodynamics resolution of the ATOMKI anomaly in 4He nuclear transitions, arXiv: 2206.14441 (2022)
|
189 |
Viviani M., Girlanda L., Kievsky A., E. Marcucci L.. n+3H, p+3He, p+3H, and n+3He scattering with the hyper-spherical harmonic method. Phys. Rev. C, 2020, 102(3): 034007
https://doi.org/10.1103/PhysRevC.102.034007
|
190 |
Viviani M., Filandri E., Girlanda L., Gustavino C., Kievsky A., E. Marcucci L., Schiavilla R.. X17 boson and the H3(p, e+ e−)He4 and He3(n, e+ e−)He4 processes: A theoretical analysis. Phys. Rev. C, 2022, 105(1): 014001
https://doi.org/10.1103/PhysRevC.105.014001
|
191 |
Munch M., Sølund Kirsebom O., A. Swartz J., Riisager K., O. U. Fynbo H.. Measurement of the full excitation spectrum of the 7Li(p, γ)αα reaction at 441 keV. Phys. Lett. B, 2018, 782: 779
https://doi.org/10.1016/j.physletb.2018.06.013
|
192 |
Banerjee D., et al.. (NA64 Collaboration), Search for a hypothetical 16.7 MeV gauge boson and dark photons in the NA64 Experiment at CERN, Phys. Rev. Lett. 120(23), 231802 (2018)
|
193 |
Banerjee D., et al.. (NA64 Collaboration), Improved limits on a hypothetical X(16.7) boson and a dark photon decaying into e+e− pairs, arXiv: 1912.11389 (2019)
|
194 |
Taruggi C.Ghoshal A.Raggi M. (for the PADME Collaboration), Searching for dark photons with the PADME experiment (Conference: C18-05-07.4, pp 17−21, pp 28−34, and pp 337−344), Frascati Phys. Ser. 67, 17, 28, and 334 (2018)
|
195 |
Barducci D.Toni C., An updated view on the ATOMKI nuclear anomalies, arXiv: 2212.06453 (2022)
|
196 |
U. Abraamyan Kh.. et al.. Resonance structure in the γγ invariant mass spectrum in pC and dC interactions. Phys. Rev. C, 2009, 80: 034001
https://doi.org/10.1103/PhysRevC.80.034001
|
197 |
U. Abraamyan Kh., B. Anisimov A., I. Baznat M., K. Gudima K., A. Kozhin M., I. Kukulin V., A. Nazarenko M., G. Reznikov S., S. Sorin A.. Diphoton and dipion productions at the Nuclotron/NICA. Eur. Phys. J. A, 2016, 52(8): 259
https://doi.org/10.1140/epja/i2016-16259-x
|
198 |
T. Donnelly W., J. Freedman S., S. Lytel R., D. Peccei R., Schwartz M.. Do axions exist?. Phys. Rev. D, 1978, 18(5): 1607
https://doi.org/10.1103/PhysRevD.18.1607
|
199 |
E. El-Nadi M., E. Badawy O.. Production of a new light neutral boson in high-energy collisions. Phys. Rev. Lett., 1988, 61(11): 1271
https://doi.org/10.1103/PhysRevLett.61.1271
|
200 |
E. El-Nadi M.. et al.. External electron pair production in high-energy collisions. Nuo. Cim. A, 1996, 109: 1517
https://doi.org/10.1007/BF02778236
|
201 |
L. Jain P., Singh G.. Search for new particles decaying into electron pairs of mass below 100 MeV/c2. J. Phys. G, 2007, 34(1): 129
https://doi.org/10.1088/0954-3899/34/1/009
|
202 |
W. N. de Boer F.A. Fields C., A re-evaluation of evidence for light neutral bosons in nuclear emulsions, Int. J. Mod. Phys. E 20(8), 1787 (2011), arXiv: 1001.3897
|
203 |
Bernhard J.Schönning K., Test of OZI violation in vector meson production with COMPASS, arXiv: 1109.0272v2 (2011)
|
204 |
Bernhard J., Exclusive vector meson production in pp collisions at the COMPASS experiment, Ph. D. Thesis, University of Mainz, 2014
|
205 |
Schlüter T., The exotic ηπ− wave in 190 GeV π−p → π−η′p at COMPASS, arXiv: 1108.6191v2 (2011)
|
206 |
Schlüter T., The π−η and π−η′ systems in exclusive 190 GeV/c π−p Reactions at COMPASS, Ph. D. Thesis, Univ. München, 2012
|
207 |
Bernhard J.M. Friedrich J.Schlüter T.Schönning K., Comment on “Material evidence of a 38 MeV boson”, arXiv: 1204.2349 (2012)
|
208 |
van Beveren E.Rupp G., First indications of the existence of a 38 MeV light scalar boson arXiv: 1102.1863 (2011)
|
209 |
van Beveren E.Rupp G., Material evidence of a 38 MeV boson, arXiv: 1202.1739 (2012)
|
210 |
van Beveren E.Rupp G., Reply to Comment on “Material evidence of a 38 MeV boson”, arXiv: 1204.3287 (2012)
|
211 |
van Beveren E.Rupp G., Z0(57) and E(38): possible surprises in the Standard Model, arXiv: 2005.08559 (2020) (accepted for publication in Acta Physica Polonica B Proc. Suppl.)
|
212 |
Y. Wong C.. Shells in a simple anisotropic harmonic oscillator. Phys. Lett. B, 1970, 14(8): 668
https://doi.org/10.1016/0370-2693(70)90439-9
|
213 |
Y. Wong C.. Interaction barrier in charged-particle nuclear reactions. Phys. Rev. Lett., 1973, 31(12): 766
https://doi.org/10.1103/PhysRevLett.31.766
|
214 |
G. Lee T.Bayrak O.Y. Wong C., Pocket resonances in low-energy antineutrons reactions with nuclei, Phys. Lett. B 817, 136301 (2021), arXiv: 2102.06691
|
215 |
A. Wheeler J.. Molecular viewpoints in nuclear structure. Phys. Rev., 1937, 52(11): 1083
https://doi.org/10.1103/PhysRev.52.1083
|
216 |
R. Tilley D., R. Weller H.. Energy levels of light nuclei A=4. Nucl. Phys. A, 1992, 541: 1
https://doi.org/10.1016/0375-9474(92)90635-W
|
217 |
R. Tilley D., H. Kelley J., L. Godwin J., J. Millener D., Purcell J., G. Sheu C., R. Weller H.. Energy levels of light nuclei. Nucl. Phys. A, 2004, 745(3−4): 155
https://doi.org/10.1016/j.nuclphysa.2004.09.059
|
218 |
L. Feng J., M. P. Tait T., B. Verharen C.. Dynamical evidence for a fifth force explanation of the ATOMKI nuclear anomalies. Phys. Rev. D, 2020, 102(3): 036016
https://doi.org/10.1103/PhysRevD.102.036016
|
219 |
B. He W.G. Ma Y.G. Cao X.Z. Cai X.Q. Zhang G., Dipole oscillation modes in light alpha-clustering nuclei, Phys. Rev. C 94(1), 014301 (2016), arXiv: 1602.08955
|
220 |
L. Berman B., C. Fultz S.. Measurements of the giant dipole resonance with monoenergetic photons. Rev. Mod. Phys., 1975, 47(3): 713
https://doi.org/10.1103/RevModPhys.47.713
|
221 |
H. Kelley J., E. Purcell J., G. Sheu C.. Energy levels of light nuclei A = 12. Nucl. Phys. A, 2017, 968: 71
https://doi.org/10.1016/j.nuclphysa.2017.07.015
|
222 |
D. Landau L.. The moment of a 2-photon system. Dokl. Akad. Nauk SSSR, 1948, 60: 207
|
223 |
N. Yang C.. Selection rules for the dematerialization of a particle into two photons. Phys. Rev., 1950, 77(2): 242
https://doi.org/10.1103/PhysRev.77.242
|
224 |
van Beveren E.Rupp G., First indications of the existence of a 38 MeV light scalar boson, arXiv: 1102.1863 (2011)
|
225 |
van Beveren E.Rupp G., Material evidence of a 38 MeV boson, arXiv: 1202.1739 (2012)
|
226 |
Guido E. (BaBar Collaboration), Lepton universality test in Upsilon(1S) decays at BABAR, Proceedings of the DPF-2009 Conference, Detroit, MI, July 27−31, 2009, arXiv: 0910.0423
|
227 |
Bauswein A., U. F. Bastian N., Blaschke D., Chatziioannou K., A. Clark J., Fischer T., Oertel M.. Identifying a first-order phase transition in neutron-star mergers through gravitational waves. Phys. Rev. Lett., 2019, 122(6): 061102
https://doi.org/10.1103/PhysRevLett.122.061102
|
228 |
Bauswein A., Blacker S., Vijayan V., Stergioulas N., Chatziioannou K., A. Clark J., U. F. Bastian N., B. Blaschke D., Cierniak M., Fischer T.. Equation of state constraints from the threshold binary mass for prompt collapse of neutron star mergers. Phys. Rev. Lett., 2020, 125(14): 141103
https://doi.org/10.1103/PhysRevLett.125.141103
|
229 |
R. Weih L., Hanauske M., Rezzolla L.. Postmerger gravitational-wave signatures of phase transitions in binary mergers. Phys. Rev. Lett., 2020, 124(17): 171103
https://doi.org/10.1103/PhysRevLett.124.171103
|
230 |
Annala E., Gorda T., Kurkela A., Naettilae J., Vuorinen A.. Evidence for quark-matter cores in massive neutron stars. Nat. Phys., 2020, 16(9): 907
https://doi.org/10.1038/s41567-020-0914-9
|
231 |
Barate R., (ALPEPH Collaboration) .. et al.. Inclusive production of neutral pions in hadronic Z decays. Z. Phys. C, 1997, 74: 451
https://doi.org/10.1007/s002880050407
|
232 |
Amsler C., (Particle Data Group) .. et al.. Review of particle physics. Phys. Lett. B, 2008, 667(1−5): 1
https://doi.org/10.1016/j.physletb.2008.07.018
|
233 |
M. Aulchenko V., et al.. (CMD-2 Collaboration), Measurement of the pion form factor in the range 1.04–1.38 GeV with the CMD-2 detector, JETP Lett. 82(12), 743 (2005) (Pisma Zh. Eksp. Teor. Fiz. 82, 841 (2005), arXiv: hep-ex/0603021
|
234 |
Aaltonen T., et al.. (CDF Collaboration), Precision measurement of the X(3872) mass in J/ψ π+π− decays, Phys. Rev. Lett. 103, 152001 (2009), arXiv: 0906.5218
|
235 |
Aubert B., et al.. (BarBar Collaboration), Study of hadronic transitions between Υ states and observation of Υ(4S)→ηΥ(1S) decay, Phys. Rev. D 78, 112002 (2008), arXiv: 0807.2014
|
236 |
F. Taylor E.A. Wheeler J., Space-time Physics, W. H. Freeman and Co., 2nd Ed., 1992, page 20
|
237 |
N. Yang C.. Charge quantization, compactness of the gauge group, and flux quantization. Phys. Rev. D, 1970, 8(8): 2360
https://doi.org/10.1103/PhysRevD.1.2360
|
238 |
C. Hayes A.Friar J.M. Hale G.T. Garvey G., Angular correlations in the e+e− decay of excited states in 8Be, Phys. Rev. C 105(5), 055502 (2022), arXiv: 2106.06834
|
239 |
Lüscher M.. Symmetry breaking aspects of the roughening transition in gauge theories. Nucl. Phys. B, 1981, 180(2): 317
https://doi.org/10.1016/0550-3213(81)90423-5
|
240 |
Lüscher M., Symanzik K., Weisz P.. Anomalies of the free loop wave equation in the WKB approximation. Nucl. Phys. B, 1980, 173(3): 365
https://doi.org/10.1016/0550-3213(80)90009-7
|
241 |
Polchinski J., Strominger A.. Effective string theory. Phys. Rev. Lett., 1991, 67(13): 1681
https://doi.org/10.1103/PhysRevLett.67.1681
|
242 |
Bonati C.Caselle M.Morlacchi S., The unreasonable effectiveness of effective string theory: The case of the 3D SU(2) Higgs model, Phys. Rev. D 104(5), 054501 (2021), arXiv: 2106.08784
|
243 |
Billo M.Caselle M.Pellegrini R., New numerical results and novel effective string predictions for Wilson loops, J. High Energy Phys. 01(1), 104 (2012) [Erratum: J. High Energy Phys. 04, 097 (2013)], arXiv: 1107.4356
|
244 |
Lüscher M.Weisz P., String excitation energies in SU(N) gauge theories beyond the free-string approximation, J. High Energy Phys. 0407, 014 (2004), arXiv: hep-th/0406205
|
245 |
Billo M.Caselle M., Polyakov loop correlators from D0-brane interactions in bosonic string theory, J. High Energy Phys. 0507, 038 (2005), arXiv: hep-th/0505201
|
246 |
Billo M.Caselle M.Ferro L., The partition function of interfaces from the Nambu−Goto effective string theory, J. High Energy Phys. 0602, 070 (2006), arXiv: hep-th/0601191
|
247 |
Georgi H.. Unparticle physics. Phys. Rev. Lett., 2007, 98(22): 221601
https://doi.org/10.1103/PhysRevLett.98.221601
|
248 |
Georgi H., Kats Y.. Unparticle examples in 2D. Phys. Rev. Lett., 2008, 101(13): 131603
https://doi.org/10.1103/PhysRevLett.101.131603
|
249 |
Hellerman S.Maeda S.Maltz J.Swanson I., Effective string theory simplified, J. High Energy Phys. 09(9), 183 (2014), arXiv: 1405.6197
|
250 |
Aharony O.Komargodski Z., The effective theory of long strings, J. High Energy Phys. 05(5), 118 (2013), arXiv: 1302.6257
|
251 |
Eichten E., Gottfried K., Kinoshita T., B. Kogut J., B. Lane K., M. Yan T.. Spectrum of charmed quark−antiquark bound states. Phys. Rev. Lett., 1975, 34(6): 369
https://doi.org/10.1103/PhysRevLett.34.369
|
252 |
W. Crater H.H. Yoon J.Y. Wong C., Singularity structures in Coulomb-type potentials in two body Dirac equations of constraint dynamics, Phys. Rev. D 79(3), 034011 (2009), arXiv: 0811.0732
|
253 |
Peshkin M.. Short distance analysis for heavy quark systems. 1. Diagrammatics. Nucl. Phys. B, 1979, 156(3): 365
https://doi.org/10.1016/0550-3213(79)90199-8
|
254 |
Bhanot G., Peshkin M.. Short distance analysis for heavy quark systems. 2. Applications. Nucl. Phys. B, 1979, 156(3): 391
https://doi.org/10.1016/0550-3213(79)90200-1
|
255 |
K. Choi S.. et al.. Observation of a narrow charmonium-like state in exclusive B± → K±π+π− J/ψ decays. Phys. Rev. Lett., 2003, 91: 262001
https://doi.org/10.1103/PhysRevLett.91.262001
|
256 |
Y. Wong C., Molecular states of heavy quark mesons, Phys. Rev. C 69(5), 055202 (2004), arXiv: hep-ph/0311088
|
257 |
A. Tornqvist N.. Isospin breaking of the narrow charmonium state of Belle at 3872 MeV as a deuson. Phys. Lett. B, 2004, 590(3−4): 209
https://doi.org/10.1016/j.physletb.2004.03.077
|
258 |
E. Close F., R. Page P.. The D*0D0 threshold resonance. Phys. Lett. B, 2004, 578(1−2): 119
https://doi.org/10.1016/j.physletb.2003.10.032
|
259 |
Pakvasa S., Suzuki M.. On the hidden charm state at 3872 MeV. Phys. Lett. B, 2004, 579(1−2): 67
https://doi.org/10.1016/j.physletb.2003.11.005
|
260 |
S. Swanson E.. Diagnostic decays of the X(3872). Phys. Lett. B, 2004, 598(3−4): 197
https://doi.org/10.1016/j.physletb.2004.07.059
|
261 |
B. Voloshin M.. Interference and binding effects in decays of possible molecular component of X(3872). Phys. Lett. B, 2004, 579(3−4): 316
https://doi.org/10.1016/j.physletb.2003.11.014
|
262 |
C. Hanhart, U. G. Meißner, Q. Wang, Q. Zhao , B. S. Zou. F. K. Guo, Hadronic molecules, Rev. Mod. Phys. 90, 015004 (2018) [Erratum: Rev. Mod. Phys. 94(2), 029901 (2022)], arXiv: 1705.00141
|
263 |
Yang B.Meng L.L. Zhu S., Possible molecular states composed of doubly charmed baryons with coupled-channel effect, Eur. Phys. J. A 56(2), 67 (2020), arXiv: 1906.04956
|
264 |
K. Dong X.K. Guo F.S. Zou B., A survey of heavy−antiheavy hadronic molecules, Progr. Phys. 41(2), 65 (2021), arXiv: 2101.01021
|
265 |
Q. Luo S.W. Wu T.Z. Liu M.S. Geng L.Liu X., Triple-charm molecular states composed of D*D*D and D*D*D*, Phys. Rev. D 105(7), 074033 (2022), arXiv: 2111.15079
|
266 |
Adlarson P., (WASA-at-COSY Collaboration ., Data Analysis Center) SAID. et al.. Evidence for a new resonance from polarized neutron−proton scattering. Phys. Rev. Lett., 2014, 112(20): 202301
https://doi.org/10.1103/PhysRevLett.112.202301
|
267 |
Adlarson P.. et al.. Neutron−proton scattering in the context of the d*(2380) resonance. Phys. Rev. C, 2014, 90(3): 035204
https://doi.org/10.1103/PhysRevC.90.035204
|
268 |
Workman R.. Poles in the SAID NN analysis. EPJ Web Conf., 2014, 81: 02023
|
269 |
L. Workman R., J. Briscoe W., I. Strakovsky I.. Sensitivity of the COSY dibaryon candidate to np elastic scattering measurements. Phys. Rev. C, 2016, 93(4): 045201
https://doi.org/10.1103/PhysRevC.93.045201
|
270 |
Bashkanov M., J. Brodsky S., Clement H.. Novel six-quark hidden-color dibaryon states in QCD. Phys. Lett. B, 2013, 727(4−5): 438
https://doi.org/10.1016/j.physletb.2013.10.059
|
271 |
Goldman T., Maltman K., J. Stephenson G., E. Schmidt K., Wang F.. “Inevitable” nonstrange dibaryon. Phys. Rev. C, 1989, 39(5): 1889
https://doi.org/10.1103/PhysRevC.39.1889
|
272 |
L. Ping J., X. Huang H., R. Pang H., Wang F., W. Wong C.. Quark models of dibaryon resonances in nucleon−nucleon scattering. Phys. Rev. C, 2009, 79(2): 024001
https://doi.org/10.1103/PhysRevC.79.024001
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|