|
|
Generation and modulation of multiple 2D bulk photovoltaic effects in space-time reversal asymmetric 2H-FeCl2 |
Liang Liu1,2, Xiaolin Li1, Luping Du3, Xi Zhang1,4( ) |
1. Institute of Nanosurface Science and Engineering, Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, Shenzhen 518060, China 2. School of Physics, State Key Laboratory for Crystal Materials, Shandong University, Jinan 250100, China 3. Nanophotonics Research Centre, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China 4. Research Center of Plasma Medical Technology, Shenzhen University, Shenzhen 518060, China |
|
|
Abstract The two-dimensional (2D) bulk photovoltaic effect (BPVE) is a cornerstone for future highly efficient 2D solar cells and optoelectronics. The ferromagnetic semiconductor 2H-FeCl2 is shown to realize a new type of BPVE in which spatial inversion (P), time reversal (T), and space−time reversal (PT) symmetries are broken (PT-broken). Using density functional theory and perturbation theory, we show that 2H-FeCl2 exhibits giant photocurrents, photo-spin-currents, and photo-orbital-currents under illumination by linearly polarized light. The injection-like and shift-like photocurrents coexist and propagate in different directions. The material also demonstrates substantial photoconductance, photo-spin-conductance, and photo-orbital-conductance, with magnitudes up to 4650 (nm·μA/V2), 4620 [nm·μA/V2 /(2e)], and 6450 (nm·μA/V2 /e), respectively. Furthermore, the injection-currents, shift-spin-currents, and shift-orbital-currents can be readily switched via rotating the magnetizations of 2H-FeCl2. These results demonstrate the superior performance and intriguing control of a new type of BPVE in 2H-FeCl2.
|
Keywords
2D ferromagnetism
bulk photovoltaic effects
photo-spin-currents
photo-orbital-currents
nonlinear optoelectronics
|
Corresponding Author(s):
Xi Zhang
|
Issue Date: 25 July 2023
|
|
1 |
Kraut W. , von Baltz R. . Anomalous bulk photovoltaic effect in ferroelectrics: A quadratic response theory. Phys. Rev. B, 1979, 19(3): 1548
https://doi.org/10.1103/PhysRevB.19.1548
|
2 |
von Baltz R. , Kraut W. . Theory of the bulk photovoltaic effect in pure crystals. Phys. Rev. B, 1981, 23(10): 5590
https://doi.org/10.1103/PhysRevB.23.5590
|
3 |
Choi T. , Lee S. , J. Choi Y. , Kiryukhin V. , W. Cheong S. . Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 2009, 324(5923): 63
https://doi.org/10.1126/science.1168636
|
4 |
Y. Yang S. , Seidel J. , J. Byrnes S. , Shafer P. , H. Yang C. , D. Rossell M. , Yu P. , H. Chu Y. , F. Scott J. , W. III Ager J. , W. Martin L. , Ramesh R. . Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol., 2010, 5(2): 143
https://doi.org/10.1038/nnano.2009.451
|
5 |
Daranciang D. , J. Highland M. , Wen H. , M. Young S. , C. Brandt N. . et al.. Ultrafast photovoltaic response in ferroelectric nanolayers. Phys. Rev. Lett., 2012, 108(8): 087601
https://doi.org/10.1103/PhysRevLett.108.087601
|
6 |
E. Spanier J. , M. Fridkin V. , M. Rappe A. , R. Akbashev A. , Polemi A. , Qi Y. , Gu Z. , M. Young S. , J. Hawley C. , Imbrenda D. , Xiao G. , L. Bennett-Jackson A. , L. Johnson C. . Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator. Nat. Photonics, 2016, 10(9): 611
https://doi.org/10.1038/nphoton.2016.143
|
7 |
Zhang Y. , Holder T. , Ishizuka H. , de Juan F. , Nagaosa N. , Felser C. , Yan B. . Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3. Nat. Commun., 2019, 10(1): 3783
https://doi.org/10.1038/s41467-019-11832-3
|
8 |
Li Y. , Fu J. , Mao X. , Chen C. , Liu H. , Gong M. , Zeng H. . Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat. Commun., 2021, 12(1): 5896
https://doi.org/10.1038/s41467-021-26200-3
|
9 |
Xu H. , Wang H. , Zhou J. , Li J. . Pure spin photocurrent in non-centrosymmetric crystals: Bulk spin photovoltaic effect. Nat. Commun., 2021, 12(1): 4330
https://doi.org/10.1038/s41467-021-24541-7
|
10 |
Zeng H. , Wen Y. , Yin L. , Cheng R. , Wang H. , Liu C. , He J. . Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53603
https://doi.org/10.1007/s11467-023-1286-2
|
11 |
M. Glass A. , von der Linde D. , J. Negran T. . High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett., 1974, 25(4): 233
https://doi.org/10.1063/1.1655453
|
12 |
Dalba G. , Soldo Y. , Rocca F. , M. Fridkin V. , Sainctavit P. . Giant bulk photovoltaic effect under linearly polarized X-ray synchrotron radiation. Phys. Rev. Lett., 1995, 74(6): 988
https://doi.org/10.1103/PhysRevLett.74.988
|
13 |
Xiao D. , C. Chang M. , Niu Q. . Berry phase effects on electronic properties. Rev. Mod. Phys., 2010, 82(3): 1959
https://doi.org/10.1103/RevModPhys.82.1959
|
14 |
Yu R. , Zhang W. , J. Zhang H. , C. Zhang S. , Dai X. , Fang Z. . Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329(5987): 61
https://doi.org/10.1126/science.1187485
|
15 |
Nakamura M. , Horiuchi S. , Kagawa F. , Ogawa N. , Kurumaji T. , Tokura Y. , Kawasaki M. . Shift current photovoltaic effect in a ferroelectric charge-transfer complex. Nat. Commun., 2017, 8(1): 281
https://doi.org/10.1038/s41467-017-00250-y
|
16 |
J. Zhang Y. , Ideue T. , Onga M. , Qin F. , Suzuki R. , Zak A. , Tenne R. , H. Smet J. , Iwasa Y. . Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature, 2019, 570(7761): 349
https://doi.org/10.1038/s41586-019-1303-3
|
17 |
Dong Y.M. Yang M.Yoshii M.Matsuoka S.Kitamura S.Hasegawa T.Ogawa N.Morimoto T.Ideue T.Iwasa Y., Giant bulk piezophotovoltaic effect in 3R-MoS2, Nat. Nanotechnol. 18(1), 36 (2022)
|
18 |
Zhong D. , L. Seyler K. , Linpeng X. , Cheng R. , Sivadas N. , Huang B. , Schmidgall E. , Taniguchi T. , Watanabe K. , A. McGuire M. , Yao W. , Xiao D. , M. C. Fu K. , Xu X. . Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv., 2017, 3(5): e1603113
https://doi.org/10.1126/sciadv.1603113
|
19 |
L. Seyler K. , Zhong D. , Huang B. , Linpeng X. , P. Wilson N. , Taniguchi T. , Watanabe K. , Yao W. , Xiao D. , A. McGuire M. , M. C. Fu K. , Xu X. . Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett., 2018, 18(6): 3823
https://doi.org/10.1021/acs.nanolett.8b01105
|
20 |
Zhao S. , Li X. , Dong B. , Wang H. , Wang H. , Zhang Y. , Han Z. , Zhang H. . Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: Status and challenges. Rep. Prog. Phys., 2021, 84(2): 026401
https://doi.org/10.1088/1361-6633/abdb98
|
21 |
Wang G. , Marie X. , L. Liu B. , Amand T. , Robert C. , Cadiz F. , Renucci P. , Urbaszek B. . Control of exciton valley coherence in transition metal dichalcogenide monolayers. Phys. Rev. Lett., 2016, 117(18): 187401
https://doi.org/10.1103/PhysRevLett.117.187401
|
22 |
Schmidt R. , Arora A. , Plechinger G. , Nagler P. , Granados del Águila A. , V. Ballottin M. , C. M. Christianen P. , Michaelis de Vasconcellos S. , Schüller C. , Korn T. , Bratschitsch R. . Magnetic-field-induced rotation of polarized light emission from monolayer WS2. Phys. Rev. Lett., 2016, 117(7): 077402
https://doi.org/10.1103/PhysRevLett.117.077402
|
23 |
Li Y. , Ludwig J. , Low T. , Chernikov A. , Cui X. , Arefe G. , D. Kim Y. , M. van der Zande A. , Rigosi A. , M. Hill H. , H. Kim S. , Hone J. , Li Z. , Smirnov D. , F. Heinz T. . Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett., 2014, 113(26): 266804
https://doi.org/10.1103/PhysRevLett.113.266804
|
24 |
Srivastava A. , Sidler M. , V. Allain A. , S. Lembke D. , Kis A. , Imamoğlu A. . Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys., 2015, 11(2): 141
https://doi.org/10.1038/nphys3203
|
25 |
Aivazian G. , Gong Z. , M. Jones A. , L. Chu R. , Yan J. , G. Mandrus D. , Zhang C. , Cobden D. , Yao W. , Xu X. . Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys., 2015, 11(2): 148
https://doi.org/10.1038/nphys3201
|
26 |
MacNeill D. , Heikes C. , F. Mak K. , Anderson Z. , Kormányos A. , Zólyomi V. , Park J. , C. Ralph D. . Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett., 2015, 114(3): 037401
https://doi.org/10.1103/PhysRevLett.114.037401
|
27 |
Gong C. , Li L. , Li Z. , Ji H. , Stern A. , Xia Y. , Cao T. , Bao W. , Wang C. , Wang Y. , Q. Qiu Z. , J. Cava R. , G. Louie S. , Xia J. , Zhang X. . Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
https://doi.org/10.1038/nature22060
|
28 |
Huang B. , Clark G. , Navarro-Moratalla E. , R. Klein D. , Cheng R. , L. Seyler K. , Zhong D. , Schmidgall E. , A. McGuire M. , H. Cobden D. , Yao W. , Xiao D. , Jarillo-Herrero P. , Xu X. . Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
https://doi.org/10.1038/nature22391
|
29 |
S. Burch K. , Mandrus D. , G. Park J. . Magnetism in two-dimensional van der Waals materials. Nature, 2018, 563(7729): 47
https://doi.org/10.1038/s41586-018-0631-z
|
30 |
Liu L.Chen S.Lin Z.Zhang X., A symmetry-breaking phase in two-dimensional FeTe2 with ferromagnetism above room temperature, J. Phys. Chem. Lett. 11(18), 7893 (2020)
|
31 |
Deng Y. , Yu Y. , Song Y. , Zhang J. , Z. Wang N. , Sun Z. , Yi Y. , Z. Wu Y. , Wu S. , Zhu J. , Wang J. , H. Chen X. , Zhang Y. . Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563(7729): 94
https://doi.org/10.1038/s41586-018-0626-9
|
32 |
Huang C. , Feng J. , Wu F. , Ahmed D. , Huang B. , Xiang H. , Deng K. , Kan E. . Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J. Am. Chem. Soc., 2018, 140(36): 11519
https://doi.org/10.1021/jacs.8b07879
|
33 |
Zheng S. , Huang C. , Yu T. , Xu M. , Zhang S. , Xu H. , Liu Y. , Kan E. , Wang Y. , Yang G. . High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy. J. Phys. Chem. Lett., 2019, 10(11): 2733
https://doi.org/10.1021/acs.jpclett.9b00970
|
34 |
Wang H. , Qian X. . Electrically and magnetically switchable nonlinear photocurrent in PT-symmetric magnetic topological quantum materials. npj Comput. Mater., 2020, 6: 199
https://doi.org/10.1038/s41524-020-00462-9
|
35 |
Liu L. , Liu W. , Cheng B. , Cui B. , Hu J. . Switchable giant bulk photocurrents and photo-spin-currents in monolayer PT-symmetric antiferromagnet MnPSe3. J. Phys. Chem. Lett., 2023, 14(2): 370
https://doi.org/10.1021/acs.jpclett.2c03383
|
36 |
Jiang J. , Chen Z. , Hu Y. , Xiang Y. , Zhang L. , Wang Y. , C. Wang G. , Shi J. . Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol., 2021, 16(8): 894
https://doi.org/10.1038/s41565-021-00919-y
|
37 |
Zhang C. , Guo P. , Zhou J. . Tailoring bulk photovoltaic effects in magnetic sliding ferroelectric materials. Nano Lett., 2022, 22(23): 9297
https://doi.org/10.1021/acs.nanolett.2c02802
|
38 |
Kresse G.Hafner J., Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48(17), 13115 (1993)
|
39 |
Kresse G. , Furthmuller J. . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
|
40 |
P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
|
41 |
J. Monkhorst H. , D. Pack J. . Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
https://doi.org/10.1103/PhysRevB.13.5188
|
42 |
Franchini C. , Kovacik R. , Marsman M. , S. Murthy S. , He J. , Ederer C. , Kresse G. . Maximally localized Wannier functions in LaMnO3 within PBE + U, hybrid functionals and partially self-consistent GW: An efficient route to construct ab initio tight-binding parameters for eg perovskites. J. Phys.: Cond. Matter, 2012, 24: 235602
https://doi.org/10.1088/0953-8984/24/23/235602
|
43 |
Pizzi G. , Vitale V. , Arita R. , Blügel S. , Freimuth F. . et al.. Wannier90 as a community code: New features and applications. J. Phys.: Conden. Matter, 2020, 32: 165902
https://doi.org/10.1088/1361-648X/ab51ff
|
44 |
A. Mostofi A. , R. Yates J. , Pizzi G. , S. Lee Y. , Souza I. , Vanderbilt D. , Marzari N. . An updated version of Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun., 2014, 185(8): 2309
https://doi.org/10.1016/j.cpc.2014.05.003
|
45 |
R. Beal A. , P. Hughes H. . Kramers−Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2. J. Phys. C, 1979, 12(5): 881
https://doi.org/10.1088/0022-3719/12/5/017
|
46 |
Splendiani A. , Sun L. , Zhang Y. , Li T. , Kim J. , Y. Chim C. , Galli G. , Wang F. . Emerging photoluminescence in monolayer MoS2. Nano Lett., 2010, 10(4): 1271
https://doi.org/10.1021/nl903868w
|
47 |
Li Y. , Wang H. , Xie L. , Liang Y. , Hong G. , Dai H. . MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc., 2011, 133(19): 7296
https://doi.org/10.1021/ja201269b
|
48 |
Huang C. , Wu S. , M. Sanchez A. , J. P. Peters J. , Beanland R. , S. Ross J. , Rivera P. , Yao W. , H. Cobden D. , Xu X. . Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater., 2014, 13(12): 1096
https://doi.org/10.1038/nmat4064
|
49 |
Wang X. , Gong Y. , Shi G. , L. Chow W. , Keyshar K. , Ye G. , Vajtai R. , Lou J. , Liu Z. , Ringe E. , K. Tay B. , M. Ajayan P. . Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano, 2014, 8(5): 5125
https://doi.org/10.1021/nn501175k
|
50 |
Ruppert C. , B. Aslan O. , F. Heinz T. . Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett., 2014, 14(11): 6231
https://doi.org/10.1021/nl502557g
|
51 |
Liu L. , Lin Z. , Hu J. , Zhang X. . Full quantum search for high Tc two-dimensional van der Waals ferromagnetic semiconductors. Nanoscale, 2021, 13(17): 8137
https://doi.org/10.1039/D0NR08687H
|
52 |
Mu X. , Zhou J. . Pure bulk orbital and spin photocurrent in two-dimensional ferroelectric materials. npj Comput. Mater., 2021, 7: 61
https://doi.org/10.1038/s41524-021-00531-7
|
53 |
Zhu X. , Chen Y. , Liu Z. , Han Y. , Qiao Z. . Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials. Front. Phys., 2022, 18(2): 23302
https://doi.org/10.1007/s11467-022-1228-4
|
54 |
Zheng G. , Qu S. , Zhou W. , Ouyang F. . Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties. Front. Phys., 2023, 18(5): 53302
https://doi.org/10.1007/s11467-023-1285-3
|
55 |
Ibañez-Azpiroz J.S. Tsirkin S.Souza I., Ab initio calculation of the shift photocurrent by Wannier interpolation, Phys. Rev. B 97(24), 245143 (2018)
|
56 |
Watanabe H. , Yanase Y. . Chiral photocurrent in parity-violating magnet and enhanced response in topological antiferromagnet. Phys. Rev. X, 2021, 11(1): 011001
https://doi.org/10.1103/PhysRevX.11.011001
|
57 |
Go D. , Jo D. , Kim C. , W. Lee H. . Intrinsic spin and orbital Hall effects from orbital texture. Phys. Rev. Lett., 2018, 121(8): 086602
https://doi.org/10.1103/PhysRevLett.121.086602
|
58 |
P. Cysne T. , Costa M. , M. Canonico L. , B. Nardelli M. , B. Muniz R. , G. Rappoport T. . Disentangling orbital and valley Hall effects in bilayers of transition metal dichalcogenides. Phys. Rev. Lett., 2021, 126(5): 056601
https://doi.org/10.1103/PhysRevLett.126.056601
|
59 |
Wang H. , Zhang C. , Rana F. . Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2. Nano Lett., 2015, 15(12): 8204
https://doi.org/10.1021/acs.nanolett.5b03708
|
60 |
Lu D.Liu L.Ma Y.Yang K.Wu H., A unique electronic state in a ferromagnetic semiconductor FeCl2 monolayer, J. Mater. Chem. C 10(20), 8009 (2022)
|
[1] |
fop-21320-OF-liuliang_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|