Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (6) : 63302    https://doi.org/10.1007/s11467-023-1306-2
RESEARCH ARTICLE
Flat band localization due to self-localized orbital
Zhen Ma1, Wei-Jin Chen2, Yuntian Chen2(), Jin-Hua Gao1(), X. C. Xie3,4,5
1. School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
2. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
3. International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
4. Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
5. CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(4496 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We discover a new wave localization mechanism in a periodic wave system, which can produce a novel type of flat band and is distinct from the known localization mechanisms, i.e., Anderson localization and flat band lattices. The first example we give is a designed electron waveguide (EWG) on 2DEG with special periodic confinement potential. Numerical calculations show that, with proper confinement geometry, electrons can be completely localized in an open waveguide. We interpret this flat band localization (FBL) phenomenon by introducing the concept of self-localized orbitals. Essentially, each unit cell of the waveguide is equivalent to an artificial atom, where the self-localized orbital is a special eigenstate with unique spatial distribution. These self-localized orbitals form the flat bands in the waveguide. Such self-localized orbital induced FBL is a general phenomenon of wave motion, which can arise in any wave systems with carefully engineered boundary conditions. We then design a metallic waveguide (MWG) array to illustrate that similar FBL can be readily realized and observed with electromagnetic waves.

Keywords flat band localization      self-localized orbital      electron waveguide     
Corresponding Author(s): Yuntian Chen,Jin-Hua Gao   
About author:

* Both are co-first authors.

Issue Date: 16 June 2023
 Cite this article:   
Zhen Ma,Wei-Jin Chen,Yuntian Chen, et al. Flat band localization due to self-localized orbital[J]. Front. Phys. , 2023, 18(6): 63302.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1306-2
https://academic.hep.com.cn/fop/EN/Y2023/V18/I6/63302
Fig.1  (a) Schematic of the electron waveguide (EWG) on 2DEG. The electrons are confined in a dark-colored region, and the dashed box indicates a unit cell of the waveguide. (b) One example of U(r) in one unit cell. U(r) is zero inside the waveguide (the gray region) and infinite outside. Here, d = 52 nm, h = 14 nm, l = 26 nm. The corresponding band structure is given in (d). (c) is the |?k(r)|2 of the flat band (upper one) at the Γ (k = 0) point, marked as black dot in (d). (e) and (g) are two other EWGs, where U(r) are of different shapes, and the corresponding band structures are given in (f) and (h), respectively. |?k(r)|2 of the flat band at the marked k point (black dot) are also plotted in (e) and (f). The geometry parameters for (e) and (f) are given in the Electronic Supplementary Materials.
Fig.2  (a) U(r) of an isolated artificial atom (or quantum dot). The geometry parameters are the same as Fig.1(b). U(r) is zero inside the atom (gray region) and infinite outside. (b) and (c) are the wave functions |?(r)|2 of the fourth and sixth orbitals (eigenstates) in the isolated atom, respectively. (d) is the wave function |?k(r)|2 of the sixth band (upper flat band) at Γ point (k=0) for the EWG in Fig.1(d), while (e) is that of the fourth band (dispersive). We plot one unit cell in (d) but two unit cells in (e) in order to show the bond between two adjacent orbitals.
Fig.3  (a) Schematic of the metallic waveguide array, where the shape of the cross section of one unit cell in x?y plane is given in (b). In (b), the geometry of each unit cell is determined by d, l, h, where d is the lattice constant, h is the height between the bottom and the lowest upper surface, l is the hight of the bump of the upper surface. The electromagnetic wave propagate along z-axis, and can leak from one waveguide to the neighbouring waveguide in the x?y plane; three different waveguide arrays, i.e., labelled as w1, w2, w3, are examined, see the mode profiles (Ez) in (c, e, g) and the band diagram in (d, f, h) for w1, w2, w3. The geomentric parameters for w1, w2, w3 are given by as follows, d/l/h = 16/8/5 cm for w1, d/l/h =16/8/9.2 cm for w2, d/l/h = 16/8/11.2 cm for w3.
1 W. Anderson P. . Absence of diffusion in certain random lattices. Phys. Rev., 1958, 109(5): 1492
https://doi.org/10.1103/PhysRev.109.1492
2 Lagendijk A. , V. Tiggelen B. , S. Wiersma D. . Fifty years of Anderson localization. Phys. Today, 2009, 62(8): 24
https://doi.org/10.1063/1.3206091
3 Sutherland B. . Localization of electronic wave functions due to local topology. Phys. Rev. B, 1986, 34(8): 5208
https://doi.org/10.1103/PhysRevB.34.5208
4 H. Lieb E. . Two theorems on the Hubbard model. Phys. Rev. Lett., 1989, 62(10): 1201
https://doi.org/10.1103/PhysRevLett.62.1201
5 Mielke A. . Ferromagnetic ground states for the Hubbard model on line graphs. J. Phys. Math. Gen., 1991, 24(2): L73
https://doi.org/10.1088/0305-4470/24/2/005
6 Tasaki H. . Ferromagnetism in the Hubbard models with degenerate single-electron ground states. Phys. Rev. Lett., 1992, 69(10): 1608
https://doi.org/10.1103/PhysRevLett.69.1608
7 Leykam D. , Andreanov A. , Flach S. . Artificial flat band systems: from lattice models to experiments. Adv. Phys. X, 2018, 3(1): 1473052
https://doi.org/10.1080/23746149.2018.1473052
8 X. Qiu W. , Li S. , H. Gao J. , Zhou Y. , C. Zhang F. . Designing an artificial Lieb lattice on a metal surface. Phys. Rev. B, 2016, 94(24): 241409
https://doi.org/10.1103/PhysRevB.94.241409
9 Ma L. , X. Qiu W. , T. Lü J. , H. Gao J. . Orbital degrees of freedom in artificial electron lattices on a metal surface. Phys. Rev. B, 2019, 99(20): 205403
https://doi.org/10.1103/PhysRevB.99.205403
10 R. Slot M. , S. Gardenier T. , H. Jacobse P. , C. P. van Miert G. , N. Kempkes S. , J. M. Zevenhuizen S. , M. Smith C. , Vanmaekelbergh D. , Swart I. . Experimental realization and characterization of an electronic Lieb lattice. Nat. Phys., 2017, 13(7): 672
https://doi.org/10.1038/nphys4105
11 Drost R. , Ojanen T. , Harju A. , Liljeroth P. . Topological states in engineered atomic lattices. Nat. Phys., 2017, 13(7): 668
https://doi.org/10.1038/nphys4080
12 Shen R. , B. Shao L. , Wang B. , Y. Xing D. . Single Dirac cone with a flat band touching on line-centered-square optical lattices. Phys. Rev. B, 2010, 81(4): 041410
https://doi.org/10.1103/PhysRevB.81.041410
13 Apaja V. , Hyrkäs M. , Manninen M. , bands Flat . Dirac cones, and atom dynamics in an optical lattice. Phys. Rev. A, 2010, 82(4): 041402
https://doi.org/10.1103/PhysRevA.82.041402
14 Taie S. , Ozawa H. , Ichinose T. , Nishio T. , Nakajima S. , Takahashi Y. . Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice. Sci. Adv., 2015, 1(10): e1500854
https://doi.org/10.1126/sciadv.1500854
15 Ozawa H. , Taie S. , Ichinose T. , Takahashi Y. . Interaction-driven shift and distortion of a flat band in an optical Lieb lattice. Phys. Rev. Lett., 2017, 118(17): 175301
https://doi.org/10.1103/PhysRevLett.118.175301
16 Guzmán-Silva D. , Mejía-Cortés C. , A. Bandres M. , C. Rechtsman M. , Weimann S. , Nolte S. , Segev M. , Szameit A. , A. Vicencio R. . Experimental observation of bulk and edge transport in photonic Lieb lattices. New J. Phys., 2014, 16(6): 063061
https://doi.org/10.1088/1367-2630/16/6/063061
17 Mukherjee S. , Spracklen A. , Choudhury D. , Goldman N. , Öhberg P. , Andersson E. , R. Thomson R. . Observation of a localized flat-band state in a photonic Lieb lattice. Phys. Rev. Lett., 2015, 114(24): 245504
https://doi.org/10.1103/PhysRevLett.114.245504
18 A. Vicencio R. , Cantillano C. , Morales-Inostroza L. , Real B. , Mejía-Cortés C. , Weimann S. , Szameit A. , I. Molina M. . Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett., 2015, 114(24): 245503
https://doi.org/10.1103/PhysRevLett.114.245503
19 H. Yang Z. , P. Wang Y. , Y. Xue Z. , L. Yang W. , Hu Y. , H. Gao J. , Wu Y. . Circuit quantum electrodynamics simulator of flat band physics in a Lieb lattice. Phys. Rev. A, 2016, 93(6): 062319
https://doi.org/10.1103/PhysRevA.93.062319
20 L. Wan L. , Y. Lü X. , H. Gao J. , Wu Y. . Controllable photon and phonon localization in optomechanical Lieb lattices. Opt. Express, 2017, 25(15): 17364
https://doi.org/10.1364/OE.25.017364
21 Pal B. , Saha K. . Flat bands in fractal-like geometry. Phys. Rev. B, 2018, 97(19): 195101
https://doi.org/10.1103/PhysRevB.97.19510
22 C. Xie X. , Das Sarma S. . “Extended” electronic states in a Fibonacci superlattice. Phys. Rev. Lett., 1988, 60(15): 1585
https://doi.org/10.1103/PhysRevLett.60.1585
23 Chen Z. , Liu X. , Zeng J. . Electromagnetically induced moiré optical lattices in a coherent atomic gas. Front. Phys., 2022, 17(4): 42508
https://doi.org/10.1007/s11467-022-1153-6
24 Zeng J. , Lu M. , Liu H. , Jiang H. , Xie X. . Realistic flat-band model based on degenerate p-orbitals in two-dimensional ionic materials. Sci. Bull. (Beijing), 2021, 66(8): 765
https://doi.org/10.1016/j.scib.2021.01.006
25 Wu C. , Bergman D. , Balents L. , Das Sarma S. . Flat bands and Wigner crystallization in the honeycomb optical lattice. Phys. Rev. Lett., 2007, 99(7): 070401
https://doi.org/10.1103/PhysRevLett.99.070401
26 Miyahara S. , Kusuta S. , Furukawa N. . BCS theory on a flat band lattice. Physica C, 2007, 460−462: 1145
https://doi.org/10.1016/j.physc.2007.03.393
27 Ma Z. , Li S. , M. Xiao M. , W. Zheng Y. , Lu M. , Liu H. , H. Gao J. , C. Xie X. . Moiré flat bands of twisted few-layer graphite. Front. Phys., 2023, 18(1): 13307
https://doi.org/10.1007/s11467-022-1220-z
28 Tang E. , W. Mei J. , G. Wen X. . High-temperature fractional quantum Hall states. Phys. Rev. Lett., 2011, 106(23): 236802
https://doi.org/10.1103/PhysRevLett.106.236802
29 Sun K. , Gu Z. , Katsura H. , Das Sarma S. . Nearly flatbands with nontrivial topology. Phys. Rev. Lett., 2011, 106(23): 236803
https://doi.org/10.1103/PhysRevLett.106.236803
30 Neupert T. , Santos L. , Chamon C. , Mudry C. . Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett., 2011, 106(23): 236804
https://doi.org/10.1103/PhysRevLett.106.236804
31 Maimaiti W. , Andreanov A. , C. Park H. , Gendelman O. , Flach S. . Compact localized states and flat-band generators in one dimension. Phys. Rev. B, 2017, 95(11): 115135
https://doi.org/10.1103/PhysRevB.95.115135
32 Röntgen M. , V. Morfonios C. , Schmelcher P. . Compact localized states and flat bands from local symmetry partitioning. Phys. Rev. B, 2018, 97(3): 035161
https://doi.org/10.1103/PhysRevB.97.035161
33 A. Vicencio R. , Mejía-Cortés C. . Diffraction-free image transmission in kagome photonic lattices. J. Opt., 2014, 16(1): 015706
https://doi.org/10.1088/2040-8978/16/1/015706
34 Xia S. , Hu Y. , Song D. , Zong Y. , Tang L. , Chen Z. . Demonstration of flat-band image transmission in optically induced Lieb photonic lattices. Opt. Lett., 2016, 41(7): 1435
https://doi.org/10.1364/OL.41.001435
35 Baba T. . Slow light in photonic crystals. Nat. Photonics, 2008, 2(8): 465
https://doi.org/10.1038/nphoton.2008.146
36 W. Hsu C. , Zhen B. , D. Stone A. , D. Joannopoulos J. , Soljăcíc M. . Bound states in the continuum. Nat. Rev. Mater., 2016, 1(9): 16048
https://doi.org/10.1038/natrevmats.2016.48
37 See Supplemental Material I for the calculations about the EWGs.
38 See Supplemental Material II for the Fermi level in EWG.
39 See Supplemental Material III for the wave functions in the bump.
40 X. Qiu W. , Ma L. , T. Lü J. , H. Gao J. . Making an artificial px,y -orbital honeycomb electron lattice on a metal surface. Phys. Rev. B, 2021, 104(23): 235404
https://doi.org/10.1103/PhysRevB.104.235404
41 R. Slot M. , N. Kempkes S. , J. Knol E. , M. J. van Weerdenburg W. , J. van den Broeke J. , Wegner D. , Vanmaekelbergh D. , A. Khajetoorians A. , Morais Smith C. , Swart I. . p-band engineering in artificial electronic lattices. Phys. Rev. X, 2019, 9(1): 011009
https://doi.org/10.1103/PhysRevX.9.011009
42 See Supplemental Material IV for other artificial orbitals in EWG.
43 See Supplemental Material VII for this self-localized orbits.
44 Danieli C. , Maluckov A. , Flach S. . Compact discrete breathers on flat-band networks. Low Temp. Phys., 2018, 44: 678
https://doi.org/10.1063/1.5041434
[1] fop-21306-OF-mazhen_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed