Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (1) : 13201    https://doi.org/10.1007/s11467-023-1330-2
RESEARCH ARTICLE
Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material
Fahhad Alsubaie1, Munirah Muraykhan1, Lei Zhang1, Dongchen Qi1, Ting Liao2, Liangzhi Kou2, Aijun Du1(), Cheng Tang1()
1. School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
2. School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia
 Download: PDF(4939 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two-dimensional (2D) heterostructures have shown great potential in advanced photovoltaics due to their restrained carrier recombination, prolonged exciton lifetime and improved light absorption. Herein, a 2D polarized heterostructure is constructed between Janus MoSSe and MoTe2 monolayers and is systematically investigated via first-principles calculations. Electronically, the valence band and conduction band of the MoSSe−MoTe2 (MoSeS−MoTe2) are contributed by MoTe2 and MoSSe layers, respectively, and its bandgap is 0.71 (0.03) eV. A built-in electric field pointing from MoTe2 to MoSSe layers appears at the interface of heterostructures due to the interlayer carrier redistribution. Notably, the band alignment and built-in electric field make it a direct z-scheme heterostructure, benefiting the separation of photogenerated electron-hole pairs. Besides, the electronic structure and interlayer carrier reconstruction can be readily controlled by reversing the electric polarization of the MoSSe layer. Furthermore, the light absorption of the MoSSe/MoTe2 heterostructure is also improved in comparison with the separated monolayers. Consequently, in this work, a new z-scheme polarized heterostructure with polarization-controllable optoelectronic properties is designed for highly efficient optoelectronics.

Keywords MoSSe/MoTe2      photovoltaics      ferroelectric heterostructure     
Corresponding Author(s): Aijun Du,Cheng Tang   
About author:

* These authors contributed equally to this work.

Issue Date: 04 September 2023
 Cite this article:   
Fahhad Alsubaie,Munirah Muraykhan,Lei Zhang, et al. Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material[J]. Front. Phys. , 2024, 19(1): 13201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1330-2
https://academic.hep.com.cn/fop/EN/Y2024/V19/I1/13201
Fig.1  Top and side views of optimized geometries for (a) MoSSe?MoTe2 and (b) MoSeS?MoTe2 heterostructures, respectively. Yellow, green, brown and purple spheres represent sulfer, selenium, titanium and molybdenum atoms, respectively.
Lattice constantBandgap (This work)Bandgap (exp)Formation energyInterlayer distance
MoSSe3.232.101.68 [40]??
MoTe23.521.601.10 [39]??
MoSSe?MoTe23.360.71??8.923.31
MoSeS?MoTe23.360.03??6.773.18
Tab.1  Lattice constants (?) and bandgaps (eV) (HSE functional) for MoSSe and MoTe2 monolayer and MoSSe?MoTe2 and MoSeS?MoTe2 heterostructures. Formation energy (meV) and interlayer distance (?) of heterostructures.
Fig.2  (a, b) Band structures of MoSSe and MoTe2 monolayers. (c) Electrostatic potential of MoSSe and MoTe2 monolayers, respectively. The dipole correction is considered in these calculations. (d) Diagram illustration of band alignment of MoSSe?MoTe2 and MoSeS?MoTe2 heterostructures with interface of Se/Te and S/Te, respectively. Φx (x = S, Se and Te) represent the work functions estimated in (c) with x atomic surface. The potentials of valence (VB) and conduction (CB) bands are marked in the figure. (e, f) Orbital-resolved band structures and charge densities (iso-value of 0.012 e/?3) of VB and CB of MoSSe?MoTe2 and MoSeS?MoTe2 heterostructures, respectively. Red and Blue lines represent the contribution of orbitals from MoSSe and MoTe2 layers, respectively.
Fig.3  Plane-averaged potential and charge density differences (iso-value of 0.0002 e/?3) for (a) MoSSe?MoTe2 and (b) MoSeS?MoTe2 heterostructures, respectively. Yellow and cyan area represent electron accumulation and depletion, respectively.
Fig.4  Electrostatic potential difference of (a) MoSSe?MoTe2 and (b) MoSeS?MoTe2 heterostructures. The calculated built-in electric fields of Se/Te and S/Te interface are given in the figure, respectively. (c) Z-Scheme type of band alignment in MoSSe?MoTe2 heterostructure.
Fig.5  Light absorption between 300 nm and 1200 nm for MoSSe and MoTe2 monolayers and MoSSe?MoTe2 and MoSeS?MoTe2 heterostructures. The incident AM 1.5G Solar flux is plotted as a reference.
1 Das S. , Pandey D. , Thomas J. , Roy T. . The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater., 2019, 31(1): 1802722
https://doi.org/10.1002/adma.201802722
2 Li Q. , Li X. , Wageh S. , A. Al‐Ghamdi A. , Yu J. . CdS/graphene nanocomposite photocatalysts. Adv. Energy Mater., 2015, 5(14): 1500010
https://doi.org/10.1002/aenm.201500010
3 Han C. , Sun Q. , Li Z. , X. Dou S. . Thermoelectric enhancement of different kinds of metal chalcogenides. Adv. Energy Mater., 2016, 6(15): 1600498
https://doi.org/10.1002/aenm.201600498
4 Liu Z. , P. Lau S. , Yan F. . Functionalized graphene and other two-dimensional materials for photovoltaic devices: Device design and processing. Chem. Soc. Rev., 2015, 44(15): 5638
https://doi.org/10.1039/C4CS00455H
5 Li Z. , Li B. , Wu X. , A. Sheppard S. , Zhang S. , Gao D. , J. Long N. , Zhu Z. . Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science, 2022, 376(6591): 416
https://doi.org/10.1126/science.abm8566
6 Ren J. , Bi P. , Zhang J. , Liu J. , Wang J. , Xu Y. , Wei Z. , Zhang S. , Hou J. . Molecular design revitalizes the low-cost PTV-polymer for highly efficient organic solar cells. Natl. Sci. Rev., 2021, 8(8): nwab031
https://doi.org/10.1093/nsr/nwab031
7 Tang C. , Zhang L. , Zhang C. , MacLeod J. , K. Ostrikov K. , Du A. . Highly stable two-dimensional gold selenide with large in-plane anisotropy and ultrahigh carrier mobility. Nanoscale Horiz., 2020, 5(2): 366
https://doi.org/10.1039/C9NH00586B
8 H. Lee C. , H. Lee G. , M. Van Der Zande A. , Chen W. , Li Y. , Han M. , Cui X. , Arefe G. , Nuckolls C. , F. Heinz T. , Guo J. , Hone J. , Kim P. . Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol., 2014, 9(9): 676
https://doi.org/10.1038/nnano.2014.150
9 Gu X.Cui W.Li H.Wu Z.Zeng Z.T. Lee S.Zhang H.Sun B., A solution-processed hole extraction layer made from ultrathin MoS2 nanosheets for efficient organic solar cells, Adv. Energy Mater. 3(10), 1262 (2013)
10 Tang C. , Ma F. , Zhang C. , Jiao Y. , K. Matta S. , Ostrikov K. , Du A. . 2D boron dichalcogenides from the substitution of Mo with ionic B2 pair in MoX2 (X = S, Se and Te): High stability, large excitonic effect and high charge carrier mobility. J. Mater. Chem. C, 2019, 7(6): 1651
https://doi.org/10.1039/C8TC05408H
11 A. Wilson J. , Yoffe A. . The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys., 1969, 18(73): 193
https://doi.org/10.1080/00018736900101307
12 Splendiani A. , Sun L. , Zhang Y. , Li T. , Kim J. , Y. Chim C. , Galli G. , Wang F. . Emerging photoluminescence in monolayer MoS2. Nano Lett., 2010, 10(4): 1271
https://doi.org/10.1021/nl903868w
13 Li C. , Cao Q. , Wang F. , Xiao Y. , Li Y. , J. Delaunay J. , Zhu H. . Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev., 2018, 47(13): 4981
https://doi.org/10.1039/C8CS00067K
14 Kim Y.Lee S.G. Song J.Y. Ko K.J. Woo W.W. Lee S.Park M.Lee H.Lee Z.Choi H.H. Kim W.Park J.Kim H., 2D transition metal dichalcogenide heterostructures for p- and n-type photovoltaic self-powered gas sensor, Adv. Funct. Mater. 30(43), 2003360 (2020)
15 Britnell L. , M. Ribeiro R. , Eckmann A. , Jalil R. , D. Belle B. , Mishchenko A. , J. Kim Y. , V. Gorbachev R. , Georgiou T. , V. Morozov S. , N. Grigorenko A. , K. Geim A. , Casiraghi C. , H. C. Neto A. , S. Novoselov K. . Strong light−matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138): 1311
https://doi.org/10.1126/science.1235547
16 Baranowski M. , Surrente A. , Klopotowski L. , M. Urban J. , Zhang N. , K. Maude D. , Wiwatowski K. , Mackowski S. , C. Kung Y. , Dumcenco D. , Kis A. , Plochocka P. . Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett., 2017, 17(10): 6360
https://doi.org/10.1021/acs.nanolett.7b03184
17 Zheng X.Wei Y.Liu J.Wang S.Shi J.Yang H.Peng G.Deng C.Luo W.Zhao Y.Li Y.Sun K.Wan W.Xie H.Gao Y.Zhang X.Huang H., A homogeneous p−n junction diode by selective doping of few layer MoSe2 using ultraviolet ozone for high-performance photovoltaic devices, Nanoscale 11(28), 13469 (2019)
18 Zhang K. , Zhang T. , Cheng G. , Li T. , Wang S. , Wei W. , Zhou X. , Yu W. , Sun Y. , Wang P. , Zhang D. , Zeng C. , Wang X. , Hu W. , J. Fan H. , Shen G. , Chen X. , Duan X. , Chang K. , Dai N. . Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano, 2016, 10(3): 3852
https://doi.org/10.1021/acsnano.6b00980
19 Akamatsu T.Ideue T.Zhou L.Dong Y.Kitamura S.Yoshii M.Yang D.Onga M.Nakagawa Y.Watanabe K.Taniguchi T.Laurienzo J.Huang J.Ye Z.Morimoto T.Yuan H.Iwasa Y., A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect, Science 372(6537), 68 (2021)
20 Zhang K. , Guo Y. , Ji Q. , Y. Lu A. , Su C. , Wang H. , A. Puretzky A. , B. Geohegan D. , Qian X. , Fang S. , Kaxiras E. , Kong J. , Huang S. . Enhancement of van der Waals interlayer coupling through polar Janus MoSSe. J. Am. Chem. Soc., 2020, 142(41): 17499
https://doi.org/10.1021/jacs.0c07051
21 Zhang J. , Jia S. , Kholmanov I. , Dong L. , Er D. , Chen W. , Guo H. , Jin Z. , B. Shenoy V. , Shi L. , Lou J. . Janus monolayer transition-metal dichalcogenides. ACS Nano, 2017, 11(8): 8192
https://doi.org/10.1021/acsnano.7b03186
22 Tang X.Kou L., 2D Janus transition metal dichalcogenides: Properties and applications, Phys. Status Solidi B 259(4), 2100562 (2022) (b)
23 Wijethunge D. , Zhang L. , Tang C. , Du A. . Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys., 2020, 15(6): 63504
https://doi.org/10.1007/s11467-020-0987-z
24 Wang Y. , Wang F. , Wang Z. , Wang J. , Yang J. , Yao Y. , Li N. , G. Sendeku M. , Zhan X. , Shan C. . Reconfigurable photovoltaic effect for optoelectronic artificial synapse based on ferroelectric p–n junction. Nano Res., 2021, 14: 4328
https://doi.org/10.1007/s12274-021-3833-x
25 Xia C. , Xiong W. , Du J. , Wang T. , Peng Y. , Li J. . Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides. Phys. Rev. B, 2018, 98(16): 165424
https://doi.org/10.1103/PhysRevB.98.165424
26 J. Varjovi M. , Yagmurcukardes M. , M. Peeters F. , Durgun E. . Janus two-dimensional transition metal dichalcogenide oxides: First-principles investigation of WXO monolayers with X = S, Se, and Te. Phys. Rev. B, 2021, 103(19): 195438
https://doi.org/10.1103/PhysRevB.103.195438
27 Wang X. , Wang P. , Wang J. , Hu W. , Zhou X. , Guo N. , Huang H. , Sun S. , Shen H. , Lin T. , Tang M. , Liao L. , Jiang A. , Sun J. , Meng X. , Chen X. , Lu W. , Chu J. . Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater., 2015, 27(42): 6575
https://doi.org/10.1002/adma.201503340
28 J. Yin W. , L. Zeng X. , Wen B. , X. Ge Q. , Xu Y. , Teobaldi G. , M. Liu L. . The unique carrier mobility of Janus MoSSe/GaN heterostructures. Front. Phys., 2021, 16(3): 33501
https://doi.org/10.1007/s11467-020-1021-1
29 Absor M. , Ulil A. , Santoso I. , Harsojo H. , Abraha K. , Kotaka H. , Ishii F. , Saito M. . Polarity tuning of spin–orbit-induced spin splitting in two-dimensional transition metal dichalcogenides. J. Appl. Phys., 2017, 122(15): 153905
https://doi.org/10.1063/1.5008475
30 Wang Y. , Xiao J. , Zhu H. , Li Y. , Alsaid Y. , Y. Fong K. , Zhou Y. , Wang S. , Shi W. , Wang Y. , Zettl A. , J. Reed E. , Zhang X. . Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 550(7677): 487
https://doi.org/10.1038/nature24043
31 Kresse G. , Furthmüller J. . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
32 Kresse G. , Furthmüller J. . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
33 Kresse G. , Hafner J. . Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49(20): 14251
https://doi.org/10.1103/PhysRevB.49.14251
34 Kresse G. , Joubert D. . From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
35 P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
36 J. Monkhorst H. , D. Pack J. . Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
https://doi.org/10.1103/PhysRevB.13.5188
37 Grimme S.Antony J.Ehrlich S.Krieg H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H−Pu, J. Chem. Phys. 132(15), 154104 (2010)
38 Wang V.Xu N.C. Liu J.Tang G.T. Geng W., VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, Comput. Phys. Commun. 267, 108033 (2021)
39 Ruppert C. , B. Aslan O. , F. Heinz T. . Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett., 2014, 14(11): 6231
https://doi.org/10.1021/nl502557g
40 Y. Lu A. , Zhu H. , Xiao J. , P. Chuu C. , Han Y. , H. Chiu M. , C. Cheng C. , W. Yang C. , H. Wei K. , Yang Y. , Wang Y. , Sokaras D. , Nordlund D. , Yang P. , A. Muller D. , Y. Chou M. , Zhang X. , J. Li L. . Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol., 2017, 12(8): 744
https://doi.org/10.1038/nnano.2017.100
41 Zhang C. , Jiao Y. , He T. , Bottle S. , Frauenheim T. , Du A. . Predicting two-dimensional C3B/C3N van der Waals p–n heterojunction with strong interlayer electron coupling and enhanced photocurrent. J. Phys. Chem. Lett., 2018, 9(4): 858
https://doi.org/10.1021/acs.jpclett.7b03449
42 Tang C. , Zhang L. , Du A. . Tunable magnetic anisotropy in 2D magnets via molecular adsorption. J. Mater. Chem. C, 2020, 8(42): 14948
https://doi.org/10.1039/D0TC04049E
[1] fop-21330-OF-tangcheng_suppl_1 Download
[1] Neil P. Dasgupta, Peidong Yang. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion[J]. Front. Phys. , 2014, 9(3): 289-302.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed