|
|
Distributed exact Grover’s algorithm |
Xu Zhou1,2,3,4( ), Daowen Qiu1,2,4( ), Le Luo3,4( ) |
1. Institute of Quantum Computing and Computer Theory, School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China 2. The Guangdong Key Laboratory of Information Security Technology, Sun Yat-sen University, Guangzhou 510006, China 3. School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China 4. QUDOOR Co, Ltd., Beijing 100089, China |
|
|
Abstract Distributed quantum computation has gained extensive attention. In this paper, we consider a search problem that includes only one target item in the unordered database. After that, we propose a distributed exact Grover’s algorithm (DEGA), which decomposes the original search problem into parts. Specifically, (i) our algorithm is as exact as the modified version of Grover’s algorithm by Long, which means the theoretical probability of finding the objective state is 100%; (ii) the actual depth of our circuit is , which is less than the circuit depths of the original and modified Grover’s algorithms, and , respectively. It only depends on the parity of , and it is not deepened as increases; (iii) we provide particular situations of the DEGA on MindQuantum (a quantum software) to demonstrate the practicality and validity of our method. Since our circuit is shallower, it will be more resistant to the depolarization channel noise.
|
Keywords
distributed quantum computation
search problem
distributed exact Grover’s algorithm (DEGA)
MindQuantum
the depolarization channel noise
|
Corresponding Author(s):
Xu Zhou,Daowen Qiu,Le Luo
|
About author: * These authors contributed equally to this work. |
Issue Date: 29 August 2023
|
|
1 |
Benioff P.. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys., 1980, 22(5): 563
https://doi.org/10.1007/BF01011339
|
2 |
Benioff P.. Quantum mechanical Hamiltonian models of Turing machines. J. Stat. Phys., 1982, 29(3): 515
https://doi.org/10.1007/BF01342185
|
3 |
Deutsch D.. Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A, 1985, 400(1818): 97
https://doi.org/10.1098/rspa.1985.0070
|
4 |
Deutsch D., Jozsa R.. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A, 1992, 439(1907): 553
https://doi.org/10.1098/rspa.1992.0167
|
5 |
Bernstein E.Vazirani U., Quantum complexity theory, in: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC’93), 1993, pp 11–20
|
6 |
R. Simon D.. On the power of quantum computation. SIAM J. Comput., 1997, 26(5): 1474
https://doi.org/10.1137/S0097539796298637
|
7 |
W. Shor P., Algorithms for quantum computation: Discrete logarithms and factoring, in: Proceedings 35th Annual Symposium on Foundations of Computer Science, IEEE, 1994, pp 124–134
|
8 |
K. Grover L.. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79(2): 325
https://doi.org/10.1103/PhysRevLett.79.325
|
9 |
W. Harrow A., Hassidim A., Lloyd S.. Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 2009, 103(15): 150502
https://doi.org/10.1103/PhysRevLett.103.150502
|
10 |
Christoph D.Peter H., A quantum algorithm for finding the minimum, arXiv: quant-ph/9607014v2 (1996)
|
11 |
Ramesh H., Vinay V.. String matching in O~(n+m) quantum time. J. Discrete Algorithms, 2003, 1(1): 103
https://doi.org/10.1016/S1570-8667(03)00010-8
|
12 |
Ambainis A.Balodis K.Iraids J., et al.., Quantum speedups for exponential-time dynamic programming algorithms, in: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms. San Diego: SIAM, 2019, pp 1783–1793
|
13 |
Andris A.Nikita L., Quantum algorithms for computational geometry problems, in: 15th Conference on the Theory of Quantum Computation, Communication and Cryptography, 2020
|
14 |
Brassard G., Hoyer P., Mosca M.. et al.. Quantum amplitude amplification and estimation. Contemp. Math., 2002, 305: 53
https://doi.org/10.1090/conm/305/05215
|
15 |
J. Diao Z.. Exactness of the original Grover search algorithm. Phys. Rev. A, 2010, 82(4): 044301
https://doi.org/10.1103/PhysRevA.82.044301
|
16 |
L. Long G.. Grover algorithm with zero theoretical failure rate. Phys. Rev. A, 2001, 64(2): 022307
https://doi.org/10.1103/PhysRevA.64.022307
|
17 |
Preskill J.. Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
https://doi.org/10.22331/q-2018-08-06-79
|
18 |
I. Cirac J., Zoller P.. Quantum computations with cold trapped ions. Phys. Rev. Lett., 1995, 74(20): 4091
https://doi.org/10.1103/PhysRevLett.74.4091
|
19 |
Y. Lu C., Q. Zhou X., Guhne O., B. Gao W., Zhang J., S. Yuan Z., Goebel A., Yang T., W. Pan J.. Experimental entanglement of six photons in graph states. Nat. Phys., 2007, 3(2): 91
https://doi.org/10.1038/nphys507
|
20 |
Makhlin Y., Schön G., Shnirman A.. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys., 2001, 73(2): 357
https://doi.org/10.1103/RevModPhys.73.357
|
21 |
Berezovsky J., H. Mikkelsen M., G. Stoltz N., A. Coldren L., D. Awschalom D.. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science, 2008, 320(5874): 349
https://doi.org/10.1126/science.1154798
|
22 |
Hanson R., D. Awschalom D.. Coherent manipulation of single spins in semiconductors. Nature, 2008, 453(7198): 1043
https://doi.org/10.1038/nature07129
|
23 |
Buhrman H.Röhrig H., Distributed quantum computing, in: Mathematical Foundations of Computer Science 2003: 28th International Symposium, Berlin Heidelberg, Springer, 2003, pp 1–20
|
24 |
Yimsiriwattan A., Lomonaco Jr. Distributed quantum computing: A distributed Shor algorithm. Quantum Inf. Comput. II., 2004, 5436: 360
https://doi.org/10.1117/12.546504
|
25 |
Beals R., Brierley S., Gray O.. et al.. Efficient distributed quantum computing. Proc. R. Soc. A, 2013, 469(2153): 0120686
https://doi.org/10.1098/rspa.2012.0686
|
26 |
Li K., W. Qiu D., Li L., Zheng S., Rong Z.. Application of distributed semiquantum computing model in phase estimation. Inf. Process. Lett., 2017, 120: 23
https://doi.org/10.1016/j.ipl.2016.12.002
|
27 |
Avron J., Casper O., Rozen I.. Quantum advantage and noise reduction in distributed quantum computing. Phys. Rev. A, 2021, 104(5): 052404
https://doi.org/10.1103/PhysRevA.104.052404
|
28 |
W. Qiu D.Luo L.G. Xiao L., Distributed Grover’s algorithm, arXiv: 2204.10487v3 (2022)
|
29 |
W. Tan J., G. Xiao L., W. Qiu D., Luo L., Mateus P.. Distributed quantum algorithm for Simon’s problem. Phys. Rev. A, 2022, 106(3): 032417
https://doi.org/10.1103/PhysRevA.106.032417
|
30 |
G. Xiao L.W. Qiu D.Luo L.Mateus P., Distributed Shor’s algorithm, Quantum Inf. Comput. 23(1&2), 27 (2023)
|
31 |
G. Xiao L.W. Qiu D.Luo L., et al.., Distributed quantum−classical hybrid Shor’s algorithm, arXiv: 2304.12100 (2023)
|
32 |
Zhou X.W. Qiu D.Luo L., Distributed exact quantum algorithms for Bernstein−Vazirani and search problems, arXiv: 2303.10670 (2023)
|
33 |
Li H.W. Qiu D. Luo L., Distributed exact quantum algorithms for Deutsch−Jozsa problem, arXiv: 2303.10663 (2023)
|
34 |
MindQuantum, , 2021
|
35 |
A. Nielsen M.L. Chuang I., Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2002
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|