Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (5) : 51305    https://doi.org/10.1007/s11467-023-1327-x
RESEARCH ARTICLE
Distributed exact Grover’s algorithm
Xu Zhou1,2,3,4(), Daowen Qiu1,2,4(), Le Luo3,4()
1. Institute of Quantum Computing and Computer Theory, School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
2. The Guangdong Key Laboratory of Information Security Technology, Sun Yat-sen University, Guangzhou 510006, China
3. School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China
4. QUDOOR Co, Ltd., Beijing 100089, China
 Download: PDF(14522 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Distributed quantum computation has gained extensive attention. In this paper, we consider a search problem that includes only one target item in the unordered database. After that, we propose a distributed exact Grover’s algorithm (DEGA), which decomposes the original search problem into n/ 2 parts. Specifically, (i) our algorithm is as exact as the modified version of Grover’s algorithm by Long, which means the theoretical probability of finding the objective state is 100%; (ii) the actual depth of our circuit is 8(nmod 2)+ 9, which is less than the circuit depths of the original and modified Grover’s algorithms, 1+ 8 π4 2n and 9+ 8 π42n 12, respectively. It only depends on the parity of n, and it is not deepened as n increases; (iii) we provide particular situations of the DEGA on MindQuantum (a quantum software) to demonstrate the practicality and validity of our method. Since our circuit is shallower, it will be more resistant to the depolarization channel noise.

Keywords distributed quantum computation      search problem      distributed exact Grover’s algorithm (DEGA)      MindQuantum      the depolarization channel noise     
Corresponding Author(s): Xu Zhou,Daowen Qiu,Le Luo   
About author:

* These authors contributed equally to this work.

Issue Date: 29 August 2023
 Cite this article:   
Xu Zhou,Daowen Qiu,Le Luo. Distributed exact Grover’s algorithm[J]. Front. Phys. , 2023, 18(5): 51305.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1327-x
https://academic.hep.com.cn/fop/EN/Y2023/V18/I5/51305
Fig.1  Quantum circuit of Grover’s algorithm.
  
Fig.2  Visualization of Grover’s algorithm. In the two-dimensional plane space spanned by {| x~?, |τ?}, one iteration of G causes a rotation by an angle 2θ from the initial state |h? to the target state |τ?.
Fig.3  Quantum circuit of the modified Grover’s algorithm.
  
Fig.4  Visualization of the modified Grover’s algorithm. In the three-dimensional Bloch sphere spanned by {|x~? ,|τ ?}, the initial state ri rotate ω around axis l, and then rf is obtained, where ω is the desired rotation angle.
Fig.5  Quantum circuit of the distributed exact Grover’s algorithm (DEGA).
  
Fig.6  Equivalent quantum circuit of Toffoli gate (or C2Z gate), where T represent π /8 gate and T represents the conjugate transpose of T.
Fig.7  The quantum circuit corresponding to the Oracle Uf( x).
Fig.8  The quantum circuit corresponding to the Oracle U0.
Fig.9  The quantum circuit corresponding to the Oracle Rf( x).
Fig.10  The quantum circuit corresponding to the Oracle R0.
Fig.11  Quantum circuit of the 2-qubit DEGA (target string τ =01).
Fig.12  The sampling results of the 2-qubit DEGA (target string τ =01).
Fig.13  Quantum circuit of the 3-qubit DEGA (target string τ =101). The parameter in the circuit is ϕ=2arcsin?(sin ?(π 4J+6)/sin?θ)=2.1268800471555034 2.1269, where J=?(π /2θ )/(2θ)? and θ= arcsin? (1/2 3).
Fig.14  The sampling results of the 3-qubit DEGA (target string τ =101).
Fig.15  Quantum circuit of the 4-qubit DEGA (target string τ =1001).
Fig.16  The sampling results of the 4-qubit DEGA (target string τ =1001).
Fig.17  Quantum circuit of the 4-qubit Grover’s algorithm (target string τ=1001).
Fig.18  Quantum circuit of the 4-qubit modified Grover’s algorithm (target string τ=1001). The parameter in the circuit is ϕ= 2arcsin?( sin?( π4J+ 6)/sin?θ)=2.1950576990901152.1951, where J=?(π /2 θ) /(2θ)? and θ=arcsin ?( 1/24).
Fig.19  The sampling results of the 4-qubit Grover’s algorithm (target string τ=1001).
Fig.20  The sampling results of the 4-qubit modified Grover’s algorithm (target string τ=1001).
Fig.21  Quantum circuit of the 5-qubit DEGA (target string τ =01001). The parameter in the circuit is ϕ=2arcsin?(sin ?(π 4J+6)/sin?θ)=2.1268800471555034 2.1269, where J=?(π /2θ )/(2θ)? and θ= arcsin? (1/2 3).
Fig.22  The sampling results of the 4-qubit DEGA (target string τ =01001).
Fig.23  Quantum circuit of the 5-qubit Grover’s algorithm (target string τ=01001).
Fig.24  Quantum circuit of the 5-qubit modified Grover’s algorithm (target string τ=01001). The parameter in the circuit is ϕ= 2arcsin?( sin?( π4J+ 6)/sin?θ)=2.7647636030603912.7648, where J=?(π /2 θ) /(2θ)? and θ=arcsin ?( 1/25).
Fig.25  The sampling results of the 5-qubit Grover’s algorithm (target string τ=01001).
Fig.26  The sampling results of the 5-qubit modified Grover’s algorithm (target string τ=01001).
Fig.27  The probability of obtaining the target string by different algorithms.
Fig.28  The number of quantum gates required by different algorithms.
Fig.29  The depth of quantum circuit of different algorithms.
Fig.30  Quantum circuit of the 5-qubit Grover’s algorithm (target string τ=01001) in the depolarizing channel.
Fig.31  Quantum circuit of the 5-qubit modified Grover’s algorithm (target string τ=01001) in the depolarizing channel. The parameter in the circuit is ϕ =2arcsin? (sin?(π4J +6) /sin ?θ)=2.7647636030603912.7648, where J=?(π /2 θ) /(2θ)? and θ=arcsin ?( 1/25).
Fig.32  Quantum circuit of the 5-qubit DEGA (target string τ =01001) in the depolarizing channel. The parameter in the circuit is ϕ= 2arcsin?( sin?( π4J+ 6)/sin?θ)=2.12688004715550342.1269, where J=?(π /2 θ) /(2θ)? and θ=arcsin ?( 1/23).
Fig.33  The sampling results of the 5-qubit Grover’s algorithm in the depolarizing channel. The noise parameter p=0.01.
Fig.34  The sampling results of the 5-qubit modified Grover’s algorithm in the depolarizing channel. The noise parameter p=0.01.
Fig.35  The sampling results of the 5-qubit DEGA in the depolarizing channel. The noise parameter p=0.01.
Fig.36  The probability of obtaining τ=01001 by different algorithms.
Fig.37  The sampling results of the 5-qubit Grover’s algorithm in the depolarizing channel. The noise parameter p=0.07.
Fig.38  The sampling results of the 5-qubit modified Grover’s algorithm in the depolarizing channel. The noise parameter p=0.07.
Fig.39  The sampling results of the 5-qubit DEGA in the depolarizing channel. The noise parameter p=0.07.
Fig.40  The sampling results of the 5-qubit Grover’s algorithm in the depolarizing channel. The noise parameter p=0.09.
Fig.41  The sampling results of the 5-qubit modified Grover’s algorithm in the depolarizing channel. The noise parameter p=0.09.
Fig.42  The sampling results of the 5-qubit DEGA in the depolarizing channel. The noise parameter p=0.09.
1 Benioff P.. The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys., 1980, 22(5): 563
https://doi.org/10.1007/BF01011339
2 Benioff P.. Quantum mechanical Hamiltonian models of Turing machines. J. Stat. Phys., 1982, 29(3): 515
https://doi.org/10.1007/BF01342185
3 Deutsch D.. Quantum theory, the Church–Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A, 1985, 400(1818): 97
https://doi.org/10.1098/rspa.1985.0070
4 Deutsch D., Jozsa R.. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A, 1992, 439(1907): 553
https://doi.org/10.1098/rspa.1992.0167
5 Bernstein E.Vazirani U., Quantum complexity theory, in: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC’93), 1993, pp 11–20
6 R. Simon D.. On the power of quantum computation. SIAM J. Comput., 1997, 26(5): 1474
https://doi.org/10.1137/S0097539796298637
7 W. Shor P., Algorithms for quantum computation: Discrete logarithms and factoring, in: Proceedings 35th Annual Symposium on Foundations of Computer Science, IEEE, 1994, pp 124–134
8 K. Grover L.. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79(2): 325
https://doi.org/10.1103/PhysRevLett.79.325
9 W. Harrow A., Hassidim A., Lloyd S.. Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 2009, 103(15): 150502
https://doi.org/10.1103/PhysRevLett.103.150502
10 Christoph D.Peter H., A quantum algorithm for finding the minimum, arXiv: quant-ph/9607014v2 (1996)
11 Ramesh H., Vinay V.. String matching in O~(n+m) quantum time. J. Discrete Algorithms, 2003, 1(1): 103
https://doi.org/10.1016/S1570-8667(03)00010-8
12 Ambainis A.Balodis K.Iraids J., et al.., Quantum speedups for exponential-time dynamic programming algorithms, in: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms. San Diego: SIAM, 2019, pp 1783–1793
13 Andris A.Nikita L., Quantum algorithms for computational geometry problems, in: 15th Conference on the Theory of Quantum Computation, Communication and Cryptography, 2020
14 Brassard G., Hoyer P., Mosca M.. et al.. Quantum amplitude amplification and estimation. Contemp. Math., 2002, 305: 53
https://doi.org/10.1090/conm/305/05215
15 J. Diao Z.. Exactness of the original Grover search algorithm. Phys. Rev. A, 2010, 82(4): 044301
https://doi.org/10.1103/PhysRevA.82.044301
16 L. Long G.. Grover algorithm with zero theoretical failure rate. Phys. Rev. A, 2001, 64(2): 022307
https://doi.org/10.1103/PhysRevA.64.022307
17 Preskill J.. Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
https://doi.org/10.22331/q-2018-08-06-79
18 I. Cirac J., Zoller P.. Quantum computations with cold trapped ions. Phys. Rev. Lett., 1995, 74(20): 4091
https://doi.org/10.1103/PhysRevLett.74.4091
19 Y. Lu C., Q. Zhou X., Guhne O., B. Gao W., Zhang J., S. Yuan Z., Goebel A., Yang T., W. Pan J.. Experimental entanglement of six photons in graph states. Nat. Phys., 2007, 3(2): 91
https://doi.org/10.1038/nphys507
20 Makhlin Y., Schön G., Shnirman A.. Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys., 2001, 73(2): 357
https://doi.org/10.1103/RevModPhys.73.357
21 Berezovsky J., H. Mikkelsen M., G. Stoltz N., A. Coldren L., D. Awschalom D.. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science, 2008, 320(5874): 349
https://doi.org/10.1126/science.1154798
22 Hanson R., D. Awschalom D.. Coherent manipulation of single spins in semiconductors. Nature, 2008, 453(7198): 1043
https://doi.org/10.1038/nature07129
23 Buhrman H.Röhrig H., Distributed quantum computing, in: Mathematical Foundations of Computer Science 2003: 28th International Symposium, Berlin Heidelberg, Springer, 2003, pp 1–20
24 Yimsiriwattan A., Lomonaco Jr. Distributed quantum computing: A distributed Shor algorithm. Quantum Inf. Comput. II., 2004, 5436: 360
https://doi.org/10.1117/12.546504
25 Beals R., Brierley S., Gray O.. et al.. Efficient distributed quantum computing. Proc. R. Soc. A, 2013, 469(2153): 0120686
https://doi.org/10.1098/rspa.2012.0686
26 Li K., W. Qiu D., Li L., Zheng S., Rong Z.. Application of distributed semiquantum computing model in phase estimation. Inf. Process. Lett., 2017, 120: 23
https://doi.org/10.1016/j.ipl.2016.12.002
27 Avron J., Casper O., Rozen I.. Quantum advantage and noise reduction in distributed quantum computing. Phys. Rev. A, 2021, 104(5): 052404
https://doi.org/10.1103/PhysRevA.104.052404
28 W. Qiu D.Luo L.G. Xiao L., Distributed Grover’s algorithm, arXiv: 2204.10487v3 (2022)
29 W. Tan J., G. Xiao L., W. Qiu D., Luo L., Mateus P.. Distributed quantum algorithm for Simon’s problem. Phys. Rev. A, 2022, 106(3): 032417
https://doi.org/10.1103/PhysRevA.106.032417
30 G. Xiao L.W. Qiu D.Luo L.Mateus P., Distributed Shor’s algorithm, Quantum Inf. Comput. 23(1&2), 27 (2023)
31 G. Xiao L.W. Qiu D.Luo L., et al.., Distributed quantum−classical hybrid Shor’s algorithm, arXiv: 2304.12100 (2023)
32 Zhou X.W. Qiu D.Luo L., Distributed exact quantum algorithms for Bernstein−Vazirani and search problems, arXiv: 2303.10670 (2023)
33 Li H.W. Qiu D. Luo L., Distributed exact quantum algorithms for Deutsch−Jozsa problem, arXiv: 2303.10663 (2023)
34 MindQuantum, , 2021
35 A. Nielsen M.L. Chuang I., Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2002
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed