Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (5) : 51303    https://doi.org/10.1007/s11467-023-1289-z
RESEARCH ARTICLE
Robust beam splitter with fast quantum state transfer through a topological interface
Jia-Ning Zhang1, Jin-Xuan Han2, Jin-Lei Wu3(), Jie Song2, Yong-Yuan Jiang1,2,4,5,6()
1. Department of Optoelectronics Science, Harbin Institute of Technology, Weihai 264209, China
2. School of Physics, Harbin Institute of Technology, Harbin 150001, China
3. School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
4. Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
5. Key Laboratory of Micro-Nano Optoelectronic Information System, Ministry of Industry and Information Technology, Harbin 150001, China
6. Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin Institute of Technology, Harbin 150001, China
 Download: PDF(7720 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Su−Schrieffer−Heeger (SSH) model, commonly used for robust state transfers through topologically protected edge pumping, has been generalized and exploited to engineer diverse functional quantum devices. Here, we propose to realize a fast topological beam splitter based on a generalized SSH model by accelerating the quantum state transfer (QST) process essentially limited by adiabatic requirements. The scheme involves delicate orchestration of the instantaneous energy spectrum through exponential modulation of nearest neighbor coupling strengths and onsite energies, yielding a significantly accelerated beam splitting process. Due to properties of topological pumping and accelerated QST, the beam splitter exhibits strong robustness against parameter disorders and losses of system. In addition, the model demonstrates good scalability and can be extended to two-dimensional crossed-chain structures to realize a topological router with variable numbers of output ports. Our work provides practical prospects for fast and robust topological QST in feasible quantum devices in large-scale quantum information processing.

Keywords quantum state transfer      beam splitter      topological router     
Corresponding Author(s): Jin-Lei Wu,Yong-Yuan Jiang   
Issue Date: 12 May 2023
 Cite this article:   
Jia-Ning Zhang,Jin-Xuan Han,Jin-Lei Wu, et al. Robust beam splitter with fast quantum state transfer through a topological interface[J]. Front. Phys. , 2023, 18(5): 51303.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1289-z
https://academic.hep.com.cn/fop/EN/Y2023/V18/I5/51303
Fig.1  Diagrammatic sketch of the generalized SSH model composed of N unit cells. Each unit cell contains a pair of a- (blue dot) and b-type (purple dot) sites with onsite energies Va and Vb. Double lines and single lines denote the intracell coupling strength J1 and intercell coupling strength J2 between two adjacent sites, respectively.
Fig.2  (a−c) Energy spectrum of SSH lattice in the momentum space for three settings of the coupling strengths (a) J1=1,J 2=0.6; (b) J1=1,J 2=1; (c) J1=0.6,J2=1. (d−f) Winding of the bulk momentum-space Hamiltonian for the three settings as the wavenumber runs across the Brillouin zone.
Fig.3  (a) Energy spectrum of the SSH lattice with 40 sites with varying intracell coupling J1 but fixed intercell coupling J2=1. J1<1 (J1>1) corresponds to the nontrivial (trivial) topological phase. (b) Energy spectrum (upper panel) and distribution of the gap state (lower panel) for J1=0.6. (c) Energy spectrum (upper panel) and density distribution of one bulk state (lower panel) for J1=2. (d−f) Energy spectra and distributions of the zero-energy edge state of the SSH lattice with 41 sites with the same coupling strengths as those in (a)−(c), respectively.
Fig.4  Schematic of SSH model with the size of L=2N+1 with alternate onsite energies and an interface. Double and single lines denote the intracell and intercell coupling strengths J1 and J2 between two adjacent sites, respectively. Intracell (intercell) coupling strengths and alternate onsite energies are mirror-symmetric with respect to the interface site. N is an even number, so that the topological interface falls on an a-type site.
Fig.5  Waveforms of coupling strengths and alternate onsite energy with (a) α= 2, (c) α= 6, and (e) α= 10. (b, d, f) Instantaneous energy spectrum as a function of time for different exponential parameters in (a), (c) and (e), respectively. The total evolution time is chosen to unity and the size of chain to be 21.
Fig.6  Distribution of the gap state [magenta lines in Fig.5(b), (d), and (f)] with eigenenergy V a with different values of (a) α =2, (b) α =6, and (c) α=10. (d) Minimum energy gap between the gap state and the nearest-neighbor bulk states versus values of α with fixed chain size L=21.
Fig.7  (a) Fidelity as a function with respect to the final time of QST for the cosine and exponential protocols. (b−e) Distribution of the gap state during the evolution and the phase distribution of the evolved final state for the cosine protocol in (b) and (c), and for the exponential protocol in (d) and (e), respectively. Other parameters take L=21 and α=3.2.
Fig.8  Fidelity as a function of the transfer time for the exponential protocol with different values of α with L=21.
Fig.9  Fidelity of QST versus varying α and t for the exponential protocol with (a) L=21, (b) L=33, (c) L=45, and (d) L=57. The green and red solid lines represent 0.9 and 0.99 fidelity contour lines, respectively. (e) Optimal exponential parameters and (f) the corresponding total evolution time needed for 0.99-fidelity as a function of the size of the chain. The scattering dots and the lines represent the numerical and cubic polynomial fitting results, respectively.
Fig.10  Impact of diagonal and off-diagonal disorders with ωs=0.4 on the fidelity for (a) cosine and (b) exponential protocols. Each point corresponds to the mean value of fidelity averaged over 100 disorder realizations. Average fidelity as a function of the disorder strength for (c) diagonal and (d) off-diagonal disorders for different protocols. Other parameters take L=21 and α=3.2.
Fig.11  Average fidelity and phase difference of the evolved final state at two-end sites versus disorder strength for asymmetric (a) diagonal and (b) off-diagonal disorders for different protocols. Other parameters take L=21 and α= 3.2.
Fig.12  (a) Final fidelity as a function of the loss rate γ for the cosine protocol with t=1080 /J0 and the exponential protocol with t=100/ J0 and α=3.2 under symmetrical losses. (b) Final fidelity and phase difference of the evolved final state at two-end sites versus loss rate γ for both protocols under asymmetrical losses.
Fig.13  Phase diagram of the QST in the parameter space ( t,L) of (a) cosine and (b) exponential protocols. (c) The total phase diagram derived from (a) and (b). (d) The transfer time t0.99 that each protocol takes to reach 0.99 fidelity as a function of the size of the system. α=3.2 is used here.
Fig.14  Fidelity as a function of the chain size with fixed loss parameter γ=2.5× 10 5J0 for both protocols. α =3.2 is used here.
Fig.15  Schematic illustration of the crossed-chain structure comprised of four even-sized SSH chains connected to a mutual additional a-type site.
Fig.16  (a) Final fidelity of four-outport router as a function of the transfer time for the cosine and exponential protocols. (b−e) Distribution of the gap state with energy eigenvalue of Va during the evolution and amplitude distribution of the evolved final state for the exponential protocol in (b) and (c), and the cosine protocol in (d) and (e), respectively. Other parameters take L=4N+1=41 and α=3.2.
Fig.17  Using the exponential protocol with α= 3.2 for the four-outport router, transfer time t0.99 as a function of (a) the size of each constituent chain with K=4 and (b) the number of constituent chains with N=10.
Fig.18  Equivalent circuit of the coupled superconducting resonator system. Circuit elements are used to model the microwave resonator An ( Bn) and the coupler with the additional Josephson junction in a dilution refrigerator (with a temperature T mK), which is placed in a magnetic shield. The microwave resonator An ( Bn) is an LC circuit composed of a spiral inductor La (Lb) and a capacitor Ca (Cb). The external classical filed can be attained independently via changing the magnetic flux ϕ threading on the loop of coupler, which can add the FBL to connect with an AWG by adopting controlled voltage pulses [68, 69].
1 I. Cirac J., Zoller P., J. Kimble H., Mabuchi H.. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett., 1997, 78(16): 3221
https://doi.org/10.1103/PhysRevLett.78.3221
2 N. Matsukevich D., Kuzmich A.. Quantum state transfer between matter and light. Science, 2004, 306(5696): 663
https://doi.org/10.1126/science.1103346
3 Christandl M., Datta N., Ekert A., J. Landahl A.. Perfect state transfer in quantum spin networks. Phys. Rev. Lett., 2004, 92(18): 187902
https://doi.org/10.1103/PhysRevLett.92.187902
4 Banchi L., J. G. Apollaro T., Cuccoli A., Vaia R., Verrucchi P.. Long quantum channels for high-quality entanglement transfer. New J. Phys., 2011, 13(12): 123006
https://doi.org/10.1088/1367-2630/13/12/123006
5 D. Wang Y., A. Clerk A.. Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett., 2012, 108(15): 153603
https://doi.org/10.1103/PhysRevLett.108.153603
6 Tan S., W. Bomantara R., Gong J.. High-fidelity and long-distance entangled-state transfer with Floquet topological edge modes. Phys. Rev. A, 2020, 102(2): 022608
https://doi.org/10.1103/PhysRevA.102.022608
7 Ouyang M., D. Awschalom D.. Coherent spin transfer between molecularly bridged quantum dots. Science, 2003, 301(5636): 1074
https://doi.org/10.1126/science.1086963
8 D. Greentree A., H. Cole J., R. Hamilton A., C. L. Hollenberg L.. Coherent electronic transfer in quantum dot systems using adiabatic passage. Phys. Rev. B, 2004, 70(23): 235317
https://doi.org/10.1103/PhysRevB.70.235317
9 Chen B., H. Shen Q., Fan W., Xu Y.. Long-range adiabatic quantum state transfer through a linear array of quantum dots. Sci. China Phys. Mech. Astron., 2012, 55(9): 1635
https://doi.org/10.1007/s11433-012-4841-3
10 He Y., M. He Y., J. Wei Y., Jiang X., Chen K., Y. Lu C., W. Pan J., Schneider C., Kamp M., Höfling S.. Quantum state transfer from a single photon to a distant quantum-dot electron spin. Phys. Rev. Lett., 2017, 119(6): 060501
https://doi.org/10.1103/PhysRevLett.119.060501
11 P. Kandel Y., Qiao H., Fallahi S., C. Gardner G., J. Manfra M., M. Nichol J.. Adiabatic quantum state transfer in a semiconductor quantum-dot spin chain. Nat. Commun., 2021, 12(1): 2156
https://doi.org/10.1038/s41467-021-22416-5
12 Perez-Leija A., Keil R., Kay A., Moya-Cessa H., Nolte S., C. Kwek L., M. Rodríguez-Lara B., Szameit A., N. Christodoulides D.. Coherent quantum transport in photonic lattices. Phys. Rev. A, 2013, 87(1): 012309
https://doi.org/10.1103/PhysRevA.87.012309
13 J. Chapman R., Santandrea M., Huang Z., Corrielli G., Crespi A., H. Yung M., Osellame R., Peruzzo A.. Experimental perfect state transfer of an entangled photonic qubit. Nat. Commun., 2016, 7(1): 11339
https://doi.org/10.1038/ncomms11339
14 Liu W., Wu C., Jia Y., Jia S., Chen G., Chen F.. Observation of edge-to-edge topological transport in a photonic lattice. Phys. Rev. A, 2022, 105(6): L061502
https://doi.org/10.1103/PhysRevA.105.L061502
15 F. Wei L., R. Johansson J., X. Cen L., Ashhab S., Nori F.. Controllable coherent population transfers in superconducting qubits for quantum computing. Phys. Rev. Lett., 2008, 100(11): 113601
https://doi.org/10.1103/PhysRevLett.100.113601
16 Mei F., Chen G., Tian L., L. Zhu S., Jia S.. Robust quantum state transfer via topological edge states in superconducting qubit chains. Phys. Rev. A, 2018, 98(1): 012331
https://doi.org/10.1103/PhysRevA.98.012331
17 Li X., Ma Y., Han J., Chen T., Xu Y., Cai W., Wang H., P. Song Y., Y. Xue Z., Yin Z., Sun L.. Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings. Phys. Rev. Appl., 2018, 10(5): 054009
https://doi.org/10.1103/PhysRevApplied.10.054009
18 M. A. Almeida G., Ciccarello F., J. G. Apollaro T., M. C. Souza A.. Quantum-state transfer in staggered coupled-cavity arrays. Phys. Rev. A, 2016, 93(3): 032310
https://doi.org/10.1103/PhysRevA.93.032310
19 Qin W., Nori F.. Controllable single-photon transport between remote coupled-cavity arrays. Phys. Rev. A, 2016, 93(3): 032337
https://doi.org/10.1103/PhysRevA.93.032337
20 Balachandran V., Gong J.. Adiabatic quantum transport in a spin chain with a moving potential. Phys. Rev. A, 2008, 77(1): 012303
https://doi.org/10.1103/PhysRevA.77.012303
21 Yang S., Bayat A., Bose S.. Spin-state transfer in laterally coupled quantum-dot chains with disorders. Phys. Rev. A, 2010, 82(2): 022336
https://doi.org/10.1103/PhysRevA.82.022336
22 M. Nikolopoulos G.. Statistics of a quantum-state-transfer Hamiltonian in the presence of disorder. Phys. Rev. A, 2013, 87(4): 042311
https://doi.org/10.1103/PhysRevA.87.042311
23 Ashhab S.. Quantum state transfer in a disordered one-dimensional lattice. Phys. Rev. A, 2015, 92(6): 062305
https://doi.org/10.1103/PhysRevA.92.062305
24 Keele C., Kay A.. Combating the effects of disorder in quantum state transfer. Phys. Rev. A, 2022, 105(3): 032612
https://doi.org/10.1103/PhysRevA.105.032612
25 Niu Q., J. Thouless D., S. Wu Y.. Quantized hall conductance as a topological invariant. Phys. Rev. B, 1985, 31(6): 3372
https://doi.org/10.1103/PhysRevB.31.3372
26 E. Moore J.. The birth of topological insulators. Nature, 2010, 464(7286): 194
https://doi.org/10.1038/nature08916
27 L. Qi X., C. Zhang S.. The quantum spin Hall effect and topological insulators. Phys. Today, 2010, 63(1): 33
https://doi.org/10.1063/1.3293411
28 K. Chiu C., C. Y. Teo J., P. Schnyder A., Ryu S.. Classification of topological quantum matter with symmetries. Rev. Mod. Phys., 2016, 88(3): 035005
https://doi.org/10.1103/RevModPhys.88.035005
29 G. Wen X.. Colloquium: Zoo of quantum-topological phases of matter. Rev. Mod. Phys., 2017, 89(4): 041004
https://doi.org/10.1103/RevModPhys.89.041004
30 Z. Hasan M., L. Kane C.. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
https://doi.org/10.1103/RevModPhys.82.3045
31 L. Qi X., C. Zhang S.. Topological insulators and superconductors. Rev. Mod. Phys., 2011, 83(4): 1057
https://doi.org/10.1103/RevModPhys.83.1057
32 Bansil A., Lin H., Das T.. Colloquium: Topological band theory. Rev. Mod. Phys., 2016, 88(2): 021004
https://doi.org/10.1103/RevModPhys.88.021004
33 Ozawa T., M. Price H., Amo A., Goldman N., Hafezi M., Lu L., C. Rechtsman M., Schuster D., Simon J., Zilberberg O., Carusotto I.. Topological photonics. Rev. Mod. Phys., 2019, 91(1): 015006
https://doi.org/10.1103/RevModPhys.91.015006
34 Seo J., Roushan P., Beidenkopf H., S. Hor Y., J. Cava R., Yazdani A.. Transmission of topological surface states through surface barriers. Nature, 2010, 466(7304): 343
https://doi.org/10.1038/nature09189
35 Lang N., P. Büchler H.. Topological networks for quantum communication between distant qubits. npj Quantum Inf., 2017, 3: 47
https://doi.org/10.1038/s41534-017-0047-x
36 Dlaska C., Vermersch B., Zoller P.. Robust quantum state transfer via topologically protected edge channels in dipolar arrays. Quantum Sci. Technol., 2017, 2(1): 015001
https://doi.org/10.1088/2058-9565/2/1/015001
37 A. Lemonde M., Peano V., Rabl P., G. Angelakis D.. Quantum state transfer via acoustic edge states in a 2D optomechanical array. New J. Phys., 2019, 21(11): 113030
https://doi.org/10.1088/1367-2630/ab51f5
38 Cao J., X. Cui W., Yi X., F. Wang H.. Topological phase transition and topological quantum state transfer in periodically modulated circuit-QED lattice. Ann. Phys., 2021, 533(9): 2100120
https://doi.org/10.1002/andp.202100120
39 Y. Cheng L., N. Zheng L., Wu R., F. Wang H., Zhang S.. Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice. Chin. Phys. B, 2022, 31(2): 020305
https://doi.org/10.1088/1674-1056/ac2f2e
40 Qi L., L. Wang G., Liu S., Zhang S., F. Wang H.. Controllable photonic and phononic topological state transfers in a small optomechanical lattice. Opt. Lett., 2020, 45(7): 2018
https://doi.org/10.1364/OL.388835
41 Qi L., L. Wang G., Liu S., Zhang S., F. Wang H.. Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice. Front. Phys., 2021, 16(1): 12503
https://doi.org/10.1007/s11467-020-0983-3
42 Stern A., H. Lindner N.. Topological quantum computation — from basic concepts to first experiments. Science, 2013, 339(6124): 1179
https://doi.org/10.1126/science.1231473
43 D. Sarma S., Freedman M., Nayak C.. Majorana zero modes and topological quantum computation. npj Quantum Inf., 2015, 1: 15001
https://doi.org/10.1038/npjqi.2015.1
44 He M., Sun H., H. Qing L.. Topological insulator: Spintronics and quantum computations. Front. Phys., 2019, 14(4): 43401
https://doi.org/10.1007/s11467-019-0893-4
45 Monkman K., Sirker J.. Operational entanglement of symmetry-protected topological edge states. Phys. Rev. Res., 2020, 2(4): 043191
https://doi.org/10.1103/PhysRevResearch.2.043191
46 Dai T., Ao Y., Bao J., Mao J., Chi Y., Fu Z., You Y., Chen X., Zhai C., Tang B., Yang Y., Li Z., Yuan L., Gao F., Lin X., G. Thompson M., L. O’Brien J., Li Y., Hu X., Gong Q., Wang J.. Topologically protected quantum entanglement emitters. Nat. Photonics, 2022, 16(3): 248
https://doi.org/10.1038/s41566-021-00944-2
47 X. Han J., L. Wu J., Wang Y., Xia Y., Y. Jiang Y., Song J.. Large-scale Greenberger−Horne−Zeilinger states through a topologically protected zero-energy mode in a superconducting qutrit-resonator chain. Phys. Rev. A, 2021, 103(3): 032402
https://doi.org/10.1103/PhysRevA.103.032402
48 X. Han J., L. Wu J., H. Yuan Z., Xia Y., Y. Jiang Y., Song J.. Fast topological pumping for the generation of large-scale Greenberger−Horne−Zeilinger states in a superconducting circuit. Front. Phys., 2022, 17(6): 62504
https://doi.org/10.1007/s11467-022-1193-y
49 Qi L., L. Wang G., Liu S., Zhang S., F. Wang H.. Engineering the topological state transfer and topological beam splitter in an even-sized Su−Schrieffer−Heeger chain. Phys. Rev. A, 2020, 102(2): 022404
https://doi.org/10.1103/PhysRevA.102.022404
50 Qi L., Xing Y., D. Zhao X., Liu S., Zhang S., Hu S., F. Wang H.. Topological beam splitter via defect-induced edge channel in the Rice−Mele model. Phys. Rev. B, 2021, 103(8): 085129
https://doi.org/10.1103/PhysRevB.103.085129
51 Qi L., Yan Y., Xing Y., D. Zhao X., Liu S., X. Cui W., Han X., Zhang S., F. Wang H.. Topological router induced via long-range hopping in a Su−Schrieffer−Heeger chain. Phys. Rev. Res., 2021, 3(2): 023037
https://doi.org/10.1103/PhysRevResearch.3.023037
52 N. Zheng L., Yi X., F. Wang H.. Engineering a phase-robust topological router in a dimerized superconducting-circuit lattice with long-range hopping and chiral symmetry. Phys. Rev. Appl., 2022, 18(5): 054037
https://doi.org/10.1103/PhysRevApplied.18.054037
53 St-Jean P., Goblot V., Galopin E., Lemaȋtre A., Ozawa T., Le Gratiet L., Sagnes I., Bloch J., Amo A.. Lasing in topological edge states of a one-dimensional lattice. Nat. Photonics, 2017, 11(10): 651
https://doi.org/10.1038/s41566-017-0006-2
54 Parto M., Wittek S., Hodaei H., Harari G., A. Bandres M., Ren J., C. Rechtsman M., Segev M., N. Christodoulides D., Khajavikhan M.. Edge-mode lasing in 1D topological active arrays. Phys. Rev. Lett., 2018, 120(11): 113901
https://doi.org/10.1103/PhysRevLett.120.113901
55 Longhi S.. Non-Hermitian gauged topological laser arrays. Ann. Phys., 2018, 530(7): 1800023
https://doi.org/10.1002/andp.201800023
56 Qi L., L. Wang G., Liu S., Zhang S., F. Wang H.. Robust interface-state laser in non-Hermitian microresonator arrays. Phys. Rev. Appl., 2020, 13(6): 064015
https://doi.org/10.1103/PhysRevApplied.13.064015
57 H. Harder T., Sun M., A. Egorov O., Vakulchyk I., Beierlein J., Gagel P., Emmerling M., Schneider C., Peschel U., G. Savenko I., Klembt S., Höfling S.. Coherent topological polariton laser. ACS Photonics, 2021, 8(5): 1377
https://doi.org/10.1021/acsphotonics.0c01958
58 Ezawa M.. Nonlinear non-Hermitian higher-order topological laser. Phys. Rev. Res., 2022, 4(1): 013195
https://doi.org/10.1103/PhysRevResearch.4.013195
59 Longhi S.. Topological pumping of edge states via adiabatic passage. Phys. Rev. B, 2019, 99(15): 155150
https://doi.org/10.1103/PhysRevB.99.155150
60 M. D’Angelis F., A. Pinheiro F., Guéry-Odelin D., Longhi S., Impens F.. Fast and robust quantum state transfer in a topological Su-Schrieffer-Heeger chain with next-to-nearest-neighbor interactions. Phys. Rev. Res., 2020, 2(3): 033475
https://doi.org/10.1103/PhysRevResearch.2.033475
61 Brouzos I., Kiorpelidis I., K. Diakonos F., Theocharis G.. Fast, robust, and amplified transfer of topological edge modes on a time-varying mechanical chain. Phys. Rev. B, 2020, 102(17): 174312
https://doi.org/10.1103/PhysRevB.102.174312
62 E. Palaiodimopoulos N., Brouzos I., K. Diakonos F., Theocharis G.. Fast and robust quantum state transfer via a topological chain. Phys. Rev. A, 2021, 103(5): 052409
https://doi.org/10.1103/PhysRevA.103.052409
63 Hu S., Ke Y., Lee C.. Topological quantum transport and spatial entanglement distribution via a disordered bulk channel. Phys. Rev. A, 2020, 101(5): 052323
https://doi.org/10.1103/PhysRevA.101.052323
64 Guéry-Odelin D., Ruschhaupt A., Kiely A., Torrontegui E., Martínez-Garaot S., G. Muga J.. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys., 2019, 91(4): 045001
https://doi.org/10.1103/RevModPhys.91.045001
65 Schmidt S., Koch J.. Circuit QED lattices: Towards quantum simulation with superconducting circuits. Ann. Phys., 2013, 525(6): 395
https://doi.org/10.1002/andp.201200261
66 Frunzio L., Wallraff A., Schuster D., Majer J., Schoelkopf R.. Fabrication and characterization of superconducting circuit QED devices for quantum computation. IEEE Trans. Appl. Supercond., 2005, 15(2): 860
https://doi.org/10.1109/TASC.2005.850084
67 L. Underwood D., E. Shanks W., Koch J., A. Houck A.. Low-disorder microwave cavity lattices for quantum simulation with photons. Phys. Rev. A, 2012, 86(2): 023837
https://doi.org/10.1103/PhysRevA.86.023837
68 Peropadre B., Forn-Díaz P., Solano E., J. García-Ripoll J.. Switchable ultrastrong coupling in circuit QED. Phys. Rev. Lett., 2010, 105(2): 023601
https://doi.org/10.1103/PhysRevLett.105.023601
69 DiCarlo L., M. Chow J., M. Gambetta J., S. Bishop L., R. Johnson B., I. Schuster D., Majer J., Blais A., Frunzio L., M. Girvin S., J. Schoelkopf R.. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature, 2009, 460(7252): 240
https://doi.org/10.1038/nature08121
70 Gu X., F. Kockum A., Miranowicz A., X. Liu Y., Nori F.. Microwave photonics with superconducting quantum circuits. Phys. Rep., 2017, 1: 718
https://doi.org/10.1016/j.physrep.2017.10.002
71 He Y., Wang Y., Yan Z.. A tunable superconducting LC-resonator with a variable superconducting electrode capacitor bank for application in wireless power transfer. Supercond. Sci. Technol., 2019, 32(12): 12LT02
https://doi.org/10.1088/1361-6668/ab4c1d
72 S. Allman M., Altomare F., D. Whittaker J., Cicak K., Li D., Sirois A., Strong J., D. Teufel J., W. Simmonds R.. RF-squid-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator. Phys. Rev. Lett., 2010, 104: 177004
https://doi.org/10.1103/PhysRevLett.104.177004
73 S. Allman M., D. Whittaker J., Castellanos-Beltran M., Cicak K., da Silva F., P. DeFeo M., Lecocq F., Sirois A., D. Teufel J., Aumentado J., W. Simmonds R.. Tunable resonant and nonresonant interactions between a phase qubit and LC resonator. Phys. Rev. Lett., 2014, 112(12): 123601
https://doi.org/10.1103/PhysRevLett.112.123601
74 Wulschner F., Goetz J., R. Koessel F., Hoffmann E., Baust A., Eder P., Fischer M., Haeberlein M., J. Schwarz M., Pernpeintner M., Xie E., Zhong L., W. Zollitsch C., Peropadre B., G. Ripoll J.-J., Solano E., G. Fedorov K., P. Menzel E., Deppe F., Marx A., Gross R.. Tunable coupling of transmission-line microwave resonators mediated by an RF squid. EPJ Quantum Technol., 2016, 3: 8
https://doi.org/10.1140/epjqt/s40507-016-0048-2
75 Blais A., S. Huang R., Wallraff A., M. Girvin S., J. Schoelkopf R.. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A, 2004, 69(6): 062320
https://doi.org/10.1103/PhysRevA.69.062320
76 Clarke J., K. Wilhelm F.. Superconducting quantum bits. Nature, 2008, 453(7198): 1031
https://doi.org/10.1038/nature07128
77 Q. You J., Nori F.. Atomic physics and quantum optics using superconducting circuits. Nature, 2005, 474: 589
https://doi.org/10.1038/nature10122
[1] Kai-Min Zheng, Shi-You Liu, Hao-Liang Zhang, Cun-Jin Liu, Li-Yun Hu. A generalized two-mode entangled state: Its generation, properties, and applications[J]. Front. Phys. , 2014, 9(4): 451-459.
[2] LIU Xiong-jun, LIU Xin, KWEK Leong-Chuan, OH ChooHiap. Manipulating atomic states via optical orbital angular-momentum[J]. Front. Phys. , 2008, 3(2): 113-125.
[3] YANG Shuo, SONG Zhi, SUN Chang-pu. Quantum dynamics of tight-binding networks coherently controlled by external fields[J]. Front. Phys. , 2007, 2(1): 1-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed