|
|
Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material |
Fahhad Alsubaie1, Munirah Muraykhan1, Lei Zhang1, Dongchen Qi1, Ting Liao2, Liangzhi Kou2, Aijun Du1( ), Cheng Tang1( ) |
1. School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia 2. School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4001, Australia |
|
|
Abstract Two-dimensional (2D) heterostructures have shown great potential in advanced photovoltaics due to their restrained carrier recombination, prolonged exciton lifetime and improved light absorption. Herein, a 2D polarized heterostructure is constructed between Janus MoSSe and MoTe2 monolayers and is systematically investigated via first-principles calculations. Electronically, the valence band and conduction band of the MoSSe−MoTe2 (MoSeS−MoTe2) are contributed by MoTe2 and MoSSe layers, respectively, and its bandgap is 0.71 (0.03) eV. A built-in electric field pointing from MoTe2 to MoSSe layers appears at the interface of heterostructures due to the interlayer carrier redistribution. Notably, the band alignment and built-in electric field make it a direct z-scheme heterostructure, benefiting the separation of photogenerated electron-hole pairs. Besides, the electronic structure and interlayer carrier reconstruction can be readily controlled by reversing the electric polarization of the MoSSe layer. Furthermore, the light absorption of the MoSSe/MoTe2 heterostructure is also improved in comparison with the separated monolayers. Consequently, in this work, a new z-scheme polarized heterostructure with polarization-controllable optoelectronic properties is designed for highly efficient optoelectronics.
|
Keywords
MoSSe/MoTe2
photovoltaics
ferroelectric heterostructure
|
Corresponding Author(s):
Aijun Du,Cheng Tang
|
About author: * These authors contributed equally to this work. |
Issue Date: 04 September 2023
|
|
1 |
Das S. , Pandey D. , Thomas J. , Roy T. . The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater., 2019, 31(1): 1802722
https://doi.org/10.1002/adma.201802722
|
2 |
Li Q. , Li X. , Wageh S. , A. Al‐Ghamdi A. , Yu J. . CdS/graphene nanocomposite photocatalysts. Adv. Energy Mater., 2015, 5(14): 1500010
https://doi.org/10.1002/aenm.201500010
|
3 |
Han C. , Sun Q. , Li Z. , X. Dou S. . Thermoelectric enhancement of different kinds of metal chalcogenides. Adv. Energy Mater., 2016, 6(15): 1600498
https://doi.org/10.1002/aenm.201600498
|
4 |
Liu Z. , P. Lau S. , Yan F. . Functionalized graphene and other two-dimensional materials for photovoltaic devices: Device design and processing. Chem. Soc. Rev., 2015, 44(15): 5638
https://doi.org/10.1039/C4CS00455H
|
5 |
Li Z. , Li B. , Wu X. , A. Sheppard S. , Zhang S. , Gao D. , J. Long N. , Zhu Z. . Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science, 2022, 376(6591): 416
https://doi.org/10.1126/science.abm8566
|
6 |
Ren J. , Bi P. , Zhang J. , Liu J. , Wang J. , Xu Y. , Wei Z. , Zhang S. , Hou J. . Molecular design revitalizes the low-cost PTV-polymer for highly efficient organic solar cells. Natl. Sci. Rev., 2021, 8(8): nwab031
https://doi.org/10.1093/nsr/nwab031
|
7 |
Tang C. , Zhang L. , Zhang C. , MacLeod J. , K. Ostrikov K. , Du A. . Highly stable two-dimensional gold selenide with large in-plane anisotropy and ultrahigh carrier mobility. Nanoscale Horiz., 2020, 5(2): 366
https://doi.org/10.1039/C9NH00586B
|
8 |
H. Lee C. , H. Lee G. , M. Van Der Zande A. , Chen W. , Li Y. , Han M. , Cui X. , Arefe G. , Nuckolls C. , F. Heinz T. , Guo J. , Hone J. , Kim P. . Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol., 2014, 9(9): 676
https://doi.org/10.1038/nnano.2014.150
|
9 |
Gu X.Cui W.Li H.Wu Z.Zeng Z.T. Lee S.Zhang H.Sun B., A solution-processed hole extraction layer made from ultrathin MoS2 nanosheets for efficient organic solar cells, Adv. Energy Mater. 3(10), 1262 (2013)
|
10 |
Tang C. , Ma F. , Zhang C. , Jiao Y. , K. Matta S. , Ostrikov K. , Du A. . 2D boron dichalcogenides from the substitution of Mo with ionic B2 pair in MoX2 (X = S, Se and Te): High stability, large excitonic effect and high charge carrier mobility. J. Mater. Chem. C, 2019, 7(6): 1651
https://doi.org/10.1039/C8TC05408H
|
11 |
A. Wilson J. , Yoffe A. . The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys., 1969, 18(73): 193
https://doi.org/10.1080/00018736900101307
|
12 |
Splendiani A. , Sun L. , Zhang Y. , Li T. , Kim J. , Y. Chim C. , Galli G. , Wang F. . Emerging photoluminescence in monolayer MoS2. Nano Lett., 2010, 10(4): 1271
https://doi.org/10.1021/nl903868w
|
13 |
Li C. , Cao Q. , Wang F. , Xiao Y. , Li Y. , J. Delaunay J. , Zhu H. . Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev., 2018, 47(13): 4981
https://doi.org/10.1039/C8CS00067K
|
14 |
Kim Y.Lee S.G. Song J.Y. Ko K.J. Woo W.W. Lee S.Park M.Lee H.Lee Z.Choi H.H. Kim W.Park J.Kim H., 2D transition metal dichalcogenide heterostructures for p- and n-type photovoltaic self-powered gas sensor, Adv. Funct. Mater. 30(43), 2003360 (2020)
|
15 |
Britnell L. , M. Ribeiro R. , Eckmann A. , Jalil R. , D. Belle B. , Mishchenko A. , J. Kim Y. , V. Gorbachev R. , Georgiou T. , V. Morozov S. , N. Grigorenko A. , K. Geim A. , Casiraghi C. , H. C. Neto A. , S. Novoselov K. . Strong light−matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138): 1311
https://doi.org/10.1126/science.1235547
|
16 |
Baranowski M. , Surrente A. , Klopotowski L. , M. Urban J. , Zhang N. , K. Maude D. , Wiwatowski K. , Mackowski S. , C. Kung Y. , Dumcenco D. , Kis A. , Plochocka P. . Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett., 2017, 17(10): 6360
https://doi.org/10.1021/acs.nanolett.7b03184
|
17 |
Zheng X.Wei Y.Liu J.Wang S.Shi J.Yang H.Peng G.Deng C.Luo W.Zhao Y.Li Y.Sun K.Wan W.Xie H.Gao Y.Zhang X.Huang H., A homogeneous p−n junction diode by selective doping of few layer MoSe2 using ultraviolet ozone for high-performance photovoltaic devices, Nanoscale 11(28), 13469 (2019)
|
18 |
Zhang K. , Zhang T. , Cheng G. , Li T. , Wang S. , Wei W. , Zhou X. , Yu W. , Sun Y. , Wang P. , Zhang D. , Zeng C. , Wang X. , Hu W. , J. Fan H. , Shen G. , Chen X. , Duan X. , Chang K. , Dai N. . Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano, 2016, 10(3): 3852
https://doi.org/10.1021/acsnano.6b00980
|
19 |
Akamatsu T.Ideue T.Zhou L.Dong Y.Kitamura S.Yoshii M.Yang D.Onga M.Nakagawa Y.Watanabe K.Taniguchi T.Laurienzo J.Huang J.Ye Z.Morimoto T.Yuan H.Iwasa Y., A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect, Science 372(6537), 68 (2021)
|
20 |
Zhang K. , Guo Y. , Ji Q. , Y. Lu A. , Su C. , Wang H. , A. Puretzky A. , B. Geohegan D. , Qian X. , Fang S. , Kaxiras E. , Kong J. , Huang S. . Enhancement of van der Waals interlayer coupling through polar Janus MoSSe. J. Am. Chem. Soc., 2020, 142(41): 17499
https://doi.org/10.1021/jacs.0c07051
|
21 |
Zhang J. , Jia S. , Kholmanov I. , Dong L. , Er D. , Chen W. , Guo H. , Jin Z. , B. Shenoy V. , Shi L. , Lou J. . Janus monolayer transition-metal dichalcogenides. ACS Nano, 2017, 11(8): 8192
https://doi.org/10.1021/acsnano.7b03186
|
22 |
Tang X.Kou L., 2D Janus transition metal dichalcogenides: Properties and applications, Phys. Status Solidi B 259(4), 2100562 (2022) (b)
|
23 |
Wijethunge D. , Zhang L. , Tang C. , Du A. . Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys., 2020, 15(6): 63504
https://doi.org/10.1007/s11467-020-0987-z
|
24 |
Wang Y. , Wang F. , Wang Z. , Wang J. , Yang J. , Yao Y. , Li N. , G. Sendeku M. , Zhan X. , Shan C. . Reconfigurable photovoltaic effect for optoelectronic artificial synapse based on ferroelectric p–n junction. Nano Res., 2021, 14: 4328
https://doi.org/10.1007/s12274-021-3833-x
|
25 |
Xia C. , Xiong W. , Du J. , Wang T. , Peng Y. , Li J. . Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides. Phys. Rev. B, 2018, 98(16): 165424
https://doi.org/10.1103/PhysRevB.98.165424
|
26 |
J. Varjovi M. , Yagmurcukardes M. , M. Peeters F. , Durgun E. . Janus two-dimensional transition metal dichalcogenide oxides: First-principles investigation of WXO monolayers with X = S, Se, and Te. Phys. Rev. B, 2021, 103(19): 195438
https://doi.org/10.1103/PhysRevB.103.195438
|
27 |
Wang X. , Wang P. , Wang J. , Hu W. , Zhou X. , Guo N. , Huang H. , Sun S. , Shen H. , Lin T. , Tang M. , Liao L. , Jiang A. , Sun J. , Meng X. , Chen X. , Lu W. , Chu J. . Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater., 2015, 27(42): 6575
https://doi.org/10.1002/adma.201503340
|
28 |
J. Yin W. , L. Zeng X. , Wen B. , X. Ge Q. , Xu Y. , Teobaldi G. , M. Liu L. . The unique carrier mobility of Janus MoSSe/GaN heterostructures. Front. Phys., 2021, 16(3): 33501
https://doi.org/10.1007/s11467-020-1021-1
|
29 |
Absor M. , Ulil A. , Santoso I. , Harsojo H. , Abraha K. , Kotaka H. , Ishii F. , Saito M. . Polarity tuning of spin–orbit-induced spin splitting in two-dimensional transition metal dichalcogenides. J. Appl. Phys., 2017, 122(15): 153905
https://doi.org/10.1063/1.5008475
|
30 |
Wang Y. , Xiao J. , Zhu H. , Li Y. , Alsaid Y. , Y. Fong K. , Zhou Y. , Wang S. , Shi W. , Wang Y. , Zettl A. , J. Reed E. , Zhang X. . Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 550(7677): 487
https://doi.org/10.1038/nature24043
|
31 |
Kresse G. , Furthmüller J. . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
https://doi.org/10.1016/0927-0256(96)00008-0
|
32 |
Kresse G. , Furthmüller J. . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
https://doi.org/10.1103/PhysRevB.54.11169
|
33 |
Kresse G. , Hafner J. . Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49(20): 14251
https://doi.org/10.1103/PhysRevB.49.14251
|
34 |
Kresse G. , Joubert D. . From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
https://doi.org/10.1103/PhysRevB.59.1758
|
35 |
P. Perdew J. , Burke K. , Ernzerhof M. . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
https://doi.org/10.1103/PhysRevLett.77.3865
|
36 |
J. Monkhorst H. , D. Pack J. . Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
https://doi.org/10.1103/PhysRevB.13.5188
|
37 |
Grimme S.Antony J.Ehrlich S.Krieg H., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H−Pu, J. Chem. Phys. 132(15), 154104 (2010)
|
38 |
Wang V.Xu N.C. Liu J.Tang G.T. Geng W., VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, Comput. Phys. Commun. 267, 108033 (2021)
|
39 |
Ruppert C. , B. Aslan O. , F. Heinz T. . Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett., 2014, 14(11): 6231
https://doi.org/10.1021/nl502557g
|
40 |
Y. Lu A. , Zhu H. , Xiao J. , P. Chuu C. , Han Y. , H. Chiu M. , C. Cheng C. , W. Yang C. , H. Wei K. , Yang Y. , Wang Y. , Sokaras D. , Nordlund D. , Yang P. , A. Muller D. , Y. Chou M. , Zhang X. , J. Li L. . Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol., 2017, 12(8): 744
https://doi.org/10.1038/nnano.2017.100
|
41 |
Zhang C. , Jiao Y. , He T. , Bottle S. , Frauenheim T. , Du A. . Predicting two-dimensional C3B/C3N van der Waals p–n heterojunction with strong interlayer electron coupling and enhanced photocurrent. J. Phys. Chem. Lett., 2018, 9(4): 858
https://doi.org/10.1021/acs.jpclett.7b03449
|
42 |
Tang C. , Zhang L. , Du A. . Tunable magnetic anisotropy in 2D magnets via molecular adsorption. J. Mater. Chem. C, 2020, 8(42): 14948
https://doi.org/10.1039/D0TC04049E
|
[1] |
fop-21330-OF-tangcheng_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|