Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (6) : 62304    https://doi.org/10.1007/s11467-023-1320-4
RESEARCH ARTICLE
Generation and modulation of multiple 2D bulk photovoltaic effects in space-time reversal asymmetric 2H-FeCl2
Liang Liu1,2, Xiaolin Li1, Luping Du3, Xi Zhang1,4()
1. Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, Shenzhen 518060, China
2. School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100, China
3. Nanophotonics Research Centre, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
4. Research Center of Plasma Medical Technology, Shenzhen University, Shenzhen 518060, China
 Download: PDF(5476 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The two-dimensional (2D) bulk photovoltaic effect (BPVE) is a cornerstone for future highly efficient 2D solar cells and optoelectronics. The ferromagnetic semiconductor 2H-FeCl2 is shown to realize a new type of BPVE in which spatial inversion (P), time reversal (T), and space−time reversal (PT) symmetries are broken (PT-broken). Using density functional theory and perturbation theory, we show that 2H-FeCl2 exhibits giant photocurrents, photo-spin-currents, and photo-orbital-currents under illumination by linearly polarized light. The injection-like and shift-like photocurrents coexist and propagate in different directions. The material also demonstrates substantial photoconductance, photo-spin-conductance, and photo-orbital-conductance, with magnitudes up to 4650 (nm·μA/V2), 4620 [nm·μA/V2 /(2e)], and 6450 (nm·μA/V2 /e), respectively. Furthermore, the injection-currents, shift-spin-currents, and shift-orbital-currents can be readily switched via rotating the magnetizations of 2H-FeCl2. These results demonstrate the superior performance and intriguing control of a new type of BPVE in 2H-FeCl2.

Keywords 2D ferromagnetism      bulk photovoltaic effects      photo-spin-currents      photo-orbital-currents      nonlinear optoelectronics     
Corresponding Author(s): Xi Zhang   
Issue Date: 25 July 2023
 Cite this article:   
Liang Liu,Xiaolin Li,Luping Du, et al. Generation and modulation of multiple 2D bulk photovoltaic effects in space-time reversal asymmetric 2H-FeCl2[J]. Front. Phys. , 2023, 18(6): 62304.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1320-4
https://academic.hep.com.cn/fop/EN/Y2023/V18/I6/62304
ClassSymmetryBPVE mechanismConcrete 2D crystal
1P-brokenT-conservedLinear light: shiftCircular light: injectionMoS2 [16, 17, 36]MoSe2, CuInP2S6 [8]
2P-brokenT-brokenPT-conservedLinear light: injectionCircular light: shift + injectionBilayer CrI3 [7], bilayerMnBi2Te4 [9, 34], 1T-FeCl2 [37]Monolayer MnPSe3 [35]
3P-brokenT-brokenPT-brokenLinear light: shift + injectionCircular light: shift + injectionMonolayer 2H-FeCl2 (this work)
Tab.1  The symmetry classification, mechanism, and typical platforms for the nonlinear photocurrents.
Fig.1  Structure of class 3 BPVEs in 2H-FeCl2. (a) Geometry structure of 2H-FeCl2. Green and brown balls denote Cl and Fe atoms. Dashed lines outline the periodic cell. (b) Local structures of 2H-FeCl2. Blue dots denote the magnetic moments of Fe atoms along +z-direction. Blue crosses denote the magnetic moments along ?z-direction. Left part is the original structure, right part involves transformed structures through spatial inversion or time reversal. (c) The typical valley (K and K' = ?K) electronic structures in systems with both P and T symmetries, with only T symmetry, and without P or T symmetries. Black, red, and blue curves denote the spin compensated, spin up and spin down states. Arrows denote the electron-hole generation processes via absorbing photons. (d) The prototype of 2D BPVE device, in which steady currents, spin-currents and orbital-currents are generated by applying light.
Fig.2  Electronic structures of 2H-FeCl2. (a) Band structure without SOC and (b) with SOC. Red and blue lines represent spin down and up states. The irreducible representations of several states in high symmetric k-points were marked. Energy gaps at K and K' were defined as ΔK and ΔK'. (c) The atomic wave functions of irreducible representations of states in FeCl2. Color denotes the phases of wavefunctions. (d) Irreducible Brillouin zone of 2H-FeCl2. a1, a2 are lattice vectors. g1, g2 are reciprocal lattice vectors.
Fig.3  Calculated 2nd order photoconductance (a, b), photo-spin-conductance (c, d), and photo-orbital-conductance (e, f). The magnetizations of 2H-FeCl2 in (a), (c), and (e) are in +z-direction. The magnetizations in (b), (d), and (f) are in ?z-direction.
Fig.4  The distribution of photocurrents on BZ of 2H-FeCl2 under illumination of x-polarized light with energy 1.05 eV. (a, b) The photocurrents along x-direction. (c, d) The photocurrents along y-direction. Insets depict the magnetization orientation of FeCl2 in each case.
Fig.5  Detections of photocurrents, photo-spin-currents, and photo-orbital-currents in 2H-FeCl2. (a) Detecting the photocurrents along x-axis via measuring the currents under zero-bias. The Green and purple arrows along x-axis denote the flowing of electrons and holes induced by the illuminations of linearly polarized lights. The arrows along y-axis denote the unfavored propagation directions of photo-carriers. (b) Detecting the photo-spin-currents via measuring the Hall voltage produced by the ISHE. Red and blue arrows denote the flowing of spin-currents with spin-polarizations along +z and ?z directions. (c) Detecting the orbital magnetic moments on edges via MOKE. The colored tori represent the orbital angular moments and the colors are the phases. The in-plane blue and red arrows denote the flowing of orbital angular moments. The out-of-plane arrows on edges denote the orbital magnetic moments caused by the accumulations of orbital moments on edges.
1 Kraut W. , von Baltz R. . Anomalous bulk photovoltaic effect in ferroelectrics: A quadratic response theory. Phys. Rev. B, 1979, 19(3): 1548
https://doi.org/10.1103/PhysRevB.19.1548
2 von Baltz R. , Kraut W. . Theory of the bulk photovoltaic effect in pure crystals. Phys. Rev. B, 1981, 23(10): 5590
https://doi.org/10.1103/PhysRevB.23.5590
3 Choi T. , Lee S. , J. Choi Y. , Kiryukhin V. , W. Cheong S. . Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 2009, 324(5923): 63
https://doi.org/10.1126/science.1168636
4 Y. Yang S. , Seidel J. , J. Byrnes S. , Shafer P. , H. Yang C. , D. Rossell M. , Yu P. , H. Chu Y. , F. Scott J. , W. III Ager J. , W. Martin L. , Ramesh R. . Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol., 2010, 5(2): 143
https://doi.org/10.1038/nnano.2009.451
5 Daranciang D. , J. Highland M. , Wen H. , M. Young S. , C. Brandt N. . et al.. Ultrafast photovoltaic response in ferroelectric nanolayers. Phys. Rev. Lett., 2012, 108(8): 087601
https://doi.org/10.1103/PhysRevLett.108.087601
6 E. Spanier J. , M. Fridkin V. , M. Rappe A. , R. Akbashev A. , Polemi A. , Qi Y. , Gu Z. , M. Young S. , J. Hawley C. , Imbrenda D. , Xiao G. , L. Bennett-Jackson A. , L. Johnson C. . Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator. Nat. Photonics, 2016, 10(9): 611
https://doi.org/10.1038/nphoton.2016.143
7 Zhang Y. , Holder T. , Ishizuka H. , de Juan F. , Nagaosa N. , Felser C. , Yan B. . Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3. Nat. Commun., 2019, 10(1): 3783
https://doi.org/10.1038/s41467-019-11832-3
8 Li Y. , Fu J. , Mao X. , Chen C. , Liu H. , Gong M. , Zeng H. . Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat. Commun., 2021, 12(1): 5896
https://doi.org/10.1038/s41467-021-26200-3
9 Xu H. , Wang H. , Zhou J. , Li J. . Pure spin photocurrent in non-centrosymmetric crystals: Bulk spin photovoltaic effect. Nat. Commun., 2021, 12(1): 4330
https://doi.org/10.1038/s41467-021-24541-7
10 Zeng H. , Wen Y. , Yin L. , Cheng R. , Wang H. , Liu C. , He J. . Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53603
https://doi.org/10.1007/s11467-023-1286-2
11 M. Glass A. , von der Linde D. , J. Negran T. . High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett., 1974, 25(4): 233
https://doi.org/10.1063/1.1655453
12 Dalba G. , Soldo Y. , Rocca F. , M. Fridkin V. , Sainctavit P. . Giant bulk photovoltaic effect under linearly polarized X-ray synchrotron radiation. Phys. Rev. Lett., 1995, 74(6): 988
https://doi.org/10.1103/PhysRevLett.74.988
13 Xiao D. , C. Chang M. , Niu Q. . Berry phase effects on electronic properties. Rev. Mod. Phys., 2010, 82(3): 1959
https://doi.org/10.1103/RevModPhys.82.1959
14 Yu R. , Zhang W. , J. Zhang H. , C. Zhang S. , Dai X. , Fang Z. . Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329(5987): 61
https://doi.org/10.1126/science.1187485
15 Nakamura M. , Horiuchi S. , Kagawa F. , Ogawa N. , Kurumaji T. , Tokura Y. , Kawasaki M. . Shift current photovoltaic effect in a ferroelectric charge-transfer complex. Nat. Commun., 2017, 8(1): 281
https://doi.org/10.1038/s41467-017-00250-y
16 J. Zhang Y. , Ideue T. , Onga M. , Qin F. , Suzuki R. , Zak A. , Tenne R. , H. Smet J. , Iwasa Y. . Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature, 2019, 570(7761): 349
https://doi.org/10.1038/s41586-019-1303-3
17 Dong Y.M. Yang M.Yoshii M.Matsuoka S.Kitamura S.Hasegawa T.Ogawa N.Morimoto T.Ideue T.Iwasa Y., Giant bulk piezophotovoltaic effect in 3R-MoS2, Nat. Nanotechnol. 18(1), 36 (2022)
18 Zhong D. , L. Seyler K. , Linpeng X. , Cheng R. , Sivadas N. , Huang B. , Schmidgall E. , Taniguchi T. , Watanabe K. , A. McGuire M. , Yao W. , Xiao D. , M. C. Fu K. , Xu X. . Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv., 2017, 3(5): e1603113
https://doi.org/10.1126/sciadv.1603113
19 L. Seyler K. , Zhong D. , Huang B. , Linpeng X. , P. Wilson N. , Taniguchi T. , Watanabe K. , Yao W. , Xiao D. , A. McGuire M. , M. C. Fu K. , Xu X. . Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett., 2018, 18(6): 3823
https://doi.org/10.1021/acs.nanolett.8b01105
20 Zhao S. , Li X. , Dong B. , Wang H. , Wang H. , Zhang Y. , Han Z. , Zhang H. . Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: Status and challenges. Rep. Prog. Phys., 2021, 84(2): 026401
https://doi.org/10.1088/1361-6633/abdb98
21 Wang G. , Marie X. , L. Liu B. , Amand T. , Robert C. , Cadiz F. , Renucci P. , Urbaszek B. . Control of exciton valley coherence in transition metal dichalcogenide monolayers. Phys. Rev. Lett., 2016, 117(18): 187401
https://doi.org/10.1103/PhysRevLett.117.187401
22 Schmidt R. , Arora A. , Plechinger G. , Nagler P. , Granados del Águila A. , V. Ballottin M. , C. M. Christianen P. , Michaelis de Vasconcellos S. , Schüller C. , Korn T. , Bratschitsch R. . Magnetic-field-induced rotation of polarized light emission from monolayer WS2. Phys. Rev. Lett., 2016, 117(7): 077402
https://doi.org/10.1103/PhysRevLett.117.077402
23 Li Y. , Ludwig J. , Low T. , Chernikov A. , Cui X. , Arefe G. , D. Kim Y. , M. van der Zande A. , Rigosi A. , M. Hill H. , H. Kim S. , Hone J. , Li Z. , Smirnov D. , F. Heinz T. . Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett., 2014, 113(26): 266804
https://doi.org/10.1103/PhysRevLett.113.266804
24 Srivastava A. , Sidler M. , V. Allain A. , S. Lembke D. , Kis A. , Imamoğlu A. . Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys., 2015, 11(2): 141
https://doi.org/10.1038/nphys3203
25 Aivazian G. , Gong Z. , M. Jones A. , L. Chu R. , Yan J. , G. Mandrus D. , Zhang C. , Cobden D. , Yao W. , Xu X. . Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys., 2015, 11(2): 148
https://doi.org/10.1038/nphys3201
26 MacNeill D. , Heikes C. , F. Mak K. , Anderson Z. , Kormányos A. , Zólyomi V. , Park J. , C. Ralph D. . Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett., 2015, 114(3): 037401
https://doi.org/10.1103/PhysRevLett.114.037401
27 Gong C. , Li L. , Li Z. , Ji H. , Stern A. , Xia Y. , Cao T. , Bao W. , Wang C. , Wang Y. , Q. Qiu Z. , J. Cava R. , G. Louie S. , Xia J. , Zhang X. . Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
https://doi.org/10.1038/nature22060
28 Huang B. , Clark G. , Navarro-Moratalla E. , R. Klein D. , Cheng R. , L. Seyler K. , Zhong D. , Schmidgall E. , A. McGuire M. , H. Cobden D. , Yao W. , Xiao D. , Jarillo-Herrero P. , Xu X. . Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
https://doi.org/10.1038/nature22391
29 S. Burch K. , Mandrus D. , G. Park J. . Magnetism in two-dimensional van der Waals materials. Nature, 2018, 563(7729): 47
https://doi.org/10.1038/s41586-018-0631-z
30 Liu L.Chen S.Lin Z.Zhang X., A symmetry-breaking phase in two-dimensional FeTe2 with ferromagnetism above room temperature, J. Phys. Chem. Lett. 11(18), 7893 (2020)
31 Deng Y. , Yu Y. , Song Y. , Zhang J. , Z. Wang N. , Sun Z. , Yi Y. , Z. Wu Y. , Wu S. , Zhu J. , Wang J. , H. Chen X. , Zhang Y. . Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563(7729): 94
https://doi.org/10.1038/s41586-018-0626-9
32 Huang C. , Feng J. , Wu F. , Ahmed D. , Huang B. , Xiang H. , Deng K. , Kan E. . Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J. Am. Chem. Soc., 2018, 140(36): 11519
https://doi.org/10.1021/jacs.8b07879
33 Zheng S. , Huang C. , Yu T. , Xu M. , Zhang S. , Xu H. , Liu Y. , Kan E. , Wang Y. , Yang G. . High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy. J. Phys. Chem. Lett., 2019, 10(11): 2733
https://doi.org/10.1021/acs.jpclett.9b00970
34 Wang H. , Qian X. . Electrically and magnetically switchable nonlinear photocurrent in PT-symmetric magnetic topological quantum materials. npj Comput. Mater., 2020, 6: 199
https://doi.org/10.1038/s41524-020-00462-9
35 Liu L. , Liu W. , Cheng B. , Cui B. , Hu J. . Switchable giant bulk photocurrents and photo-spin-currents in monolayer PT-symmetric antiferromagnet MnPSe3. J. Phys. Chem. Lett., 2023, 14(2): 370
https://doi.org/10.1021/acs.jpclett.2c03383
36 Jiang J. , Chen Z. , Hu Y. , Xiang Y. , Zhang L. , Wang Y. , C. Wang G. , Shi J. . Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol., 2021, 16(8): 894
https://doi.org/10.1038/s41565-021-00919-y
37 Zhang C. , Guo P. , Zhou J. . Tailoring bulk photovoltaic effects in magnetic sliding ferroelectric materials. Nano Lett., 2022, 22(23): 9297
https://doi.org/10.1021/acs.nanolett.2c02802
38 Kresse G.Hafner J., Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48(17), 13115 (1993)
39 Kresse G. , Furthmuller J. . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
40 P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
41 J. Monkhorst H. , D. Pack J. . Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
https://doi.org/10.1103/PhysRevB.13.5188
42 Franchini C. , Kovacik R. , Marsman M. , S. Murthy S. , He J. , Ederer C. , Kresse G. . Maximally localized Wannier functions in LaMnO3 within PBE + U, hybrid functionals and partially self-consistent GW: An efficient route to construct ab initio tight-binding parameters for eg perovskites. J. Phys.: Cond. Matter, 2012, 24: 235602
https://doi.org/10.1088/0953-8984/24/23/235602
43 Pizzi G. , Vitale V. , Arita R. , Blügel S. , Freimuth F. . et al.. Wannier90 as a community code: New features and applications. J. Phys.: Conden. Matter, 2020, 32: 165902
https://doi.org/10.1088/1361-648X/ab51ff
44 A. Mostofi A. , R. Yates J. , Pizzi G. , S. Lee Y. , Souza I. , Vanderbilt D. , Marzari N. . An updated version of Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun., 2014, 185(8): 2309
https://doi.org/10.1016/j.cpc.2014.05.003
45 R. Beal A. , P. Hughes H. . Kramers−Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2. J. Phys. C, 1979, 12(5): 881
https://doi.org/10.1088/0022-3719/12/5/017
46 Splendiani A. , Sun L. , Zhang Y. , Li T. , Kim J. , Y. Chim C. , Galli G. , Wang F. . Emerging photoluminescence in monolayer MoS2. Nano Lett., 2010, 10(4): 1271
https://doi.org/10.1021/nl903868w
47 Li Y. , Wang H. , Xie L. , Liang Y. , Hong G. , Dai H. . MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc., 2011, 133(19): 7296
https://doi.org/10.1021/ja201269b
48 Huang C. , Wu S. , M. Sanchez A. , J. P. Peters J. , Beanland R. , S. Ross J. , Rivera P. , Yao W. , H. Cobden D. , Xu X. . Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater., 2014, 13(12): 1096
https://doi.org/10.1038/nmat4064
49 Wang X. , Gong Y. , Shi G. , L. Chow W. , Keyshar K. , Ye G. , Vajtai R. , Lou J. , Liu Z. , Ringe E. , K. Tay B. , M. Ajayan P. . Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano, 2014, 8(5): 5125
https://doi.org/10.1021/nn501175k
50 Ruppert C. , B. Aslan O. , F. Heinz T. . Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett., 2014, 14(11): 6231
https://doi.org/10.1021/nl502557g
51 Liu L. , Lin Z. , Hu J. , Zhang X. . Full quantum search for high Tc two-dimensional van der Waals ferromagnetic semiconductors. Nanoscale, 2021, 13(17): 8137
https://doi.org/10.1039/D0NR08687H
52 Mu X. , Zhou J. . Pure bulk orbital and spin photocurrent in two-dimensional ferroelectric materials. npj Comput. Mater., 2021, 7: 61
https://doi.org/10.1038/s41524-021-00531-7
53 Zhu X. , Chen Y. , Liu Z. , Han Y. , Qiao Z. . Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials. Front. Phys., 2022, 18(2): 23302
https://doi.org/10.1007/s11467-022-1228-4
54 Zheng G. , Qu S. , Zhou W. , Ouyang F. . Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties. Front. Phys., 2023, 18(5): 53302
https://doi.org/10.1007/s11467-023-1285-3
55 Ibañez-Azpiroz J.S. Tsirkin S.Souza I., Ab initio calculation of the shift photocurrent by Wannier interpolation, Phys. Rev. B 97(24), 245143 (2018)
56 Watanabe H. , Yanase Y. . Chiral photocurrent in parity-violating magnet and enhanced response in topological antiferromagnet. Phys. Rev. X, 2021, 11(1): 011001
https://doi.org/10.1103/PhysRevX.11.011001
57 Go D. , Jo D. , Kim C. , W. Lee H. . Intrinsic spin and orbital Hall effects from orbital texture. Phys. Rev. Lett., 2018, 121(8): 086602
https://doi.org/10.1103/PhysRevLett.121.086602
58 P. Cysne T. , Costa M. , M. Canonico L. , B. Nardelli M. , B. Muniz R. , G. Rappoport T. . Disentangling orbital and valley Hall effects in bilayers of transition metal dichalcogenides. Phys. Rev. Lett., 2021, 126(5): 056601
https://doi.org/10.1103/PhysRevLett.126.056601
59 Wang H. , Zhang C. , Rana F. . Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2. Nano Lett., 2015, 15(12): 8204
https://doi.org/10.1021/acs.nanolett.5b03708
60 Lu D.Liu L.Ma Y.Yang K.Wu H., A unique electronic state in a ferromagnetic semiconductor FeCl2 monolayer, J. Mater. Chem. C 10(20), 8009 (2022)
[1] fop-21320-OF-liuliang_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed